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Abstract

MicroRNA (miRNA)-based therapies are an emerging class of targeted therapeutics with

many potential applications. Ewing Sarcoma patients could benefit dramatically from per-

sonalized miRNA therapy due to inter-patient heterogeneity and a lack of druggable (to this

point) targets. However, because of the broad effects miRNAs may have on different cells

and tissues, trials of miRNA therapies have struggled due to severe toxicity and unantici-

pated immune response. In order to overcome this hurdle, a network science-based

approach is well-equipped to evaluate and identify miRNA candidates and combinations of

candidates for the repression of key oncogenic targets while avoiding repression of essen-

tial housekeeping genes. We first characterized 6 Ewing sarcoma cell lines using mRNA

sequencing. We then estimated a measure of tumor state, which we term network potential,

based on both the mRNA gene expression and the underlying protein-protein interaction

network in the tumor. Next, we ranked mRNA targets based on their contribution to network

potential. We then identified miRNAs and combinations of miRNAs that preferentially act to

repress mRNA targets with the greatest influence on network potential. Our analysis identi-

fied TRIM25, APP, ELAV1, RNF4, and HNRNPL as ideal mRNA targets for Ewing sarcoma

therapy. Using predicted miRNA-mRNA target mappings, we identified miR-3613-3p, let-

7a-3p, miR-300, miR-424-5p, and let-7b-3p as candidate optimal miRNAs for preferential

repression of these targets. Ultimately, our work, as exemplified in the case of Ewing sar-

coma, describes a novel pipeline by which personalized miRNA cocktails can be designed

to maximally perturb gene networks contributing to cancer progression.

Author summary

Precision medicine in cancer aims to find the right treatment, for the right patient, at the

right time. Substantial variation between patient tumors, even of the same disease site, has
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limited the application of precision medicine in the clinic. In this study, we present novel

computational tools for the identification of targets for cancer therapy using widely avail-

able sequencing data. We used a network-science based approach that leveraged multiple

types of ‘omic data to identify functionally relevant disease targets. Further, we developed

algorithms to identify potential miRNA-based therapies that inhibit these predicted dis-

ease targets. We applied this pipeline to a novel Ewing Sarcoma transcriptomics data-set

as well as publicly available patient data from the St. Jude Cloud. We identified a number

of promising therapeutic targets for this rare disease, including EWSR1, the proposed

driver of Ewing Sarcoma development. These novel data and methods will provide

researchers with new tools for the development of precision medicine treatments in a vari-

ety of cancer systems.

Introduction

Ewing sarcoma is a rare malignancy arising from a gene fusion secondary to rearrangements

involving the EWS gene [1]. There are 200–300 reported cases each year in the United States,

disproportionately affecting children [2]. High levels of inter-tumor heterogeneity are

observed among Ewing sarcoma patients despite a shared EWS gene fusion initiating event

[3]. Ewing sarcoma is also extremely prone to developing resistance to available chemothera-

peutics [4]. These features make it an ideal system to develop personalized therapies for resis-

tant tumors or to avoid the development of resistance altogether.

MicroRNA (miRNA)-based therapeutics, including anti-sense oligonucleotides, are an

emerging class of cancer therapy [5]. Recent work has highlighted the critical importance of

miRNAs in the development and maintenance of the cancer phenotype [4–6]. MiRNA dysre-

gulation has been implicated in the development of each of the hallmark features of cancer [7],

and restoration of expression of some of these critical downregulated miRNAs has been stud-

ied as a potential treatment for several different cancers [6, 8, 9]. In particular, in the past

decade, anti-sense oligonucleotide inhibitors of the STAT3 transcription factor have shown

promise in the settings of lymphoma [10, 11] and neuroblastoma [12]. MiR-34 has shown to

be effective in pre-clinical studies for treatment of both lung cancer [13–15] and prostate can-

cer [16]. Finally, miR-34 and let-7 combination therapy has been shown to be effective in pre-

clinical studies of lung cancer [15].

MiRNAs have been recognized as potential high-value therapeutics in part due to their abil-

ity to cause widespread changes in a cell-signaling network [5]. A single miRNA molecule can

bind to and repress multiple mRNA transcripts [6, 17–19], a property that can be exploited

when designing therapy to maximally disrupt a cancer cell signaling network.

This promiscuity of miRNA binding may also increase the risk of off-target effects and tox-

icity (Fig 1). For example, miR-34 was effective in pre-clinical studies for the treatment of a

variety of solid tumors [13–16], only to fail in a phase I clinical trial due to “immune-related

serious adverse events” [20]. To capitalize on the promise of miRNA-based cancer therapy

while limiting potential toxicity, we developed a systematic, network-based approach to evalu-

ate miRNA cocktails. We focused on miRNA cocktails rather than single miRNA therapeutics

due to the potential for miRNA cocktails to minimize toxicity compared to single miRNA regi-

mens [21] (Fig 1).

In this work, we build on previous studies applying thermodynamic measures to cell signal-

ing networks in the field of cancer biology [22–24], as well as works that describe a method to

use gene homology to map miRNAs to the mRNA transcripts they likely repress [6, 17, 18].
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Reitman et al. previously described a metric of cell state analogous to Gibbs free energy that

can be calculated using the protein-protein interaction network of human cells and corre-

sponding transcriptomic data [22]. Gibbs free energy has been correlated with a number of

cancer-specific outcomes, including cancer grade and patient survival [23]. Additionally, Reit-

man et al. leveraged Gibbs and other network measures to identify personalized protein targets

for therapy in a dataset of low-grade glioma patients from The Cancer Genome Atlas (TCGA)

[22]. Previous work has also highlighted the critical importance of miRNAs to maintenance

and development of the oncogenic phenotype, and demonstrated the utility of applying

miRNA-mRNA mappings. [6] In this work, we developed and applied a computational pipe-

line that leverages these network principles to identify miRNA cocktails for the treatment of

Ewing sarcoma.

Materials and methods

0.1 Overview

We characterized six previously described Ewing sarcoma cell lines in triplicate [25]—A673,

ES2, EWS502, TC252, TC32, and TC71—using paired miRNA and mRNA sequencing. By

evaluating 6 distinct cell lines, we aimed to assess the heterogeneity inherent to Ewing sarcoma

in-vitro. We also utilized mRNA sequencing data for 15 ewing sarcoma patient tumor samples

made available on the St. Jude Cloud [26]. We then defined a measure of tumor state, which

we term network potential (Eq 1), based on both mRNA gene expression and the underlying

protein-protein interaction (PPI) network. Next, we ranked mRNA targets based on their con-

tribution to network potential of each cell line, aiming to approximate the relative importance

of each mRNA to network stability. Relative importance of each mRNA to network stability

was determined by calculating the change in network potential of each network before and

after in silico repression of each mRNA (ΔG, described in Section 0.5). After identifying these

mRNA targets, we then identified miRNA and miRNA cocktails that preferentially acted to

repress the most influential of the ranked mRNA targets, with the aim of defining synthetic

miRNA-based therapy for down-regulation of these targets. Our computational pipeline is

schematized in Fig 2.

Fig 1. Cartoon describing rationale for focusing on miRNA combination therapy. With single-agent therapy, both target mRNA and non-target

mRNA are inhibited an equal amount, potentially resulting in toxicity due to off-target effects. With miRNA combination therapy, the common target

mRNA is inhibited to a greater degree than any individual non-target miRNA.

https://doi.org/10.1371/journal.pcbi.1008755.g001
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Fig 2. Simplified schematic of our computational pipeline. We defined a measure of tumor state, which we term network potential (Eq 1), based on

both mRNA gene expression and the underlying protein-protein interaction (PPI) network. Next, we ranked mRNA targets based on their contribution

to network potential of each cell line, aiming to approximate the relative importance of each mRNA to network stability. After identifying these mRNA

targets, we then identified miRNA and miRNA cocktails that preferentially acted to repress the most influential of the ranked mRNA targets, with the

aim of defining synthetic miRNA-based therapy for down-regulation of these targets.

https://doi.org/10.1371/journal.pcbi.1008755.g002
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0.2 Data sources

We utilized three data sources to develop our Ewing sarcoma cell signaling networks: the Bio-

GRID protein-protein interaction database [27], mRNA expression data from 6 Ewing sar-

coma cell lines, which are available on GEO (accession GSE98787), and mRNA expression

data from 15 Ewing sarcoma patient samples, which are available on the St. Jude Cloud [26].

Protein protein interaction databases. The BioGRID interaction database contains

curated data detailing known interactions between proteins for a variety of different species,

including Homo sapiens. The data were generated by manual curation of the biomedical litera-

ture to identify documented interactions between proteins [27]. To assist in manual curation,

the BioGRID project uses a natural language processing algorithm that analyzes the scientific

literature to identify manuscripts likely to contain information about novel PPIs. The dataset

is therefore limited to protein interactions that are reliably reported in the scientific literature.

As new research accumulates, substantial changes to the PPI network may occur. For example,

between 2016 and 2018, the number of documented PPIs in Homo sapiens grew from 365,547

to 449,842. The 449,842 documented interactions in 2018 were identified through curation of

27,631 publications [27]. Importantly, the PPI network is designed to represent normal

human tissue. To assess the importance of the specific PPI used to our results, we repeated

much of our analysis using stringdb, another publicly available PPI with millions of docu-

mented interactions. To maintain some consistency with biogrid, we modulated the provided

“interaction score” until the resulting network had around the same number of edges as the

biogrid network. Interaction score is a number ranging from 0 to 1000 that describes the likeli-

hood that a given protein protein interaction is biologically relevant. For our analysis, we

included only interactions with an interaction score� 700.

Ewing sarcoma transcriptomics. Second, we utilized mRNA expression data from in
vitro experiments conducted on six Ewing sarcoma cell lines (3 biological replicates per cell

line). RNA/miRNA extraction was performed with a Qiagen kit with on-column DNase diges-

tion. These mRNA and miRNA expression data were then normalized to account for between

sample differences in data processing and further adjusted using a regularized log (Rlog) trans-

formation [28, 29]. In order to extend our study to patient samples, we repeated our analysis

on 15 patient tumors from the St. Jude Cloud for which RNA sequencing data was available.

The St. Jude Cloud is a comprehensive, cloud-based data-sharing ecosystem that provides

genomic data on thousands of samples from patients with pediatric cancer [26].

Notably, methods for calculating network potential from this type of data require protein

concentrations rather than mRNA transcript concentrations. For the purposes of this analysis,

we assumed that concentration of protein in an Ewing sarcoma tumor was equivalent to the

concentration of the relevant mRNA transcript. A large body of work suggests that mRNA lev-

els are the primary driver of protein levels in a cell under steady state conditions (i.e. not

undergoing proliferation, response to stress, differentiation etc) [30–33]. However, recent

work in a 375 cancer cell lines has shown that mRNA expression may not be predictive of pro-

tein expression in the setting of malignancy [34]. For this reason, we included the protein-

mRNA correlations from their experiments alongside some of our key findings to provide

needed context.

0.3 Network development

We first developed a generic network to represent human cell signaling networks using the

BioGRID interaction database [27]. The BioGRID protein-protein interaction network can be

downloaded as a non-linear data structure containing ordered pairs of proteins and all the

other proteins with which they interact. This data structure can be represented as an
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undirected graph, with vertex set V, where each vertex represents a protein, and edge set (E)

describes the interactions between proteins.

Using mRNA sequencing data from 6 Ewing sarcoma cell lines in triplicate, we then

ascribed mRNA transcript concentration for each gene as an attribute to represent the protein

concentration for each node in the graph. Through this process, we developed networks spe-

cific to each cell line and replicate in our study (18 total samples). We then repeated the same

process to develop networks specifics to the 15 patient tumor samples.

0.4 Network potential calculation

Using the cell signaling network with attached cell line and replicate number specific normal-

ized mRNA expression data, we defined a measure of tumor state following Reitman et al.

[22], which we term network potential. Our Network potential metric was inspired by Gibbs

free energy in physics or chemistry. We first calculate the network potential of the i-th node in

the graph:

Gi ¼ Ci ln
CiP
Cj þ Ci

" #

: ð1Þ

where Gi is equal to the network potential of an individual node of the graph, Ci is equal to the

concentration of protein corresponding to node Gi, and Cj is the concentration of protein of

the j-th neighbor of Gi. Because of the natural log transformation, Gi will always return a nega-

tive number. Total network potential (G) of the network can then be calculated as the sum

over all nodes:

G ¼
X

i

Gi: ð2Þ

where G is equal to the total network potential for each biological replicate of a given cell line.

We then compared total network potential across cell lines and biological replicates. More neg-

ative network potentials were interpreted as being “larger” in the absolute sense.

0.5 Ranking of protein targets

After calculating network potential for each node and the full network, we simulated “repres-

sion” of every node in each network by reducing their expression (computationally) to zero,

individually [35]. Clinically, this would be akin to the application of a drug that perfectly inhib-

ited the protein/mRNA of interest. Next, we re-calculated network potential for the full net-

work and calculated the change in network potential (ΔG) by subtracting the new network

potential value for the network potential value of the “unrepressed” network. Because the net-

work potential of each node was negative, systematic repression of a given node always drove

the total network potential to be less negative. As a result, this approach will always return a

positive ΔG. We then ranked each node in the network according to ΔG for further analysis.

We also evaluated the top predicted genes by ΔG against a null model of ΔG to evaluate the

likelihood that these observed disruptions were due to random chance. To construct our null

distribution of ΔG, we repeated the following process 1000 times for each sample under study:

1. We constructed a random graph that preserves the original degree distribution for the

underlying protein-protein interaction network by iteratively swapping edges. For each

random graph, we performed n�100 swaps where n is the number of nodes in the original

graph.
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2. We then constructed a cell signaling network using the random graph and the mRNA

expression data for that sample. mRNA expression was left unchanged for each random

graph.

3. We computed the ΔG for the top 50 proteins under study on the new random graph.

We then calculated the average and standard deviation ΔG from all 1000 iterations of the

above process to compute a bootstrapped null distribution of ΔG. We then computed confi-

dence intervals for ΔG, employing the bonferroni correction to account for multiple hypothe-

sis testing.

Our pipeline was designed to make use of parallel computing on the high-performance

cluster (HPC) at Case Western Reserve University.

0.6 Identification of miRNA cocktails

To generate miRNA-mRNA mappings, we implemented a protocol described previously [36].

Briefly, we identified all predicted mRNA targets for each miRNA in our dataset using the

miRNAtap database in R, version 1.18.0, as implemented through the Bioconductor targetscan

org.Hs.eg.db package, version 3.8.2 [17]. We used all five possible databases (default settings):

DIANA version 5.061 [19], Miranda 2010 release62 [37], PicTar 2005 release63 [38], TargetS-

can 7.164 [39] and miRDB 5.065 [18], with a minimum source number of 2, and the union of

all targets found was taken as the set of targets for a given miRNA. Through this mapping, we

identified a list of mRNA transcripts that are predicted to be repressed by a given miRNA. Our

code and processed data files are available on Github at: https://github.com/DavisWeaver/

MiR_Combo_Targeting/.

Using this mapping, as well as our ranked list of promising gene candidates for repression

from our network analysis, we were able to identify a list of miRNA that we predict would

maximally disrupt the Ewing sarcoma cell signaling network when introduced synthetically.

To rank miRNA targets, we first identified all the genes on the full target list that a given

miRNA was predicted to repress (described in Section 0.5). Next, we summed the predicted

ΔG when each of these genes was repressed in silico to generate the maximum potential disrup-

tion that could be achieved if a given miRNA were introduced synthetically into an Ewing sar-

coma tumor. We then ranked miRNA candidates in descending order of the maximum

predicted network disruption.

Given the documented cases of systemic toxicities associated with miRNA-based therapies,

the miRNA that inhibits the most targets might not necessarily be the best drug target. We

therefore sought to identify combinations of miRNAs that individually repressed key drug tar-

gets, while avoiding repression of housekeeping genes that may lead to toxicity. We defined

housekeeping genes using a previously described gene set [40]. In this study, housekeeping

genes were identified by evaluating RNA sequencing data from a large number of normal tis-

sue samples. Genes that are consistently expressed in all or nearly all tissue types were assumed

to be so-called housekeeping genes. Our hypothesis is that by giving a cocktail of miRNAs with

predicted activity against one or multiple identified drug targets, each individual miRNA

could be given at a low dose such that only the mRNA transcripts that are targeted by multiple

miRNAs in the cocktail are affected (Fig 1). Also with an eye towards limiting toxicity, we

restrained our search to endogenous miRNAs rather than broadening to engineered exoge-

nous miRNA mimics. To that end, we designed a loss function (see equation below) to balance
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the the effects of repressing the housekeeping gene set I as well as the target gene set J:

LðmÞ ¼
X

i;j

AðcÞðGiÞ � AðcÞðGjÞ for i 2 I and j 2 J; ð3Þ

AðcÞ ¼

0; if c � 1

0:2c; if 1 < c < 6

1; otherwise

8
>>><

>>>:

ð4Þ

Where A(c) determines the degree of repression as a function of the number of times, c, that a

given gene, i, is targeted by a given miRNA cocktail, μ. We recognize that assuming each addi-

tional miRNA additively represses 20% of a given gene is somewhat arbitrary. Future work

could improve on this miRNA cocktail optimization approach by more formally addressing

miRNA repression in different contexts.

We first transformed the projected change in network potential for each gene such that

housekeeping genes exerted a positive change in network potential and the top 10 predicted

targets exerted a negative change in network potential. We then ranked 3-miRNA combina-

tions according to their projected effect on network potential, where more negative changes in

network potential were interpreted as most effective for maximizing on-target effects while

minimizing off-target effects. As a further constraint, a gene had to be targeted by 2 or more

miRNA in a given cocktail to be considered repressed. Each miRNA was assumed to downre-

gulate a given gene by 20%, such that genes targeted by 2 miRs were assumed to have their

expression decreased by 40%, and genes targeted by 3 miRs were assumed to have their expres-

sion decreased by 60%. We repeated our analysis, varying between 10% and 50% repression to

assess the impact of this assumption on our predicted miRNA cocktails. Rather than evaluate

every potential 3-miRNA combination, we limited our analysis to miRNA that target at least 2

of our 10 target genes. These constraints were defined a priori. We repeated this analysis to

identify cocktails that target larger or smaller groups of mRNA (the top 5 or 15 mRNA targets)

in order to assess the stability of the predicted cocktail to changing conditions.

Results

0.7 Network overview

We calculated the network potential, a unitless measure of cell state, for each protein in the cell

signaling networks for each of the six Ewing sarcoma cell lines in our experiment. An overview

comparing network potential to normalized mRNA expression can be found in Fig 3. An addi-

tional overview of the total network potential for each cell line and biological replicate com-

pared to total mRNA expression is presented in S1 Fig.

The histograms of network potential and mRNA expression demonstrate markedly differ-

ent distributions (S1 Fig), indicating that network potential describes different features of a

cell signaling network compared to mRNA expression alone. Notably, network potential and

mRNA expression for these cell lines are stable across different biological replicates, as

demonstrated by the low interquartile range (S1C and S1D Fig). There were larger differences

in both mean expression and network potential across cell lines (S1C and S1D Fig when com-

pared to between-replicate differences. The global average network potential across all samples

was −3.4 × 105 with a standard deviation of 1605.

The included patient samples (beginning with SJEWS on S1 Fig) demonstrate substantially

more variation in both mRNA expression and network potential. Much of what we are

PLOS COMPUTATIONAL BIOLOGY Network potential identifies therapeutic miRNA cocktails in Ewing sarcoma

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008755 October 18, 2021 8 / 19

https://doi.org/10.1371/journal.pcbi.1008755


capturing here can likely be attributed to batch effects, as these patient samples may have been

sequenced years apart on machines with dramatically different capabilities.

0.8 Identification of protein targets

We identified TRIM25, APP, ELAV1, RNF4, and XPO1 as top 5 targets for therapy for each of

the 6 cell lines based on the degree of network disruption induced following in silico repression

of each gene. Of these 5 genes, only XP01 has been previously implicated in oncogenesis [41],

while only ELAVL1 is a known essential housekeeping gene. There was a high degree of con-

cordance between cell lines among the top predicted targets (S1 Table). Of the top ten pre-

dicted targets, all 10 targets are conserved for all 6 cell lines. The top 50 protein targets are

presented in Fig 4. The top 50 protein targets, limited to those causally implicated in cancer,

can be found in S2 Fig. Many of the top identified genes fell within the 99.99% confidence

interval of the computed null distribution (Fig 4), suggesting that these genes are highly con-

nected hub genes that are likely to score high in ΔG regardless of the tumor-specific RNA-

sequencing information provided. As a sensitivity analysis, we repeated our protein identifica-

tion pipeline using stringdb as the PPI network provider rather than biogrid. Using stringdb,

we identified broadly similar targets, with the majority of identified genes being either essential

Fig 3. Network potential demonstrates a different distribution compared to mRNA expression. Main panel: scatterplot comparing mRNA

expression and network potential for all genes in our 18 Ewing Sarcoma cell lines. For each gene, we averaged across all samples for both mRNA

expression and network potential. Unlike network potential (top axis histogram), mRNA expression (right axis histogram) has a bimodal distribution.

https://doi.org/10.1371/journal.pcbi.1008755.g003
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housekeeping genes or genes causally implicated in cancer. 13 out of the 50 identified targets

were shared between stringdb and biogrid. In contrast to our main results using biogrid, the

vast majority of top targets identified with stringdb fell within the 99.99% confidence interval

of the computed null distribution (S3 Fig) In addition, the distribution of network potential

across all genes looks extremely similar regardless of which PPI was used (Fig 3 and S3 Fig).

Surprisingly, there was very little overlap between the top predicted targets between the cell

line data and the patient samples (Fig 4). The genes that appeared most frequently among the

top projected targets for the 15 patient tumor samples were SLC24A1, ARTN, DHRSX,

TEX261, and FRMD8. Compared to the cell line samples, fewer of the most frequent projected

targets were cancer-associated or defined housekeeping genes (Fig 4).

Some of these identified genes in the cell line data are likely essential housekeeping genes

highly expressed in all or most cells in the body, making them inappropriate drug targets (Fig

Fig 4. TRIM25, APP, ELAVL1, AND RNF4, and XPO1 are the top protein targets ranked by predicted disruption following in silico repression. Panel A: Box and

whisker plot describing the change in network potential following in silico repression for each of the top 50 proteins. 99.99% confidence interval from the permutation

test are displayed alongside the box and whisker plots. It is notable that EWSR1, the kinase associated with Ewing sarcoma development, is considered highly influential

in the cell signaling network by this method, even in comparison to the computed null distribution. Genes that have previously been causally implicated in cancer

according to the Cosmic database are highlighted in red [41]. Essential housekeeping genes (excluding those that are causally implicated in cancer) are highlighted in

blue. The heat-map on the x-axis corresponds to the protein-mRNA correlation of each gene in the Cancer Cell Line Encyclopedia [34]. Panel B: Histogram depicting

the distribution of Pearson correlation between mRNA expression and protein expression from the Cancer Cell Line Encyclopedia for all nodes included in our final

Ewing sarcoma cell signaling networks. Proteins that were ranked particularly highly in panel A were labeled in panel B. Pancel C: Bar chart describing the most

frequently observed genes among the top projected targets for the 15 patient tumor samples we analyzed. There was very little overlap in top projected targets between

the cell line and patient data, reflecting the transcriptional heterogeneity present in Ewing Sarcoma.

https://doi.org/10.1371/journal.pcbi.1008755.g004
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4). TRIM25, and ELAV1, for example, are involved in protein modification and RNA binding,

respectively [42]. We therefore repeated this analysis, limiting our search to gene targets that

have been causally implicated in cancer [41]. With this limitation in place, we identified XPO1,

LMNA, EWSR1, HSP90AA1, and CUL3 as the top 5 targets for therapy when ΔG was averaged

for all cell lines. The top 10 cancer-related targets for each cell line can be found in (S1 Table).

We also conducted gene set enrichment analysis for the all the genes represented in our cell

signaling network (averaged across all samples). We ranked genes by network potential (aver-

aged across all samples) and compared our gene set to the “hallmarks” pathways set, down-

loaded from the Molecular Signatures Database (MSigDB) [43, 44]. This analysis was

conducted using the fGSEA package in R, which uses the Benjamini—Hochberg procedure to

correct the false discovery rate [45, 46]. Our gene set was enriched (adjusted p-value < 0.05) in

24 of the 50 pathways included in the hallmarks set; including apoptosis, DNA repair, mTOR

signaling, MYC signaling, and WNT β-catenin signaling. Our gene set was also highly

enriched (normalized enrichment score = 1.73) in the miRNA bio-genesis pathway. The full

results are presented in S3 Table.

0.9 Identification of miRNA cocktails

We identified several miRNAs that were predicted to dramatically disrupt the Ewing sarcoma

cell signaling network (Fig 5). When averaging all cell lines, we identified miR-3613–3p, let-7a-

3p, miR-300, miR-424–5p, and let-7b-3p as the ideal miRs for preferential repression of pro-

teins predicted to be important for Ewing sarcoma signaling network stability. miR-3613–3p,

let-7a-3p, miR-300, miR-424–5p, and let-7b-3p were predicted to cause an average network

network potential increase (driving the system less negative) of 17382, 13034, 12746, 12364 and

12280, respectively (see Fig 6). It should also be noted that we were able to identify a substantial

number of miRNAs with potential activity against the Ewing sarcoma cell signaling network.

We identified 27 miRNAs with an average predicted network potential disruption of greater

than 10, 000. For comparison, the largest network change in network potential that could be

achieved with a single gene repression across all cell lines was just 2064 (TRIM25). miRNA

sequencing of the 6 cell lines under study did not reveal any clear pattern of miRNA expression

based on predicted network potential disruption.

These individual miRNAs target large numbers of transcripts in the cell and therefore may

be difficult to administer as single-agents due to extreme toxicity. For example, the top miR

candidate, miR-3613–3p, was predicted to repress 144 distinct mRNA transcripts in the full tar-

get set. We therefore sought to identify cocktails of miRNA that could cooperatively down-reg-

ulate key non-housekeeping genes while avoiding cooperative down-regulation of

housekeeping genes that may be associated with toxicity. When targeting the top 10 predicted

proteins from our in silico repression experiments, a 3 miRNA cocktail of miR-483–3p, miR-

379–3p, and miR-345–5p was predicted to be the most optimal across all cell lines (Fig 6A and

6B). Under the same conditions, a 3-miR cocktail of miR-300, let-7b-3p, and let-7a-3p was pre-

dicted to be the least optimal among 16,215 tested combinations (Fig 6C and 6D). Notably, the

most and least optimal miRNA combinations had similar activity against the 10 targets (Fig 6A

and 6C). The worst cocktail was defined by high levels of cooperative downregulation of house-

keeping genes rather than lack of efficacy against putative targets (Fig 6C and 6D). Let-7b-3p

and let-7a-3p were heavily represented in the least optimal cocktails tested, appearing in 10 of

the 10 worst 3 miRNA cocktails (Fig 6E). These highly promiscuous miRNA target large num-

bers of housekeeping genes, limiting their therapeutic utility alone or in combination (Fig 5B).

Notably, many of the most promising miRNA when considering only their total predicted

network disruption tend to appear in the least optimal cocktails (Fig 5). This likely occurs
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Fig 5. Many of the most promising miRNA candidates repress large numbers of essential housekeeping genes. We

identified the top miRNA for treatment of Ewing sarcoma, ranked by their predicted disruption of the Ewing sarcoma cell

signaling network. A: Boxplot showing the projected disruption in network potential for the top miRNA candidates

(averaged across all samples). The heatmap on the x-axis describes the number of essential housekeeping genes that each

miRNA is predicted to target. B: Scatterplot showing the relationship between projected network disruption and the

number of putative mRNA targets for a given miRNA. C: Heatmap showing z-score normalized miRNA expression for 622

of the evaluated miRNA for the 6 cell lines under study. The Y axis is clustered by the projected ΔG associated with a given

miRNA. There doesn’t seem to be a clear pattern of miRNA expression based on projected ΔG.

https://doi.org/10.1371/journal.pcbi.1008755.g005
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because these miRNA tend to target large numbers of housekeeping genes and large numbers

of genes overall. In contrast, the best miRNA cocktails tend to be composed of miRNA that tar-

get relatively few genes overall but exhibit some degree of target specificity. Put another way,

they target the desired target genes while repressing relatively few essential housekeeping genes.

An extreme example of this is the case of miR-483–3p. MiR-483–3p is in the bottom 50% of all

miRNA when ranked by predicted network disruption, and is only predicted to repress 10 dif-

ferent transcripts. However, because it selectively targets several of our targets of interest, this

relative small total projected network disruption is actually an attractive feature that makes it

easy to build effective cocktails that include miR-483–3p. As a result, miR-483–3p appears in 7

of the top 10 predicted 3 miRNA cocktails. To assess the stability of our results, we repeated this

Fig 6. We identified miR-483–3p, miR-5695, and miR-4514s as the optimal 3-miRNA cocktail for Ewing Sarcoma therapy. We identified cocktails that are

predicted to maximally downregulate target genes (red shading on the figure), while avoiding downregulation of essential housekeeping genes to limit toxicity (blue

shading on the figure). Panel A. shows the targeting heatmap for the best predicted cocktail for cell line A673. The miRNA that make up the cocktail are presented on

the y-axis. Putative gene targets are highlighted on the x-axis. Lines that span multiple miRNAs occur when a gene is downregulated by 2 or more miRNAs in the

cocktail. Panel B. shows a histogram of the number of microRNA that target a given housekeeping gene in the best cocktail. Panel C. displays the targeting heatmap for

the worst-performing cocktail for cell line A673 among those tested for reference. Panel D. shows a histogram of the number of microRNA that target a given

housekeeping gene in the worst predicted cocktail. Panel E shows a bar graph showing the miRNA that most frequently appear in either the bottom or top 10 predicted

cocktails (averaged across cell lines) for Ewing Sarcoma therapy.

https://doi.org/10.1371/journal.pcbi.1008755.g006
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analysis, focusing on the top 5 or top 15 predicted protein targets. We also repeated this analy-

sis, assuming 10% and 50% repression per miRNA that target a given mRNA. The top and bot-

tom predicted cocktails were similar across these conditions and across all six cell lines. We

have included the full ranked list of all miRNA cocktails tested across all conditions on Github.

Discussion

In this work, we described a novel methodology for the identification of potential miRNA

cocktails for Ewing sarcoma therapy. First, we performed paired miRNA and mRNA sequenc-

ing on six Ewing sarcoma cell lines (GEO accession GSE98787). We then defined a metric of

cell state, network potential, based on mRNA expression and signaling network topology.

Using in silico repression and change in network potential, we identified the most important

proteins in the cell signaling network for each of the 6 cell lines. We then repeated this process

for 15 patient tumor samples derived from the St. Jude Cloud [26]. Notably, this set of proteins

was enriched in 24 of the 50 pathways included in the “halmarks” gene set [43, 44]. The ranked

protein set was also enriched for genes involved in the canonical miRNA biogenesis pathway

[6]. We then evaluated more than 16000 3-miRNA cocktails (per cell line) based on predicted

ability to disrupt key proteins in the Ewing Sarcoma cell signaling network while avoiding

cooperative down-regulation of essential housekeeping genes. We ranked these 3-miRNA

cocktails to identify promising miRNA combinations for therapy of Ewing Sarcoma.

The protein targets and miRNA candidates we identified in our dataset are consistent with

the literature on Ewing sarcoma and cancer cell signaling, suggesting biological plausibility of

our methodology. Of the top 50 protein targets that we identified, 15 were previously causally

implicated in cancer [41], including EWSR1, the proposed driver of Ewing sarcoma develop-

ment. In addition, our network-based approach suggests that known oncogenic hub genes

such as KRAS and MYC are prime targets for disruption in cancer cells. We also identified a

number of plausible targets that were not previously implicated in cancer, such as MOV10.

MOV10 is an RNA helicase involved in the RNA-induced silencing complex (RISC), a key

complex involved in epigenetic signaling by miRNA [47]. As mentioned previously, our find-

ings suggest that the miRNA biogenesis pathway is enriched in the setting of Ewing Sarcoma.

The central role of MOV10 in the EWS cell signaling network provides further evidence for

the importance of miRNA signaling in EWS oncogenesis.

Many of the miRNA we identified as potential therapeutic candidates have been previously

studied due to their association with cancer outcomes, including members of the let-7 family,

miR-300, miR-424–5p, miR-4282, miR-15a-5p, and miR-590–3p. Loss of expression of the let-

7 family of miRNA has been widely implicated in cancer development [48–51]. In Ewing sar-

coma specifically, low levels of let-7 family miRNA have been correlated with disease progres-

sion or recurrence [48]. The let-7 family of miRNA have also been studied as treatment for

non-small cell lung cancer in the pre-clinical setting [15]. Loss of miR-300 has been previously

correlated with development and aggressiveness of hepatocellular carcinoma [52] as well as in

oncogenesis of pituitary tumors [53]. Reduced expression of miR-424–5p and miR-4282 have

each been implicated in the development of basal-like breast cancer [54, 55]. MiR-15a-5p has

been shown to have anti-melanoma activity [56]. In addition, miR-590–3p has been show to

suppress proliferation of both breast cancer [57], and hepatocellular carcinoma [58]. The

broad literature linking many of our proposed miRNA candidates for Ewing sarcoma treat-

ment to the development and maintenance of cancer highlights the ability of our computa-

tional pipeline to identify potentially promising therapeutic candidates in this setting. Prior to

application of these findings for treatment of Ewing sarcoma or any other disease, specific in
vitro and in vivo validation is needed.
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The process by which putative miRNA targets were selected was based on sequence homol-

ogy rather than direct experimental validation. As a result, it is possible that we included false

positive miRNA targets in our analysis. For this study we relied on a protein-protein interac-

tion network presumably curated from analyzing normal human cells. It is possible that the

derangements observed in cancer cells could change the underlying interaction network of a

tumor cell. In the future, it may be possible to utilize protein-protein interaction networks spe-

cific to cancer or even specific to the cancer type under study. In addition, we did not consider

specific binding sites that these miRNA may use to repress target mRNA. Certain miRNA may

share binding sites on their target mRNA (i.e. the let-7 family of miRNA), which may make

our assumption of linear additive miRNA effects invalid. We also used mRNA concentration

as a surrogate for protein concentration in designing our cell signaling network. While this is

not true in all cases, it is likely a reasonable approximation under steady state conditions [30–

33] (see Section 0.2 for more details). In addition, protein-mRNA correlations in the cancer

cell line atlas for the top proteins identified by our pipeline were fairly good, ranging from 0.07

to 0.8 for the top 50 identified protein targets. [34] (Fig 4).

Despite these limitations, our findings may facilitate the development of novel therapies for

patients suffering from Ewing Sarcoma. To this point, severe toxicity has limited the transla-

tion of miRNA-based cancer therapies to the clinical setting. Our pipeline may enable the

development of better miRNA therapies that clear this hurdle and open up this promising ave-

nue of therapy for patients suffering from cancer. In addition, this novel method can facilitate

the rapid identification of key proteins in any cancer cell signaling network for which mRNA

sequencing data is available. This may facilitate more rapid drug discovery and assist in the dis-

covery of proteins and miRNA that play a significant role in the cancer disease process.

Supporting information

S1 Fig. Network potential describes different features of a cell signaling network compared

to mRNA expression alone. Panel A: Histogram of mRNA expression for each gene (aver-

aged across all samples). Panel B: Histogram of the network potential for each gene (averaged

across all samples). mRNA transcripts with an expression level of zero were excluded from

both histograms to better visualize the distribution of genes that are expressed. Panel C:

Box plot showing the total mRNA expression for each cell line and patient sample (patient

samples begin with SJEWS). Panel D: Box plot showing the total network potential for each

cell line and patient sample.

(EPS)

S2 Fig. Protein targets ranked by contribution to network stability. When averaging across

cell lines, XPO1, LMNA, EWSR1, HSP90AA1, and CUL3 were identified as the most impor-

tant proteins in the Ewing sarcoma cell signaling network (when limiting our analysis to pro-

teins causally implicated in cancer [41]). When each protein was simulated as completely

repressed in silico, network potential was increased by 654, 456, 429, 425, and 399, respectively.

The heatmap at the bottom of the plot describes the protein-mRNA correlation for each gene

in the cancer cell line atlas. Grey indicates no data was available. It is reassuring that EWSR1,

the kinase associated with Ewing sarcoma development, is identified as highly influential in

the cell signaling network by this method.

(EPS)

S3 Fig. Panel A: Scatterplot with marginal histograms comparing mRNA expression to net-

work potential. Panel B: Box and whisker plot showing the change in network potential for

the top 50 genes, as well as 99.99% confidence intervals from the permutation test. We also
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show a histogram comparing the top 50 genes identified by our pipeline using stringdb com-

pared to biogrid as the protein-protein interaction network.

(EPS)

S1 Table. Top protein targets for each cell line. We ranked potential targets by predicted

change in network potential when each protein was modeled as repressed.

(PDF)

S2 Table. Top cancer-associated protein targets for each cell line. We ranked potential tar-

gets by predicted change in network potential when each protein was modeled as repressed,

limited to proteins causally associated in cancer according to the Cosmic database. Proteins

that appear in the same position for� 3 cell lines are bolded.

(PDF)

S3 Table. Genes ranked by network potential are enriched for several biological pathways

related to cancer as well as the miRNA bio-genesis pathway. Pathways with an adjusted p-

value< 0.05 are shown above. “ES” refers to enrichment score and “NES” refers to the normal-

ized enrichment score. “nMoreExtreme” refers to the number of random gene sets (out of

500) that were more enriched than the test set. Size refers to the number of genes in the path-

way that were also present in our mRNA expression dataset.

(PDF)
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