
REVIEW ARTICLE
published: 13 November 2014

doi: 10.3389/fendo.2014.00195

Gender differences in skeletal muscle substrate
metabolism – molecular mechanisms and insulin
sensitivity
Anne-Marie Lundsgaard and Bente Kiens*

Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark

Edited by:
Janne Lebeck, Danish Diabetes
Academy, Denmark

Reviewed by:
Niels Jessen, Aarhus University
Hospital, Denmark
Brian M. Shewchuk, East Carolina
University, USA
Julia Mader, Medical University of
Graz, Austria

*Correspondence:
Bente Kiens, Section of Molecular
Physiology, Department of Nutrition,
Exercise and Sports, August Krogh
Centre, University of Copenhagen,
Universitetsparken 13, Copenhagen
2100, Denmark
e-mail: bkiens@nexs.ku.dk

It has become increasingly apparent that substrate metabolism is subject to gender-specific
regulation, and the aim of this review is to outline the available evidence of molecular gender
differences in glucose and lipid metabolism of skeletal muscle. Female sex has been sug-
gested to have a favorable effect on glucose homeostasis, and the available evidence from
hyperinsulinemic–euglycemic clamp studies is summarized to delineate whether there is
a gender difference in whole-body insulin sensitivity and in particular insulin-stimulated
glucose uptake of skeletal muscle. Whether an eventual higher insulin sensitivity of female
skeletal muscle can be related to gender-specific regulation of molecular metabolism will
be topic for discussion. Gender differences in muscle fiber type distribution and substrate
availability to and in skeletal muscle are highly relevant for substrate metabolism in men
and women. In particular, the molecular machinery for glucose and fatty acid oxidative and
storage capacities in skeletal muscle and its implications for substrate utilization during
metabolic situations of daily living are discussed, emphasizing their relevance for substrate
choice in the fed and fasted state, and during periods of physical activity and recovery.
Together, handling of carbohydrate and lipids and regulation of their utilization in skeletal
muscle have implications for whole-body glucose homeostasis in men and women. 17-β
estradiol is the most important female sex hormone, and the identification of estradiol
receptors in skeletal muscle has opened for a role in regulation of substrate metabolism.
Also, higher levels of circulating adipokines as adiponectin and leptin in women and their
implications for muscle metabolism will be considered.

Keywords: substrate metabolism, glucose uptake, fatty acid oxidation, intramyocellular triacylglycerol, exercise,
metabolic flexibility, adipose tissue

INTRODUCTION
The number of diagnosed type 2 diabetic (T2D) patients is still
increasing, and notably the global prevalence is reported to be
higher in men than women (1). In biomedical research, it has
become increasingly apparent that gender has a profound impact
on metabolism, and it has been questioned whether female sex
has a favorable effect on insulin sensitivity. Intriguingly, women
present with around two-third the skeletal muscle mass and twice
the adipose mass of their male counterparts, which would actu-
ally predispose for the opposite scenario. To answer the question,
available evidence from well controlled human clinical trials will
be analyzed, emphasizing studies where the hyperinsulinemic–
euglycemic clamp (H–E clamp) has been applied to evaluate
insulin sensitivity. Investigating the nature of primary biologic
gender differences is difficult, as confounding variables as adi-
posity, fat distribution, hormonal status, and aerobic fitness level
might complicate interpretations. Thus, matching of men and
women in regard to body composition, maximal oxygen uptake
(VO2-peak) per lean body mass (LBM), training status, and men-
strual cyclicity is crucial in order to determine the effect of sex
per se.

The majority of gender studies have evaluated insulin sensitiv-
ity at a whole-body level, which in turn reflects the combined

sensitivity of liver, adipose tissue, and skeletal muscle. Skeletal
muscle has been described as a quantitatively important site for
insulin-stimulated glucose clearance, in studies evaluating periph-
eral glucose disposal by the leg arterio-venous (a-v) balance tech-
nique (2). This implicates the importance of investigating possible
sex differences in insulin action in muscle. During a H–E clamp,
the glucose infusion rate (GIR) can be expressed relative to the
size of LBM, which gives a rough estimate of glucose clearance by
skeletal muscle. However, to obtain valid conclusions, insulin sen-
sitivity is to be measured in skeletal muscle. To that end, clinical
trials conducted by our research group contribute with important
information, measuring glucose uptake across the leg by applying
the femoral a-v balance technique on carefully matched men and
women.

In this review, we seek to explain whether a possible difference
in skeletal muscle insulin sensitivity can be related to hormonal
differences or gender-specific regulation of molecular metabolism
in muscle. An increasing body of evidence suggests that there is
a distinct gender dimorphism in the intrinsic properties of skele-
tal muscle. Notably, when gene expression was evaluated using
large-scale microarray of human vastus lateralis muscle, gender
was reported to have a stronger influence on gene expression than
age and training status (3). Determining the causative factors as
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well as implications of gender differences in metabolic properties
of skeletal muscle is highly relevant.

After puberty, the hormonal milieu is markedly changed, in
turn mediating the distinct gender diversity in adiposity. 17-β
estradiol is the most important female sex hormone, and it has
become clear that its actions are wide. The identification of estra-
diol receptors in skeletal muscle has indeed opened for a role of
this hormone in regulation of substrate metabolism. Also, a higher
body fat deposition in women is likely to affect levels of circulat-
ing adipokines, which in turn may influence metabolism in skeletal
muscle by receptor-binding.

Gender differences in muscle morphology, i.e., fiber type com-
position and capillarization, are likely to affect the capacity for
oxidative versus glycolytic energy turnover. Furthermore, the avail-
ability of circulating as well as intramuscular substrates and the
capacity for glucose and fatty acid (FA) uptake are relevant deter-
minants of the relative utilization of FA and glucose. Proteins
related to plasma membrane transport and the molecular machin-
ery for glucose and FA storage and oxidation will be considered,
emphasizing factors that impact on the relative utilization of
glucose and FA in female and male skeletal muscle. Identifying
possible players that regulate the preference between glucose and
FA utilization, and whether these are subject to a gender-specific
regulation is of key interest.

An overall definition of high insulin sensitivity in skeletal mus-
cle is difficult to convey. It might not solely be a question of
achieving a high rate of glucose uptake per muscle mass at a
given time point. The actual substrate choice of the myocytes is
highly dependent on cellular energy status and substrate avail-
ability. Thus, we aim to give a more nuanced picture of gender
differences in the relative glucose and FA utilization in different
situations, i.e., at rest, in the prandial state and during increased
cellular energy turnover. In daily living, men and women will
continuously fluctuate between the fed and fasted state, physi-
cal activity and rest. Thus, we think it is important to consider
substrate choice in each of these situations, as this has an impact
on overall glucose homeostasis.

WHOLE BODY AND SKELETAL MUSCLE INSULIN
SENSITIVITY
Several studies have measured whole-body insulin sensitivity or
related markers in men and women, applying various methods.
Fasting glucose levels in plasma reflect the interplay between basal
whole-body glucose disposal and endogenous glucose production.
In a large cross-sectional study including 1188 individuals, con-
trolled for family history of T2D, the prevalence of impaired fasting
glucose was reported to be higher in men than women (17 versus
13%) (4). When the impact of sex was further evaluated on insulin
action in a cohort of ~8000 Swedish men and women by an oral
glucose tolerance test (OGTT), the prevalence of impaired fast-
ing glucose and diabetes was ~2-fold higher in men compared to
women (5). Also, in a Danish population study of 380 individuals
matched for age and body mass index (BMI), it was demonstrated
that glucose clearance rate during an intravenous glucose toler-
ance test (IVGTT) was 15% higher in women compared to men
(6). Thus, from these large cross-sectional studies, it appears that
men might be more prone to develop insulin resistance.

In Table 1, clinical trials applying the H–E clamp in healthy
subjects are summarized. In all studies, subjects were matched on
age and BMI. Only studies including premenopausal women have
been included. Some studies have also included VO2-peak in their
matching criteria and considered menstrual cycle phase, and in
some trials diet was controlled prior to the clamp. These variables
may all influence metabolism and insulin sensitivity.

It appears that a significant part of the H–E clamp studies
report a relative higher insulin sensitivity in women when GIR is
expressed per kilogram LBM, although not a solely consistent find-
ing. In a few studies, insulin sensitivity has been evaluated directly
in skeletal muscle. When the forearm a-v balance technique was
applied to healthy women after a 75 g oral glucose load, 3 h glu-
cose uptake related to forearm muscle mass was ~37% higher
in women compared to men (22). In a later study by Nuutila
et al., a 47% greater rate of glucose uptake was observed in mus-
cles of women compared to men, measured by positron emission
tomography scanning during hyperinsulinemic conditions (8). We
have conducted H–E clamp studies, applying the femoral a-v bal-
ance technique on carefully matched men and women, and found
that women in the follicular phase had 29–35% higher insulin-
stimulated glucose uptake in leg skeletal muscle (19, 21). Thus,
it seems to be a consistent finding that there is a higher glucose
uptake in female skeletal muscle when stimulated by physiologic
insulin concentrations.

ESTROGEN AND ESTROGEN RECEPTORS IN SKELETAL
MUSCLE
Estrogens constitute a group of female sex steroid hormones
together with progesterone. The endogenous forms of estrogens
are 17β-estradiol, estrone, and estriol, of which 17β-estradiol is the
most important. Importantly, the estrogen receptors α (ERα) and
β (ERβ) are expressed in human skeletal muscle, as demonstrated
at the gene expression level (23, 24). When immunohistochem-
istry was applied on human muscle biopsies it was demonstrated
that ERα and ERβ proteins are localized to the myofiber nuclei
and that their expressional level are independent of sex (25). ERα

appear to be the prominent isoform, as mRNA of ERα is reported
to be 180-fold higher than ERβ mRNA in vastus lateralis biop-
sies from human subjects (24). When human skeletal muscle cells
were treated with estradiol for 24 h, mRNA of ERα, but not ERβ,
was increased (26), and thus only ERα seems to be regulated by
female sex hormones. Interestingly, both ERα and ERβ mRNA
were reported to be 3–5-fold higher in endurance trained men
compared to moderately active men, suggesting a role of ERs in
the adaptations to exercise in skeletal muscle (27).

Estrogen receptors α and ERβ bind as homodimers at spe-
cific DNA motifs termed estrogen response elements. In addition,
ERα can indirectly activate or repress transcription by binding
to other DNA binding proteins. Moreover, estrogen actions may
also be induced by non-genomic effects mediated by extranuclear
ERs. Milanesi et al. has reported robust evidence for a mito-
chondrial location of ERα in the C2C12 mouse skeletal muscle
cell line, demonstrating labeled estradiol binding to mitochon-
drial fractions by immunocytological staining (28), and hence a
role for ERα in human mitochondria remains to be elucidated.
A mitochondrial location of ERs might contribute to explain a
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Table 1 | Summary of H–E clamp studies in healthy premenopausal women and men.

Reference Subjects Matching Menstrual status Fitness level/VO2-peak H–E clamp and dietary

control

Insulin sensitivity

Yki-Jarvinen,

1984 (7)

13 Women, 21±1 years old BMI, age, VO2-peak/

kg BW

Follicular 48±1 and

52±2 ml/kg/min

2 h Women=men, when GIR

expressed per kg BW11 Men, 23±1 years old 40 mU/m2/min

2 days control diet Women > men by 45%, when

GIR expressed per kg LBM

(p < 0.01)

Nuutila et al.,

1995 (8)

7 Women, 29±2 years old BMI, age, VO2-peak/

kg BW

Follicular 39±4 and

44±3 ml/kg/min

2 h Women > men by 41%, when

GIR expressed per kg BW

(p < 0.05)

9 Men, 31±2 years old 1 mU/kg/min

3 days control diet

+
18FDG/PET scan 47% higher glucose uptake in

muscle of women

Donahue et al.,

1996 (9)

13 Women, 37±5 years old BMI, age Not considered Not considered 2 h Women=men, when GIR

expressed per kg BW15 Men, 33±5 years old 40 mU/m2/min

No dietary control Women > men by 46%, when

GIR expressed per kg LBM

(p < 0.05)

Sumner et al.,

1999 (10)

24 Women BMI, age Follicular Not considered 2 h Women > men, when GIR

expressed per kg LBM

(p < 0.01)

31 Men 40 mU/m2/min

Mean age 32±4 years old No dietary control

Frias et al., 2001

(11)

8 Women, 42±8 years old BMI, age Follicular Not considered 5 h Women=men, when glucose

Rd expressed per kg BW10 Men, 35±6 years old 80 mU/m2/min

No dietary control

Perseghin et al.,

2001 (12)

15 Women, 26±1 years old BMI, age Follicular Physical activity index 8.9

and 9.2 (3–15 scale)

1 mU/kg/min Women=men, when GIR

expressed per kg LBM15 Men, 24±1 years old 2 h

3Week isocaloric diet

Rattarasarn

et al., 2004 (13)

11 Women, 39±9 years old BMI, age Not considered Not considered 2 h Women=men, when GIR

expressed per kg BW11 Men, 41±7 years old 50 mU/m2/min

No dietary control

Borissova et al.,

2005 (14)

21 Women BMI, age Not considered Not considered 2 h Women > men by 38%, when

GIR expressed per kg BW

(p < 0.001)

23 Men 1 mU/kg/min

<40 years old No dietary control

(Continued)
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Table 1 | Continued

Reference Subjects Matching Menstrual status Fitness level/VO2-peak H–E clamp and dietary

control

Insulin sensitivity

Soeters et al.,

2007 (15)

10 Women, mean age 21 BMI, age Follicular Sedentary 5 h Women=men, when glucose

Rd expressed per kg BW10 Men, mean age 22 <3 h/week 60 mU/m2/min

38 h fast preceded by

3 days isocaloric diet

Shadid et al.,

2007 (16)

35 Women, 39±8 years, BMI 28±7 BMI, age, VO2-peak/kg

LBM

Not considered 49±10 and 52±10 ml/kg

LBM/min

1 mU/kg LBM/min Women=men, when GIR

expressed per kg BW28 Men, 33±8 years, BMI 29±6 5 days control diet

Koska et al.,

2008 (17)

21 Women BMI, age Follicular No info 100 min Women=men, when GIR

expressed per kg estimated

metabolic body size

32 Men 40 mU/m2/min

Mean age 25 3 days control diet

BMI 36±4

Vistisen et al.,

2008 (18)

8 Women BMI, age, VO2-peak/kg

LBM

Follicular (day 10) 44±2 and 48±1 ml/kg

LBM/min

4 h Women > men, when GIR

expressed per kg LBM

(p < 0.01)

8 Men 40 mU/m2/min

42±1 years old BMI 33±1 3 days control diet

Hoeg et al.,

2009 (19)

8 Women, 24±1 years old BMI, age, VO2-peak/kg

LBM

Follicular (day 7–11) 63±2 and 63±1 ml/kg

LBM/min

2 h Women > men by 22%, when

GIR expressed per kg LBM

(p < 0.05)

8 Men, 25±1 years old 1.1 mU/kg BW/min

8 days control diet

35% higher leg glucose

uptake in women (p < 0.05)

Karakelides

et al., 2010 (20)

12 Young lean BMI, age, VO2-peak/kg

LBM

Not considered Young subjects: 46 and

47 ml/kg/min

8 h Women > men, when GIR

expressed per kg LBM

(p < 0.05)

12 Young obese 1.5 mU/kg LBM/min

12 Older lean Older subjects: 30 and

31 ml/kg/min

3 days control diet

12 Older obese

6 Women, 6 men in each group

Hoeg et al.,

2011 (21)

8 Women, 25±1 years old BMI, age, VO2-peak/kg

LBM

Follicular (day 7–11) 62±2 and 63±1 ml/kg

LBM/min

7 h Women=men, when GIR

expressed per kg LBM8 Men, 25±1 years old 1.42 mU/kg BW/min

8 days control diet 29% higher leg glucose

uptake in women (p < 0.05)

Unless noted, subjects were normal weight (BMI 18–25 kg/m2). Data on age, BMI, and VO2-peak are expressed as mean±SE. If possible, the relative difference in GIR between women and men is calculated.
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higher gene expression of these in the endurance trained state,
as observed in the study by Wiik et al. Interestingly, it has been
demonstrated in rats that activation of ERα in skeletal muscle
with 3 days of treatment with the selective ligand propylpyra-
zoletriyl increased insulin-stimulated glucose uptake in skeletal
muscle (29). Together, findings underscore a role of estradiol and
ERα for glucose metabolism in skeletal muscle.

ROLE OF ESTRADIOL LEVELS
A growing body of evidence underscores the importance of estra-
diol in the regulation of metabolism. A study in adolescents has
demonstrated that the gender difference in whole-body insulin
sensitivity arises after puberty. A longitudinal study was conducted
on a large cohort of adolescents, examined with repeated H–E
clamps three times between the age of 11 and 19 years. Insulin
sensitivity expressed per kilogram LBM showed a divergent pat-
tern as it decreased in male adolescents during puberty, while it
increased in female adolescents and became significantly higher in
women than men at the age of 19 years (30). Interestingly, when
plasma estradiol levels were acutely increased ~200% by an intra-
venous 2.5 mg estrogen bolus administered at baseline of a a H–E
clamp, insulin action was increased by 20% in post-menopausal
women when compared to a saline trial (31). These studies point
to a role of estradiol in the regulation of whole-body insulin sen-
sitivity in vivo, although the mechanisms are not clear. Later in
life, when menopause causes the cessation in female sex hormone
production, a gradual increase in susceptibility to metabolic com-
plications and the metabolic syndrome is described (32). However,
whether the incidence of insulin resistance or T2D increases in the
menopausal transition will be beyond the scope of this review.
An increased amount of evidence from longitudinal clamp stud-
ies following women in the pre-peri and post-menopausal state is
required to make solid conclusions. Still, confounding variables as
age and changes in physical activity have to be considered, and the
role of estradiol per se may be impeded by changes in other sex
hormones.

Throughout each menstrual cycle phase, the levels of female
sex hormones undergo profound changes. Hence, plasma estradiol
concentrations in women vary in the range from 10 to 300 pg/ml,
peaking at the end of the follicular phase. Notably, circulating
estradiol levels in men are indeed also of significance, considering
the normal adult range of 40–50 pg/ml, and implying a possible
role in male metabolism. It has been found in men that a mutation
in the aromatase gene, which catalyzes the last step in the biosyn-
thesis of estradiol from androgens, leads to a diabetic phenotype
(33), and inborn mutation of the ERα gene in men is associated
with insulin resistance (34). Thus, the relevance of estradiol for
glucose homeostasis appears to extend to men. Though estradiol
concentration in premenopausal women is subject to large dur-
ing the menstrual cycle phase, no changes have been reported in
whole-body metabolic rate and respiratory exchange ratio (RER)
at rest (35), basal plasma glucose and insulin (36), or FA concen-
trations (37) when the follicular and luteal phase are compared.
Also, when insulin sensitivity was assessed during the menstrual
cycle in young, healthy women by an IVGTT, no differences in
insulin sensitivity were observed between the luteal phase and the
mid-follicular phase (38). Others have, however, reported a slight

decrease in the luteal phase,as determined by homeostatic HOMA-
IR (39), or IVGTT (40, 41), but it appears that whole-body insulin
sensitivity in women are not subject to major changes during the
menstrual cycle.

Today many women use oral contraceptives (OC) that modify
hormonal status. The active estrogen is ethinyl estradiol, which
is reported to the most potent of the estrogen agonists (42). OC
use reduces natural estrogen production, and depending on OC
type, three to five times more exogenous estrogen is provided com-
pared with normal endogenous estrogen concentrations (43). In
the 1960s, the ethinyl estradiol concentration in OCs were close to
150 µg, but were later decreased due to adverse effects as insulin
resistance, and today 20–30 µg is the common dose. Still, the use
of OCs might have implications in regard to glucose metabolism
in women. In a cross-sectional study of 380 young healthy Cau-
casians, OC use was an important determinant of glucose effective-
ness during an IVGTT, and notably as important as VO2-peak (6).
Also, when a group of young healthy women using OC was com-
pared to non-OC users matched for BMI, body composition and
physical activity, and insulin sensitivity evaluated by a H–E clamp
was reported to be 40% lower in the OC users (12). At physiologic
levels, estradiol may positively influence whole-body insulin sensi-
tivity, but excursion of estradiol concentrations outside its physio-
logic window may affect glucose metabolism and promote insulin
resistance. In relation to this, when male to female transsexuals
were treated with a large oral dose ethinyl estradiol for 4 months,
glucose disposal during a H–E clamp decreased ~22% (44).

It could be speculated whether male sex steroids could be
involved in the regulation of insulin sensitivity and substrate
metabolism in both men and women. As for estradiol, excursion of
testosterone and other androgens outside its normal range, appear
to negatively influence glucose metabolism,as observed for women
with the endocrine disorder polycystic ovarian syndrome (PCOS)
(45). The effects of androgens on substrate metabolism should be
considered in a separate review to extensively cover this topic.

ADIPOSITY AND ADIPOKINES
There is an obvious gender difference in adiposity, which is present
already at birth (46) and becomes more marked during puberty
(47). Varying with each decade, a 6–12% higher body fat was
observed in women when a US cohort of 16,000 12–80 years old
men and women was analyzed by bioelectrical impedance (48).
Actually, the mean body fat percentage for normal-weight women
is similar to men who are classified obese (49). It follows that a
relatively lower LBM in women would in turn decrease capac-
ity for systemic glucose clearance. Notably this is contrary to the
sum of evidence from the mentioned H–E clamp studies, and it
can be speculated why this is not so. It has been demonstrated
with [18F]-FDG glucose and combined PET/CT scan that the
absolute rate of insulin-stimulated glucose uptake in visceral and
subcutaneous white adipose tissue is up to 40% of that in skeletal
muscle (50). Thus, glucose uptake of the adipose tissue compart-
ment does indeed contribute to systemic glucose clearance, and it
seems that the role of the adipose compartment in glucose clear-
ance has been underestimated. Interestingly, a higher basal as well
as insulin-stimulated methyl-glucose uptake was observed in vitro
in female versus male subcutaneous adipocytes, when expressed
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per cell number (51). These findings opens for a particular sig-
nificant role of adipose tissue in whole-body glucose uptake in
women, and it follows that gender differences in glucose uptake
and metabolism of adipose tissue in vivo await further compara-
tive studies. Importantly, body fat is also distributed differently in
men and women, as described with the prevailing terms “apple”
and “pear” shape. Men have a higher amount of visceral adipose
tissue, whereas women have more peripheral subcutaneous fat,
measured by CT scanning (52, 53). Visceral and subcutaneous
fat differ markedly in histology and metabolism. The secretion of
hormones and cytokines may be depot-dependent, and in partic-
ular the visceral depot has a higher rate of catecholamine-induced
lipolysis and drainage of metabolites is directly subjected to the
liver via the portal vein, which over time might have implications
for hepatic lipid content and in turn hepatic insulin sensitivity
(54). It can be hypothesized that the preferential subcutaneous
fat distribution in women attenuates the propensity for hepatic
lipotoxicity, which in turn protects hepatic glucose regulation.

The greater adiposity in women is likely to affect adipokine
production and secretion. Serum leptin concentrations have been
reported to be up to four times higher in premenopausal women
than men (55). The gender difference in leptin levels becomes
more marked after puberty (56), and is reported to persist after
controlling for total body fat (57) and the relative amount of vis-
ceral or subcutaneous adipose tissue (58). Whether leptin plays
a role in muscle metabolism warrants further investigation, but
leptin receptors (OB-Rb) have been identified in human skeletal
muscle. When plasma leptin was increased fourfold in female rats
by 2 weeks of leptin infusion, a 2.5-fold increase in fat oxidation
during contractions was observed in soleus muscle (59). Later, the
increased fat oxidation was explained by a leptin mediated increase
in phosphorylation of 5′AMP activated protein kinase (AMPKα2)
and its downstream target acetyl-coA carboxylase (ACC) (60). The
markedly higher circulating leptin concentrations in women are
likely to have significant implications, and could be speculated to
play a role in the regulation of fat oxidation in female skeletal mus-
cle. In particular, it would be relevant to evaluate possible gender
differences in OB-Rb expression and leptin signaling.

Another important adipokine is adiponectin, of which plasma
concentrations are positively associated with whole-body insulin
sensitivity (61, 62). We have observed 127% higher serum total
adiponectin concentration in lean young women compared with
matched men (63). This gender difference appears to be a con-
sistent finding. Two cross-sectional studies including 1023 and
967 subjects have shown that median serum adiponectin levels
were 56 and 88% higher in women than men (64, 65) and in a
third study including 182 subjects, plasma adiponectin levels were
reported to be 37% higher in women than men (66). Finally, a gen-
der difference in plasma adiponectin concentration of 34 and 71%
was reported in obese and non-obese subjects, respectively (67).
In these four studies, the positive correlation between circulating
adiponectin and whole-body insulin sensitivity was confirmed,
and support a role for adiponectin for enhanced insulin sensitiv-
ity in women. Similar to leptin, the question is whether the higher
adiponectin levels in women have direct implications for skeletal
muscle metabolism. It has been demonstrated in C212 myocytes
that adiponectin stimulates AMPK activity (68), and adiponectin

induced AMPK activation was shown to increase glucose uptake
and fat oxidation via inhibition of ACC in rat skeletal muscle
(69). It could be speculated if the higher adiponectin concentra-
tions in women could increase glucose uptake in skeletal muscle
via AMPK dependent mechanisms. We have been able to demon-
strate a correlation between serum adiponectin concentration, leg
glucose uptake, and AMPK phosphorylation in men, but not in
women (63), The lack of coherence in women could be related
to their lower expression of adiponectin receptor 1 in skeletal
muscle when compared to men, limiting the effects of the high
serum adiponectin levels in women. Further studies are required
to elucidate whether the gender diversity in adiponectin has direct
metabolic effects in skeletal muscle that in turn could contribute
to enhance glucose uptake.

MUSCLE MORPHOLOGY
A gender difference in muscle morphology has been well docu-
mented. By use of histochemical myosin adenosine triphosphatase
(ATP-ase) staining we have observed a higher number of type I
muscle fibers in the vastus lateralis muscle in women compared to
matched men, and when expressed relative to area the proportion
of type I fibers were 27–35% greater in women, while the pro-
portion of type IIA (19, 70), or both IIA and IIX were reported
to be greater in men (71). Hence, a greater muscle area is cov-
ered by type I fibers in women, in moderately (19, 72), as well as
untrained and endurance trained matched men and women (71).
We have also observed a larger individual fiber area of type IIA
(70), or IIA and IIX fibers (19) in men. Others have confirmed
a greater size of type II fibers in men compared to women and a
greater ratio of type II to I fibers in men, also using myofibrillar
ATP-ase staining (73–76). The immunohistochemical findings are
reflected at the transcriptional level of the myosin heavy chains
(MHC), as MHCI mRNA are reported lower in the vastus lateralis
muscle of men than women (77), while MHCIIA and -IIX mRNA
are higher in men (78). The number of capillaries surrounding
each muscle fiber are found to be similar in men and women, but
due to a lower total amount of type II fibers and a smaller indi-
vidual area of these, a greater capillary density per given muscle
area is observed in women (19, 70). Glucose and FA metabolism
are highly dependent on enzymatic characteristics of the given
muscle fiber. A greater capillary supply, and a greater area percent-
age of type I fibers in women are likely to enhance nutritive flow
and increase oxidative glucose and FA metabolism, thereby con-
tributing to gender differences in skeletal muscle metabolism and
insulin sensitivity. An association between insulin sensitivity and
the amount of oxidative type I fibers has been suggested, as a lower
expression of type I fibers has been demonstrated in the vastus lat-
eralis muscle of insulin resistant and T2D subjects as compared to
healthy subjects (79, 80). Finally, both the amount of type I fibers
as well as capillary density were well correlated to insulin action
during a H–E clamp in lean and obese non-diabetic men (81).

AVAILABILITY OF CIRCULATING LIPID SUBSTRATES TO
SKELETAL MUSCLE
PLASMA TRIACYLGLYCEROL AND LIPOPROTEIN LIPASE
A gender difference in lipoprotein metabolism seems to be
well established, as postprandial plasma triacylglycerol (TG) and
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very-low density lipoprotein-TG (VLDL-TG) concentrations are
consistently reported to be lower in healthy lean and obese women
than in men (82–85). It has been suggested that the lower post-
prandial concentrations in women are due to a higher clearance
from plasma, as the rate of VLDL-TG secretion in the fasted state
is actually reported to be higher (84, 86) or similar (87) in lean
women compared to men, studied by intravenous infusion of
glycerol and palmitate tracers or labeled 1-14C triolein VLDL-TG.
The gender difference in TG clearance rate was actually suggested
already in 1974, where Olefsky et al. showed that at a given VLDL-
TG production, a lower plasma TG concentration was reported in
women compared to men, measured in 53 subjects with a wide
range of plasma TG concentrations (88). Thus, it appears that
women extract more TG from plasma. Plasma TG is mainly cleared
into adipose tissue, skeletal muscle, and heart. When TG clearance
across the leg was investigated after a test meal with 34 E% dietary
fat by use of a 14C-oleate tracer, TG extraction from plasma was
demonstrated to be ~7- and ~3-fold higher in women than men
in the overnight-fasted and fed state, respectively, and 6 h after
the meal a higher 14C content was found in m. vastus lateralis
of women compared to men (89). As the amount of TG cleared
by subcutaneous adipose tissue was similar in men and women,
the latter study indicates that the higher capacity for TG clearance
is specific to female skeletal muscle. It appears that women may
be more primed for lipid uptake into skeletal muscle, which in
turn may influence plasma lipidemia after meals. In the prandial
state, lower plasma TG excursions are indeed observed in women
compared to men, investigated following ingestion of standard-
ized high fat meals with 64 and 34 E% fat (83, 89) or evaluated
during a whole day with several meals with 34 E% fat (90).

A greater clearance of TG from VLDL or chylomicron lipopro-
teins could be due to enhanced hydrolysis in the capillary bed of
skeletal muscle, and thus muscle lipoprotein lipase (mLPL) may
be an important player. The concentration of total LPL protein
in plasma samples obtained in the fasted state is reported to be
35% higher in lean and obese healthy women compared to men
(85). Furthermore, when fasting post-heparin total LPL activity
was evaluated in plasma from ~500 men and women aged 17–
64 years, a 30% higher LPL activity was reported in women (91).
In skeletal muscle homogenates, we have reported 160% higher
mRNA of mLPL in young women compared to matched males
(92), and in support of this a 160% higher mLPL mRNA was also
reported in skeletal muscle from 40 to 65 years old obese women
compared to men (93). Whether the gender difference for the gene
translates into a difference in mLPL protein expression is currently
not known, as the lack of a specific antibody hinder further analy-
ses of protein expression in men and women. When mLPL activity
is evaluated in the overnight-fasted state, we have not been able
to identify a gender difference in activity of mLPL (92). How-
ever, activity of LPL may differ in men and women when studied
in other situations. Insulin increases adipose LPL (aLPL) activity
(94), while it decreases mLPL activity (95), and it can be hypothe-
sized that insulin-mediated suppression of mLPL is less in women
in the fed state, due to their higher clearance of TG into skeletal
muscle after meals. Hence, it would be of particular interest to gain
more insight into the regulation of mLPL activity in the prandial
state in women and men.

We have not evaluated aLPL activity, but others have demon-
strated that women have a higher aLPL activity in both the fasted
and fed state compared to men (96). A negative correlation has
been reported between fasting aLPL activity and plasma estradiol
concentration in healthy obese women (97, 98), suggesting that
estradiol is a negative regulator of aLPL and hence TG clearance
into adipose tissue. The regulation by estradiol has been inves-
tigated by treating premenopausal women in the early follicular
phase with transdermal 17β-estradiol, using patches in the gluteal
region, and it was found that aLPL protein expression and activ-
ity decreased in subcutaneous adipose tissue below the estradiol
patches compared to placebo (99). Also, when adipocytes iso-
lated from subcutaneous abdominal adipose tissue of healthy pre-
menopausal women, were treated with 10−7 mol/L 17β-estradiol
for 48 h, LPL protein expression was reduced (100). It remains
to be investigated whether estradiol has inverse effects on LPL
expression in female skeletal muscle, and thereby increases the
potential for muscle lipid storage in women. Evidence to support
this hypothesis can be derived from a study in rats, where it was
found that acute estradiol infusion increased mLPL activity in the
red vastus muscle, while reducing LPL activity in adipose tissue
(101). Taken together data indicate that women have a higher
clearance of plasma TG, and the generated FAs from the hydrol-
ysis of the TG-rich lipoproteins by LPL seems to be taken up
particularly into skeletal muscle. Whether this can be linked to a
higher prandial mLPL activity in women than in men remains to
be clarified.

PLASMA FATTY ACIDS
The concentration of plasma FA may also be a determinant of
lipid availability for skeletal muscle. The available evidence sug-
gests that adipose tissue in women is more sensitive to lipolytic
stimuli (102), when subjected to metabolic stress as fasting or exer-
cise (103) compared with men. Some, but not all, studies report a
higher postprandial plasma FA concentration in women than men
(104, 105), but it is possible that the divergence in findings can be
related to lack of dietary control or improper matching of subjects.
In a large systematic review, including 43 studies conducted after
1990, which have reported overnight-fasted plasma FA concentra-
tions, BMI, and sex in healthy lean and obese subjects (953 women
and 1410 men), it was found that plasma FA concentration was
significantly higher in women (median 517 versus 434 µmol/L in
men) (106). When healthy men and women were fasted for 48 h,
plasma FA concentration increased 30% more in women than
in men (107), and when the length of fasting was increased to
72 h, serum FA was reported to be 81% higher in women com-
pared to men (108). Thus, it appears that the gender difference in
circulating FA levels becomes more pronounced with prolonged
fasting. When FA turnover is further investigated by applying 2.2-
2H2-palmitate or U-13C-palmitate tracers, the gender difference
is also confirmed. A 35–55% higher FA rate of appearance was
observed in women compared to men, when evaluated for 12 h
the day following an overnight fast (84). Similarly, when lean and
obese men and women were followed in the isocaloric state for
four consecutive days, the postabsorptive FA release, related to
resting energy expenditure, was ~40% higher in women (109).
Finally, it was demonstrated in 106 healthy men and women, with
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BMIs in the range of 18–44, that FA rate of appearance related to
LBM was higher in women than men (110). It was demonstrated
that FA release into plasma was similar in men and women when
expressed per unit of fat mass. Together the findings demonstrate
that women have higher postprandial FA concentrations, in par-
ticular in the fasted state, and thereby a higher FA availability per
unit of their LBM, as a result of their higher fat mass than men.

FATTY ACID UPTAKE ACROSS PLASMA MEMBRANE
A higher availability of FA to skeletal muscle may enhance lipid
storage when capacity for FA uptake into this tissue is concomi-
tantly increased. Skeletal muscle FA uptake occurs via passive
diffusion but is also being mediated by lipid binding transport
proteins (111), facilitating FA transport across the lipid bilayer.
FAT/CD36 is the protein, which has been subject for most research,
but also FATP1, FATP4, and FABPpm are involved in plasma mem-
brane transport. A higher gene as well as protein expression of
FAT/CD36 has been reported in women compared to men, irre-
spective of training status (92). Gene expression of FABPpm (92)
and FATP1 (112) are observed to be higher in lean women com-
pared to lean men, and a higher FABPc mRNA expression has
been reported in women compared to men (113, 114). Thus, at
the protein level only FAT/CD36 has been confirmed to be higher
in women than men, and it remains to be elucidated whether pro-
tein expression of the other lipid binding proteins also display
gender differences. It is indeed possible that higher FAT/CD36
protein in women increase their capacity for FA transport. It
seems that localization of this protein is important, as it has been
demonstrated with the giant sarcolemmal vesicle technique that
plasma membrane associated FAT/CD36 are highly correlated with
intramyocellular (IMTG) storage in human skeletal muscle (115).
Whether the amount of sarcolemmal-bound FAT/CD36 is higher
in women has not been investigated.

LIPID METABOLISM IN SKELETAL MUSCLE
INTRAMYOCELLULAR TRIACYLGLYCEROL
An enhanced FA uptake into female skeletal muscle will increase
intracellular fatty acyl-CoAs available for reesterification, depend-
ing on cellular energy demands. The Kiens group was the first to
demonstrate that IMTG content is higher in lean women com-
pared to men (71, 116), and this finding was later supported by
themselves and others (19, 97, 117, 118). It is indeed possible that
higher IMTG concentrations in skeletal muscle of women can be
coupled to their higher plasma FA availability and higher amount
of FAT/CD36 in skeletal muscle. Also, a higher amount of type
I muscle fibers in women is a factor to consider, as IMTG con-
tent is reported to be 2.8-fold higher in type I fibers compared to
type II fibers (119). Notably, IMTG concentrations are often neg-
atively correlated to whole-body insulin sensitivity in men, with
the exception of athletes (120). It can be questioned why this rela-
tionship is different in women and whether it can be coupled to
metabolic features similar to the endurance trained state. By use
of electron microscopy, it has been found that IMTG in women is
localized in a higher number of smaller lipid droplets compared to
men (118). This morphologic characteristic might increase acces-
sibility of lipases and proteins associated to the lipid droplets.
Interestingly, lipid droplets in women were found to be located

closer to mitochondria after an exercise bout (97), a location which
may increase susceptibility to oxidation. The phospholipid surface
of lipid droplets is covered with a number of proteins involved
in lipid metabolism and trafficking of the lipid droplets. It has
been demonstrated in untrained 40 years old men and women,
matched for BMI and VO2-peak/kg LBM, that skeletal muscle pro-
tein expression of perilipin 2, 3, 4, and 5 (also known as ADRP,
TIP47, S3-12, and OXPAT, respectively) is 1.5- to 2-fold higher in
women (121). Of these, perilipin 3 may be considered important
for lipid droplet lipolysis (122), and perilipin 5 has been described
to interact with lipolytic key proteins as ATGL and is activator CGI-
58 (123). Furthermore, recent work also indicates that perilipin 5
mediates an interaction between lipid droplets and mitochondria
(124). Taken together, smaller lipid droplets and increased expres-
sion of perilipins in women are likely to increase association with
lipases and eventually mitochondria, thereby increasing lipolytic
turnover of IMTG. Whether the higher expression of the perilip-
ins is simply due to a higher content of lipid droplets in women
remains to be elucidated. It might also be that IMTG concentra-
tion per se is not an important determinant of insulin sensitivity in
skeletal muscle. Instead, accumulation of lipid metabolites, such
as diacylglycerol or ceramides, has been suggested to play a role,
and it could be speculated whether there are gender differences
for these other lipid fractions. Studies in this area are scarce, but
one study has reported no difference in diacylglycerol or ceramide
content between healthy men and women, though subjects had
a wide age- and BMI range (125). Further studies are required
to exclude a differential influence of lipid metabolites and related
lipotoxicity in men and women.

INTRAMYOCELLULAR TRIACYLGLYCEROL TURNOVER
Increased TG storage in skeletal muscle of women is likely the result
of increased esterification of FAs,as de novo lipogenesis is limited in
human skeletal muscle. The ratio between FA oxidation and stor-
age has been investigated in the prandial state. After a standardized
meal (27 E% fat), containing 3H-triolein, was given to healthy pre-
menopausal women and men, 24 h 3H2O derived FA oxidation was
observed to be greater in men, suggesting a greater storage of FA in
women (126). This is supported by the finding that non-oxidative
FA disposal was demonstrated to be higher in women than men,
when FA turnover was evaluated by infusion of 9–10,2H-palmitate
and indirect calorimetri applied (127). These two studies suggest
that at a whole-body level a significant greater share of exogenous
FAs are stored, rather than oxidized, in women. More interest-
ingly, when high plasma FA concentrations were induced by a 48 h
fast, it was shown by 1H-MRS that TG increased in muscle of
women, while TG increased in the liver of men (107), suggest-
ing that the greater storage are specific to female skeletal muscle.
This is supported by the findings of increased expression of genes
linked to fat storage in skeletal muscle of women, such as the
transcription factor sterol regulatory element binding protein 1c
(SREBP-1c) (113, 114) and mitochondrial glycerol-3-phosphate
acyltransferase (mtGPAT) (114), of which the latter is important
for synthesis of the glycerol backbone for TG.

Stearoyl CoA desaturase 1 is important for desaturation of
lipids in skeletal muscle and suggested to play a role in TG syn-
thesis (128). It could be speculated that women have a higher
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expression and/or activity of stearoyl CoA desaturase 1 (SCD1)
in muscle compared to men. In a Swedish health survey of 554
men and 295 women, a significant higher index of ∆9 desaturase
activity, i.e., 16:0/16:1n-7 and 18:0/18:1n-7 ratios, was observed
in serum cholesteryl esters (129), indicative of increased SCD
activity at a whole-body level. More specifically, SCD1 mRNA
is observed to be higher in skeletal muscle of women than men
(130), and this gender difference seem to extend to adipose tis-
sue, when SCD1 gene expression is analyzed in gluteo-femoral
and abdominal adipose tissue derived preadipocytes (131). Gen-
der differences in SCD1 protein expression or activity in skeletal
muscle awaits further investigation. Interestingly, when FA com-
position of skeletal muscle TG was separated by thin layer chro-
matography and analyzed by gas–liquid chromatography, a lower
amount of saturated FAs was observed in lean and obese women
compared to men (132), which indeed could suggest a higher
desaturase activity specific to female muscle. It can be hypoth-
esized that a lower saturation of TG increases affinity of the lipases
(133), thereby contributing to increase lipolytic turnover. Fur-
thermore, it is possible that a more unsaturated profile of muscle
lipids in women decreases the risk of myocellular lipotoxicity, and
thereby increase insulin sensitivity, but these questions remain to
be further investigated.

It seems that women are more equipped for FA esterification
than men and studies of lipid droplet morphology and associ-
ated proteins suggest a higher capacity for lipolysis as well. In this
context, we have demonstrated a higher IMTG use during submax-
imal exercise in women than in men, irrespective of training status
(70, 71, 116). Thus, during cellular energy stress it appears that
hydrolytic activity against IMTG is higher in women than men.
When total TG hydrolase activity was measured at rest in skele-
tal muscle homogenates obtained in the overnight-fasted state, a
twofold higher activity was reported in women compared to men,
with no differences in DAG hydrolase activity (125). It can be ques-
tioned whether these findings can be related to gender-specific
regulation of lipases in skeletal muscle. We have observed a simi-
lar protein expression of ATGL and CGI-58 in matched men and
women (unpublished data). In regard to HSL, we have reported
higher protein content in muscle from moderately trained women
compared to matched men, but were not able to couple an
increased lipolytic activity in women with increased HSL phos-
phorylation (117). Considering the findings of Moro et al. (125),
it seems relevant to further study the gender-specific regulation of
ATGL activity, but also the interaction between lipases and lipid
droplets in men and women at rest and during exercise.

GLUCOSE TRANSPORT AND INSULIN SIGNALING
Insulin-stimulated glucose uptake appears to be higher in skeletal
muscle of women than men, a finding that implies the relevance of
studying gender differences in muscle glucose uptake and metab-
olism. We have observed a similar protein expression of glucose
transporter 4 (GLUT4) in skeletal muscle of men and women (19),
despite reports of higher gene expression in women compared to
men (114, 130). GLUT4 gene expression seems to be subject to
regulation by estradiol, as incubation of human myotubes with
estradiol for 24 h was found to increase mRNA of GLUT4 eightfold
(26). Furthermore, GLUT4 protein is markedly reduced in skeletal

muscle of ERα (−/−) knockout mice, and immunofluorescence
demonstrated a marked reduction of GLUT4 at the plasma mem-
brane (134). Although we have not been able to identify a higher
total protein content of GLUT4 in women, it may be hypothesized
that gender-specific regulation of GLUT4 translocation or activ-
ity contribute to increased insulin-stimulated glucose uptake in
female muscle. We have not been able to demonstrate any gender
differences in protein expression of the insulin receptor or proxi-
mal insulin signaling via Akt or AS160 (19), but it remains possible
that downstream insulin signaling or translocation, docking and
fusion dynamics of GLUT4 vesicles with the plasma membrane
are differently regulated in women than men.

Hexokinase II is another key protein involved in glucose uptake,
and here we have observed a 56% higher hexokinase II (HKII)
protein expression in women compared to men (21), which agrees
with the finding of 2.4-fold higher HKII mRNA in women (114). In
mice overexpressing HKII protein, 2-deoxy-glucose transport into
muscle was increased under hyperinsulinemic conditions (135),
and it can be hypothesized that increased intracellular phospho-
rylation of glucose facilitates its uptake and thereby contributes
to an increased capacity for glucose uptake in women. It should,
however, be noted that maximal HKII activity has been evaluated
in muscle homogenates from matched men and women, and was
found to be similar (136). Though, whether this reflects enzyme
activity in vivo at physiologic glucose and insulin concentrations
remains to be elucidated.

Glucose uptake into skeletal muscle may also be influenced by
glycogen stores and the capacity for storage of glucose into glyco-
gen. Glycogen content is not reported to be different between men
and women. We have observed similar muscle glycogen in the rest-
ing overnight-fasted state after a controlled diet, determined both
by PAS staining and biochemically in muscle extracts (70), and
this finding is confirmed by others in both trained and untrained
individuals (137). Gene expression of glycogen synthase (GS) is
reported to be higher in women than in men (130), while differ-
ences in protein expression have not been evaluated. When GS
activity was measured in muscle homogenates from overnight-
fasted individuals, we have not been able to identify a difference
between matched men and women when activity was expressed as
% of I-form or fractional velocity % (unpublished data). Thus, it
seems that women and men are similar in their capacity for storage
of glucose.

MITOCHONDRIAL METABOLISM
MITOCHONDRIAL FATTY ACID TRANSPORT AND BETA-OXIDATION
Before entering mitochondria, FA from plasma and IMTG lipol-
ysis are activated to fatty acyl-CoAs by acyl-CoA synthase. To
be oxidized FA have to be converted to their acylcarnitine form
to cross the outer mitochondrial membrane, a reaction catalyzed
by carnitine palmitoyltransferase 1 (CPT-1). In well trained men
and women, there are no differences in the level of total muscle
carnitine at rest (138), while gender differences in muscle free car-
nitine during exercise has not been investigated. CPT-1 mRNA
is reported to be higher in women (114), a finding which is also
confirmed in myotubes obtained from females compared to males
(139). CPT-1 protein content and enzyme activity, measured in
intact mitochondria isolated from vastus lateralis muscle biopsies,
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were however reported to be similar in both untrained and trained
men and women (140, 141).

In the mitochondrial matrix, fatty acyl-CoA enters the β-
oxidation pathway, with the acyl-CoA dehydrogenases performing
the first reaction. Long-chain acyl-CoA dehydrogenase (LCAD)
mRNA is reported to be higher in women (114), while only very
long- and medium chain acyl-CoA dehydrogenase (VLCAD and
MCAD) protein expression is reported to be higher in women
than men (142). Mitochondrial trifunctional protein (TFP) α cat-
alyzes the second and third reaction for acyl-CoA substrates, while
TFPβ catalyzes the fourth reaction in the production of acetyl-
coA. The gene and protein expression of TFPα is reported to be
higher in women (113, 142), while TFPβ protein seems to be simi-
lar in men and women (77). The hydroxy acyl-CoA dehydrogenase
enzyme (HAD) catalyzes the third reaction, which leads to the pro-
duction of NADH. When acyl-coA substrates is added to muscle
homogenates, and the production of NADH is measured, the max-
imal activity of HAD seems to be similar in men and women (76,
143). Notably, glycolytic capacity appears to be greater in men. A
higher activity of glycogen phosphorylase, pyruvate kinase, phos-
phofructokinase (PFK), and lactate dehydrogenase (LDH) has
been demonstrated in muscle homogenates of young untrained
men compared with women (144). These findings are supported
in a later study, demonstrating a higher PFK, LDH, and malate
dehydrogenase activity in muscles of men compared to women
(145). Hence, men might have a higher capacity for glycogenolysis
and glycolytic flux when compared to women, and a higher ratio
between HAD activity and glycolytic enzyme activity is reported
in women (144), suggesting increased potential for beta-oxidation
than glycolysis in female muscle. It is indeed possible that the dif-
ference in glycolytic capacity between men and women can be
related to the higher amount of type II fibers in men.

TRICARBOXYLIC ACID CYCLE FLUX AND MITOCHONDRIAL ATP
PRODUCTION
Acetyl-CoA substrates fuels the tricarboxylic acid (TCA) cycle
and can be derived from β-oxidation as well as glycolysis. It
can be questioned whether women have a higher capacity for
NADH generation through the TCA cycle and ATP production
from oxidative phosphorylation. We have found that citrate syn-
thase activity is similar in skeletal muscle from matched men and
women (19, 143), and activity of other important TCA enzymes
as cytochrome c oxidase and succinate-cytochrome c oxidoreduc-
tase is also reported to be similar in men and women (146). When
maximal ATP production was measured on freshly isolated mito-
chondria from skeletal muscle, using the luciferase reaction with
different substrates, a similar ATP production rate was observed
in lean and obese sedentary men and women, expressed relative to
mitochondrial protein (20). Also, when mitochondrial respiration
was analyzed in an oxygraph on muscle bundles, and complex I-,
II-, III-, and IV-dependent respiration measured individually and
related to either muscle weight, mitochondrial protein or citrate
synthase, no gender differences were observed (147).

Together, the capacity for acetyl-coA flux through TCA and
production of ATP from oxidative phosphorylation appears to
be similar in men and women, suggesting an equal capacity for
energy generation from glucose and FA. An increased β-oxidative

to glycolytic capacity in women, concomitant with increased cel-
lular availability of FA, will increase the propensity for a higher
relative FA utilization in women, when ATP demands increases.

PDH is a key enzyme in the regulation of the metabolic switch
between glucose and FA oxidation. PDK4 phosphorylates and
thereby inhibits PDH, in turn inhibiting the conversion of pyru-
vate to acetyl-CoA, leading to enhanced fat oxidation and diver-
sion of glycolytic intermediates to alternative metabolic pathways.
When myotubes, obtained from females and males, were incu-
bated with 17-β estradiol, PDK4 mRNA was reported to increase
in female myotubes (139). Furthermore, 17-β estradiol treatment
to ovariectomized female rats induced a 23-fold increase in PDK4
gene expression in skeletal muscle (148). Interestingly, a role for
estradiol in the transcriptional regulation of PDK4 has been fur-
ther confirmed in a human study. When muscle biopsies were
obtained from monozygotic post-menopausal twins, of which one
sister was a current user of hormone replacement therapy (HRT)
(mean use 7 years), while her twin sister never used HRT, microar-
ray analyses revealed that HRT was associated with a significant
increase in the PDK4 gene (149). We are not aware of studies that
have investigated differences in protein expression and regulation
of PDK4 and PDH in men and women. Such possible gender dif-
ferences in PDH activity with feeding and exercise may contribute
to explain differences in regulation of glucose and FA oxidative
flux in men and women.

SUBSTRATE TURNOVER IN DIFFERENT METABOLIC STATES
When studying substrate metabolism in men and women it is
imperative to study how gender affects glucose and fat metabolism
during the different metabolic situations of daily living, fluctuat-
ing between the prandial and postabsorptive state and periods
with physical activity and recovery. In the resting overnight-fasted
state, we have not been able to measure any gender differences in
whole-body RER by indirect calorimetri, and it seems that postab-
sorptive glucose and FA utilization are similar in men and women.
However, when substrate oxidation was then evaluated in meta-
bolic chambers for 24 h, with three meals provided during the day,
the rate of fat oxidation was lower in young women compared
to men (150). In another study, where resting RER was evaluated
by indirect calorimetri after two meals separated by 5 h, fat oxi-
dation was observed to be consistently lower in women during
the 10 h (126). These studies indicate that women utilize more
carbohydrate than fat when they are in the prandial and post-
prandial state, likely due to the larger insulin sensitivity in women
than in men. Indeed, more studies are needed to further inves-
tigate the prandial glycemic response in men versus women, in
order to make conclusions on their respective insulin sensitivity
in the fed state. Interestingly, when female and male endurance
athletes increase carbohydrate intake from 55 to 60 to 75 E% for
4 days, muscle glycogen concentration was increased in men only
after the isocaloric dietary manipulation (151), suggesting that the
additional carbohydrates has been directed for oxidation rather
than storage in women.

On the contrary, during conditions of increased energy
demands women utilize more fat than carbohydrate to cover
energy needs. It has been well described that women rely more on
fat oxidation than men at the same relative submaximal exercise
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intensity. When calorimetric data from 25 studies comparing sub-
strate oxidation in men and women during endurance exercise
(>60 min) are summarized, mean RER indicates a moderately,
but significantly, greater relative fat oxidation in women com-
pared to men (114). Also, it has been demonstrated with indi-
rect calorimetri during incremental tests on treadmill and cycle
ergometer, that the rate of maximal fat oxidation is significant
lower in men compared to women (152, 153). During submaximal
exercise, a higher AMP/ATP ratio and greater AMPKα2 activa-
tion has been reported in moderately trained men compared
to women (70), suggesting a better maintenance of myocellular
energy balance in women during exercise, possible related to the
more oxidative fiber type expression and better capillarization in
women than in men. After exercise the opposite scenario appears
to be in play. A recent meta-analysis, including 18 studies inves-
tigating substrate utilization in young men and women during
2–22 h of recovery from 60 to 120 min endurance exercise at 28–
75% of VO2-peak, has reported a greater exercise-induced increase
in lipid oxidation in men than women in the postabsorptive state
(154). In support of this, we have observed a higher rate of glucose
oxidation in women than men for 22 h after 120 min exercise at
55% VO2-peak (unpublished data). Furthermore, when FA trac-
ers and indirect calorimetri were applied during 3 h of recovery
from moderate intensity exercise at 45 or 65% of VO2max, fat
oxidation was reported lower in women compared to men (155).
Furthermore, when whole-body insulin action was assessed dur-
ing the initial 3 h of recovery from 90 min exercise at 85% of lactate
threshold by a H–E clamp, GIR was 27% lower in men compared
to women (156). Together, these studies indicate that in the period
following physical activity or exercise, FAs may be preserved for
TG re-storage in women, while glucose is used to a greater extent
to cover oxidative needs.

Taken together, when compared to men, women seem to utilize
more carbohydrates in the fed state, as well as during recovery from
physical activity, but less carbohydrate than men during exercise.
As the fed state predominates in daily living, and the effects of
physical activity might be prolonged, these observations suggest
that insulin sensitivity and carbohydrate oxidation will be higher
in women during the time course of a typical day. Differences
in exercise substrate metabolism between males and females are
likely influenced by sex hormones as discussed earlier and there-
fore one would expect differences between the two sexes to be
less before puberty as well as after menopause. In agreement with
this notion, differences in exercise substrate metabolism between
women and men are not observed in childhood, but become
evident with puberty (157). In addition, fat oxidation of post-
menopausal women was 33% lower during exercise at 50% of
VO2max compared to premenopausal women (158).

CONCLUDING REMARKS AND PERSPECTIVES
A significant part of the H–E clamp studies comparing men and
women conclude that whole-body insulin sensitivity is higher in
women, and it appears to be a solid finding that insulin-stimulated
glucose uptake is higher in female skeletal muscle. Notably, this is
observed despite greater body fat stores and greater lipid stores
in skeletal muscle of women than in men. The molecular basis
for the observation of higher insulin-stimulated glucose uptake

in female skeletal muscle is not fully explained. An increased
HKII-mediated glucose gradient, due to markedly higher HKII
protein in women, may contribute to increase their capacity for
glucose uptake, while it remains to be investigated whether GLUT4
translocation dynamics is subject to gender differences.

Gender differences in substrate metabolism have been well
described. Women seem to oxidize more carbohydrates in the
prandial state after meals, and when energy demands increases
during physical activity, energy expenditure is covered by a greater
fat oxidation in women. Together, these findings imply a high
metabolic flexibility in women, as substrate oxidation is readily
adjusted in accordance to nutrient availability in these situations.
Both in the prandial phase and during recovery from exercise, FA
substrates are directed toward TG storage, while glucose is directed
for oxidation. At the molecular level, female skeletal muscle seems
to be more “primed” for lipid storage as well as oxidation, which
in turn contribute to keep the turnover of IMTG stores high.

The molecular differences in metabolism may reflect evolved
adaptations in men and women that stem from differences in
reproductive costs. Gestation and lactation is nutritionally expen-
sive for women, and thus they would benefit from an increased
ability to store fat in easily available depots as in skeletal mus-
cle, thereby being more resistant to periods of food scarcity. In
our days, where food plentiness prevails, the greater capacity for
fat storage in women may result in better coping with lipid excess
and thereby improved glucose tolerance. Interestingly, high plasma
FA concentrations, obtained by intravenous infusion of Intralipid
and heparin, induce significantly less (21) or no (11) reduction in
whole-body insulin sensitivity in women compared to men, sup-
porting an improved lipid handling in women. In the acute state,
this might be coupled to more efficient direction of lipids toward
storage in women, thereby decreasing cellular concentration of
unesterified lipids, and the concomitant attenuation of glucose
oxidation and metabolism in women.

More research is required to fully understand the role of gender
in metabolism, and further unraveling of molecular mechanisms
behind gender differences in glucose and lipid metabolism will
contribute to enhance our understanding of acquired metabolic
disorders as T2D. Future research areas include studies of glucose
transport dynamics in skeletal muscle of men and women, and
the causal mechanisms behind an increased metabolic flexibility
in women. Also, gender differences in the relative contribution
of adipose tissue to whole-body glucose disposal, remain to be
investigated. In future metabolic research, it is worth considering
the lack of convergence for gene and protein expression levels of
many proteins and enzymes in female skeletal muscle. Notably,
when gene trait analysis is applied to male and female skeletal
muscle using microarray, a greater abundance of genes involved in
RNA processing as ribosomal handling, transcription, and transla-
tion has been observed in women (159). This implicates that there
might be a general higher turnover of mRNA in women than in
men, and underscores the importance of studying metabolism at
the protein level to make solid conclusions.
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