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Abstract: For complex micro-active machines or micro-robotics, it is crucial to clarify the coupling and
collective motion of their multiple self-oscillators. In this article, we construct two joint liquid crystal
elastomer (LCE) spring oscillators connected by a spring and theoretically investigate their collective
motion based on a well-established dynamic LCE model. The numerical calculations show that
the coupled system has three steady synchronization modes: in-phase mode, anti-phase mode, and
non-phase-locked mode, and the in-phase mode is more easily achieved than the anti-phase mode
and the non-phase-locked mode. Meanwhile, the self-excited oscillation mechanism is elucidated by
the competition between network that is achieved by the driving force and the damping dissipation.
Furthermore, the phase diagram of three steady synchronization modes under different coupling
stiffness and different initial states is given. The effects of several key physical quantities on the
amplitude and frequency of the three synchronization modes are studied in detail, and the equivalent
systems of in-phase mode and anti-phase mode are proposed. The study of the coupled LCE spring
oscillators will deepen people’s understanding of collective motion and has potential applications in
the fields of micro-active machines and micro-robots with multiple coupled self-oscillators.

Keywords: spring oscillator; liquid crystal elastomer; collective motion; domain of attraction

1. Introduction

Self-excited oscillation is a kind of periodic motion that is maintained by constant
external excitations [1–4]. Similar to biological active feeding, it can directly harvest energy
from a constant environment to maintain its periodic motion [5,6]. In addition, the period
and amplitude of the self-oscillation generally depend on the intrinsic parameters of the
system and are independent of the initial conditions, which makes the system robust [7–9].
Due to the unique advantages of self-excited oscillation systems, they have broad ap-
plication prospects in the fields of energy acquisition, sensing with electronic skins [10],
soft robotics [11–13], medical instruments [14–17], and motors [18]. The self-excited oscil-
lations are generally based on responsive materials, including liquid crystal elastomers
(LCEs) [19,20], dielectric elastomers [21], hydrogels [22–24], and ion gels [25,26]. Based
on different stimuli-responsive materials and structures, different feedback mechanisms
are proposed to realize energy compensation, such as the coupling of chemical reactions
and large deformation [25,26], the self-shadowing effect [14,27], the coupling of liquid
volatilization, and membrane deformation [28].

Based on the self-oscillation systems that have been previously reported [29], the
coupling and synchronization phenomena of two or more self-excited oscillation systems
and their collective motion have attracted extensive attention [30–34]. Synchronization and
collective motion are ubiquitous in nature, such as the overall movement of a school of fish
or a flock of wild geese or a group of fireflies flickering together [35–37]. As early as 1673,
C. Huygens studied the synchronization phenomenon of simple pendulum coupling by
observing two identical clocks oscillating synchronously with two pendulums swinging
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in opposite directions [38]. Recent research has confirmed that the coupling between two
pendulums is caused by tiny mechanical oscillations that propagate through the wooden
structure in which the clocks are mounted. Similar experiments have enabled a large
number of metronomes to swing synchronously on a freely moving base [39,40]. Recently,
based on optically responsive LCE, Ghislaine et al. experimentally studied the synchronized
oscillations of thin plastic actuators fueled by light and found two kinds of in-phase and
anti-phase synchronous oscillation phenomena in the steady-state [30,31]. Their numerical
simulations qualitatively explained the origin of synchronized motion and found that
motion can be regulated by the mechanical properties of coupling.

LCEs are advanced multifunctional materials that combine the flexibility of polymeric
networks with the nematic structure of liquid crystals [41,42], which have the advantages
of having a fast response, recoverable deformation, and low noise [10,43–45]. This special
composition and structure enable LCEs to respond to external light [46–49], heat [50],
electric fields [51,52], magnetic fields [53] and chemical substances [54]. Based on LCE
materials, several self-exciting motion modes have been constructed, such as rolling [20],
vibration [17], swinging [10,55], stretching and shrinking [56], rotation [57], eversion or
inversion [9,58], torsion [59], jumping [60], and buckling [61] modes. These self-exciting
motion modes provide good ideas for studying the coupling of multiple systems and their
collective motion.

Studying the self-excited oscillation coupling of two or more systems and their collec-
tive motion is beneficial to the construction of richer and more complex types of motion,
allowing them to demonstrate more versatile functions in the micro-robots. In view of
this, we used two identical LCE fibers connected by a spring to construct a new optically
responsive LCE spring oscillation coupling system. The self-oscillation mechanism and
the possible in-phase mode, anti-phase mode, and non-phase-locked mode are discussed,
and the influence of some key physical quantities on its synchronization modes, amplitude,
and period are analyzed. The layout of this paper is as follows. In Section 2, based on the
LCE dynamic model first proposed by Finkelmann et al. [62,63], the governing equation is
derived, and the difference schemes of the dynamics equation and the solution method are
given. In Section 3, the different synchronization modes of the self-excited oscillation are
discussed, and the detailed mechanisms are revealed. In Section 4, the effects of various
system parameters on the self-excited oscillation in the three synchronization modes are
studied in detail. In Section 5, the equivalent systems in the in-phase mode and anti-phase
mode are provided. Finally, the concluding remarks are shared in Section 6.

2. Model and Formulation
2.1. Dynamic Model of the Two LCE Spring Oscillators

Figure 1 sketches a dynamic model of the self-oscillation coupling system under uni-
form and constant illumination, which is composed of two identical LCE spring oscillators
and a spring. The illuminated zone is represented by the shaded area. The original length
of the LCE fiber in a stress-free state is Lf, and the original length of the spring is Ls, as
shown in Figure 1a. Next, fix one end of the LCE fiber and tie the mass on the other end,
and connect the two fibers with a spring. For simplicity, the gravity of the mass blocks is
ignored, and an initial strain λp − 1 is assigned to the LCE fibers to ensure that the system
hang horizontally, as shown in Figure 1b. The displacement of the two mass blocks is
denoted by u1(t) and u2(t), respectively. The current lengths of LCE fiber 1 and LCE fiber 2
are lf1(t) = Lfλp + u1(t) and lf2(t) = Lfλp − u2(t), respectively, as shown in Figure 1c.
Ff1(t) and Ff2(t) are the spring forces of LCE fiber 1 and LCE fiber 2, respectively, which
are also called driving forces hereinafter. Fs(t) is the spring force of the spring (abbreviated
as spring force), and Fd1(t) and Fd2(t) are the damping forces during oscillation. For sim-
plicity, it is assumed that the damping forces are proportional to the velocity of the mass,
and the direction is always opposite to the velocity of the mass.
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Figure 1. The dynamic model of the self-oscillation coupling system is composed of two identical
LCE fibers and a spring. (a) Reference configuration. (b) Pre-stretched state. (c) Current configu-
ration. Under uniform and constant illumination, under uniform and constant illumination, the
self-oscillation of the spring oscillators can be triggered by the coupling between the light-driven
contraction of the fibers and their movement.

In order to analyze the inhomogeneous deformation of the two LCE fibers, the La-
grangian coordinate systems X1 and X2 are fixed and established for the initial configuration
of LCE fiber 1 and LCE fiber 2, and the Eulerian coordinate systems x1 and x2 in the current
configuration are also established. The instantaneous position of a material point X1 (X2)
of LCE fiber 1 (LCE fiber 2) can be represented as x1 = x1(X1, t) (x2 = x2(X2, t)) during the
oscillation. Since the pulling forces of the LCE fibers are much greater than the gravity of
the mass blocks and the LCE fibers, and we ignore the gravity of the mass blocks and the
LCE fibers for simplicity. According to Newtonian mechanics, the following governing
equation holds at any moment during mass oscillation.{

m
..
u1 = −Ff1(t) + Fs(t)− c

.
u1

m
..
u2 = Ff2(t)− Fs(t)− c

.
u2

, (1)

where c is the damping coefficient,
.
u and

..
u indicate the velocity du(t)

dt and acceleration
d2u(t)

dt2 of the mass, respectively.
For simplicity, the force of the LCE fiber Ff(t) is assumed to be proportional to the

elastic strain εe(t), i.e., {
Ff1(t) = KfLfεe1(t)

Ff2(t) = KfLfεe2(t)
, (2)
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where Kf is the spring constant of the LCE fiber, and εe(t) = εtot(t)− ε(t) with εtot(t) are
the total strain, and εtot(t) is the light-driven contraction. For simplicity, the total strain is
defined as εtot(t) = λ(X, t)− 1 [64], where λ(X, t) are written as

λ1(X1, t) =
dx1(X1, t)

dX1
, λ2(X2, t) =

dx2(X2, t)
dX2

. (3)

Then, Equation (2) can be rewritten as{
Ff1(t) = KfLf[λ1(X1, t)− 1 − ε1(X1, t)]

Ff2(t) = KfLf[λ2(X2, t)− 1 − ε2(X2, t)]
, (4)

where the light-driven contraction strain ε(X, t) is assumed to be proportional to the volume
fraction of the isomers in the cis state ϕ(X, t) in the LCE fiber, which can be written as{

ε1(X1, t) = −C0 ϕ1(X1, t)

ε2(X2, t) = −C0 ϕ2(X2, t)
, (5)

where C0 is the contraction coefficient.
In order to find the instantaneous position x1 (x2) of the LCE fiber 1 (LCE fiber 2) at any

time, we first rewrite Ff1(t) (Ff2(t)) as u1(t) (u2(t)) and ε1(X1, t) (ε2(X1, t)). Considering
that the LCE fiber is in uniaxial tensile state, the axial force is homogeneous although the
contraction is inhomogeneous. Noting that Ff1(t) and Ff2(t) are homogeneous and constant
in the LCE fibers, by integrating Equation (4) from 0 to Lf on both sides, we can obtain

Ff1(t) = Kf

[
Lf
(
λp − 1

)
+ u1(t)−

∫ Lf
0 ε1(X1, t)dX1

]
Ff2(t) = Kf

[
Lf
(
λp − 1

)
− u2(t)−

∫ Lf
0 ε2(X2, t)dX2

] , (6)

where λp is the pre-stretch of the LCE fiber.
Then, from Equation (2), λ1(X1, t), λ2(X2, t) can be expressed by Ff1(t), Ff2(t) as λ1(X1, t) = Ff1(t)

KfLf
+ 1 + ε1(X1, t)

λ2(X2, t) = Ff2(t)
KfLf

+ 1 + ε2(X2, t)
. (7)

By combining Equations (3) and (7), we can obtain
dx1(X1, t) =

[
Ff1(t)
KfLf

+ 1 + ε1(X1, t)
]
dX1

dx2(X2, t) =
[

Ff1(t)
KfLf

+ 1 + ε1(X1, t)
]
dX2

. (8)

Combining Equations (6) and (8), we achieve
dx1(X1, t) =

[
ε1(X1, t) + λp +

u1(t)−
∫ Lf

0 ε1(X1,t)dX1
Lf

]
dX1

dx2(X2, t) =
[

ε1(X1, t)+λp − u2(t)+
∫ Lf

0 ε2(X2,t)dX2
Lf

]
dX2

. (9)

By integrating both sides of the above formula from 0 to X, we achieve
x1(X1, t) = λpX1 +

∫ X1
0 [ε1(X1, t)]dX1 +

X1
Lf

[
u1(t)−

∫ Lf
0 ε1(X1, t)dX1

]
x2(X2, t) = λpX2 +

∫ X2
0 [ε2(X2, t)]dX2 − X2

Lf

[
u2(t) +

∫ Lf
0 ε2(X2, t)dX2

] . (10)
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The calculated x1 and x2 from Equation (10) can be compared to λpLs to determine
whether the LCE fiber matter point is in the illuminated or non-illuminated area.

The two LCE fibers are coupled by the spring in the middle. Therefore, it is necessary
for us to express the spring force Fs(t). During the oscillation process, the elongation ∆Ls(t)
of the spring at any moment can be expressed by the displacement of the two mass blocks
u1(t) and u2(t) as

∆Ls(t) = u2(t)− u1(t) +
KfLf

(
λp − 1

)
Ks

. (11)

According to the deformation ∆Ls(t) of the spring and spring constant (coupling
stiffness) Ks of the spring, the spring force can be expressed as

Fs(t) = Ks[u2(t)− u1(t)] + KfLf
(
λp − 1

)
. (12)

2.2. Evolution Law of Number Fraction in the Two LCE Fibers

In order to calculate the light-driven contraction strain, we need to obtain the number
fractions in the LCE fibers. According to the research of Yu et al., the trans-to-cis isomer-
ization of LCE can be induced by UV or laser with a wavelength of less than 400 nm [62].
Generally, under UV light excitation, light-driven cis-to-trans isomerization can be ne-
glected [65], and the number fraction of cis-isomers φ(t) depends on thermal excitation
from trans to cis, thermally driven relaxation from cis to trans, and light-driven trans-to-cis
isomerization. Considering that the thermal excitation from trans to cis is often negligible
compared to the light-driven excitation, we define the number fraction of cis isomers in
LCE fibers and use the following governing equations to describe the evolution of the
number fraction of the cis isomers [66].

∂φ1(X1,t)
∂t = η0 I0[1 − φ1(X1, t)]− T−1

0 φ1(X1, t)
∂φ2(X2,t)

∂t = η0 I0[1 − φ2(X2, t)]− T−1
0 φ2(X2, t)

, (13)

where T0 is the thermal relaxation time responding to the cis state to trans state, I0 is the
light intensity, and η0 is a light-absorption constant.

2.3. Nondimensionalization

By defining the following dimensionless parameters: F̃f1(t) = Ff1(t)T2
0 /mLf, F̃f2(t) =

Ff2(t)T2
0 /mLf, c̃ = cT0/m, F̃s(t) = Fs(t)T2

0 /mLf, ũ1(t) = u1(t)/Lf , ũ2(t) = u2(t)/Lf ,
t̃ = t/T0, K̃f = KfT2

0 /m, and K̃s = KsT2
0 /m, Equation (10) can be rewritten as

x̃1

(
X̃1, t̃

)
=
[
λp + ũ1

(
t̃
)]

X̃1 − X̃1
∫ 1

0 ε1

(
X̃1, t̃

)
dX̃1 +

∫ X̃1
0 ε1

(
X̃1, t̃

)
dX̃1

x̃2

(
X̃2, t̃

)
=
[
λp − ũ2

(
t̃
)]

X̃2 − X̃2
∫ 1

0 ε2

(
X̃2, t̃

)
dX̃2 +

∫ X̃2
0 ε2

(
X̃2, t̃

)
dX̃2

. (14)

Combining Equations (1), (6), and (12), we achieve
.̃.
u1 = K̃s[ũ2(t)− ũ1(t)]− K̃f

[
ũ1(t̃)−

∫ 1
0 ε1

(
X̃1, t̃

)
dX̃1

]
− c

.̃
u1

.̃.
u2 = −K̃f

[
ũ2(t̃) +

∫ 1
0 ε1

(
X̃1, t̃

)
dX̃1

]
− K̃s

[
ũ2(t̃)− ũ1(t)

]
− c

.̃
u2

, (15)

where
.̃
u and

.̃.
u indicate the velocity

dũ(t̃)
dt̃

and acceleration
d2ũ(t̃)

dt2 of the mass, respectively.

By defining the parameter Ĩ = T0η0 I0, Equation (13) can be rewritten as
∂φ1(X̃1 ,̃t)

∂t̃
= Ĩ −

(
1 + Ĩ

)
φ1

(
X̃1, t̃

)
∂φ2(X̃2 ,̃t)

∂t̃
= Ĩ −

(
1 + Ĩ

)
φ2

(
X̃2, t̃

) . (16)
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2.4. Solution Method

In this paper, the LCE fiber is discretized into J material points (let J = 500 for both
LCE fibers in this paper) in the numerical calculation process. The position vector of each
material point of LCE fiber 1 and LCE fiber 2 in the Lagrangian coordinate system can
be expressed as X1 =

(
X1

1 , X2
1 · · · XJ

1

)
, X2 =

(
X1

2 , X2
2 · · · XJ

2

)
, and is called the material

coordinate. The position vector of each material point of LCE fiber 1 and LCE fiber 2 in the
Eulerian coordinate system can be expressed as x1 =

(
x1

1, x2
1 · · · xJ

1

)
, x2 =

(
x1

2, x2
2 · · · xJ

2

)
,

which is called the spatial coordinate. By using the different methods to solve the dimen-
sionless equation in Equation (16), the expression for the cis number fraction at any moment
in the LCE fiber can be written as

φn+1
1 = φn

1 +
[

Ĩ − (1 + Ĩ)φn
1

]
∆t̃

φn+1
2 = φn

2 +
[

Ĩ − (1 + Ĩ)φn
2

]
∆t̃

. (17)

Substituting Equation (17) into Equation (4), we are able to obtain the light-driven
contraction strain ε11, ε21 for LCE fiber 1 and LCE fiber 2 located in the illuminated area

ε11 = −C0

{
φn

1 +
[

Ĩ −
(

1 + Ĩ
)

φn
1

]
∆t̃
}

ε21 = −C0

{
φn

2 +
[

Ĩ −
(

1 + Ĩ
)

φn
2

]
∆t̃
} . (18)

Similarly, when the LCE fibers are located in a non-illuminated area, the shrinkage
strain ε12, ε22 can be written as{

ε12 = −C0
(
φn

1 − φn
1 ∆t̃

)
ε22 = −C0

(
φn

2 − φn
2 ∆t̃

) . (19)

Equation (15) is an ordinary differential equation with variable coefficients of second
order, so no analytical solution can be obtained. Herein, we used the classical fourth-
order Runge–Kutta method to solve the differential equation using Matlab software. By
iterating Equations (15) and (17)–(19) we are able to obtain the final steady-state response
of the LCE spring oscillator, i.e., the relationship between displacement and velocity with
time histories.

3. Three Synchronization Modes and Their Mechanisms
3.1. Three Synchronization Modes

To investigate the collective motion of the two spring oscillators, we first need to
estimate the typical values of the dimensionless parameters in the model. From the accessi-
ble experiments [19,49,66,67], the typical values of the material properties and geometric
parameters are listed in Table 1.
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Table 1. Material properties and geometric parameters.

Parameter Definition Value Units

Lf Original length of the LCE fiber 0.1 m
Kf Internal radius 20 ∼ 50 N/m
Ks Coupling stiffness 0 ∼ 5 N/m
m Mass 0.5 g
c Damping coefficient 5 ∼ 8 × 10−3 kg/s

T0 Thermal relaxation time 10−2 s
η0 Light-absorption constant 3 × 10−3 1/s
I Light intensity 1 ∼ 3 W/cm2

C0 Contraction coefficient 0.4 ∼ 0.7

Figure 2 shows three steady synchronization modes of the self-oscillation coupling
system. In the computation, we fix K̃f = 5, c̃ = 0.1, λp = 1.15, Ĩ = 0.5, C0 = 0.7, ũ0

1 = 0.2,

ũ0
2 = 0,

.̃
u

0
1 = 0.3, and

.̃
u

0
2 = −0.3. For K̃s = 0.05; the result shows that the two LCE

oscillators oscillate the anti-phase, and the time–history curve and domain of attraction
of the anti-phase mode are given in Figure 2b,c, respectively. For K̃s = 0.15, the results
show that the amplitude of the two LCE oscillators changes periodically, which means that
the self-oscillation coupling system is in non-phase-locked mode, as shown in Figure 2d,e.
Figure 2f is the domain of attraction in the non-phase-locked mode. For K̃s = 0.5, the
calculation shows that the two curves of the two LCE oscillators coincide, which means
that the two LCE oscillators are in in-phase mode, as show in Figure 2g,h. Figure 2i is
the domain of attraction of ũ1 and ũ2 in in-phase mode. When other physical parameters
remain unchanged, the conversion of different synchronization modes can be realized by
changing one of the parameters, such as by changing the coupling stiffness K̃s.

3.2. The Mechanism of Self-Excited Oscillation

To investigate the mechanism of the self-excited oscillation of the LCE oscillator
under uniform and constant illumination, Figure 3 plots the mechanism of the self-excited
oscillation in anti-phase mode for K̃f = 5,K̃s = 0.1, c̃ = 0.1, λp = 1.15, Ĩ = 0.5, C0 = 0.7,

ũ0
1 = 0, ũ0

2 = 0,
.̃
u

0
1 = 0.4, and

.̃
u

0
2 = −0.4. During self-excited oscillation, the number

fraction φ1(φ2) of cis-isomers, the shrinkage strain ε1(ε2), the driving force F̃f1

(
F̃f2

)
, the

spring force F̃s, and the displacement ũ1(ũ2) of mass block change periodically with the
different time histories. In Figure 3d, the driving force and the displacement of the mass
show a closed-loop relationship, and the area enclosed by the closed loop represents the
network created by the driving force, which compensates the energy loss of the system
and maintains the periodic self-excited oscillation of the system. Figure 3f represents the
dependence of the displacement on time. It can be seen from this figure that the two mass
blocks have a phase difference of half a cycle.
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(K̃s = 0.15 ). (g–i) In-phase synchronization mode (K̃s = 0.5 ).
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3.2. The Mechanism of Self-Excited Oscillation 
To investigate the mechanism of the self-excited oscillation of the LCE oscillator un-

der uniform and constant illumination, Figure 3 plots the mechanism of the self-excited 
oscillation in anti-phase mode for 5~

f =K , 1.0~
s =K , 1.0~ =c , 15.1p =λ , 5.0~ =I , 

7.00 =C , 0~0
1 =u , 0~0

2 =u , 4.0~0
1 =u , and 4.0~0

2 −=u . During self-excited oscillation, the 
number fraction ( )21 φφ  of cis-isomers, the shrinkage strain ( )21 εε , the driving force 

( )2f1f
~~ FF , the spring force sF

~
, and the displacement ( )21

~~ uu  of mass block change peri-
odically with the different time histories. In Figure 3d, the driving force and the displace-
ment of the mass show a closed-loop relationship, and the area enclosed by the closed 
loop represents the network created by the driving force, which compensates the energy
loss of the system and maintains the periodic self-excited oscillation of the system. Figure 
3f represents the dependence of the displacement on time. It can be seen from this figure
that the two mass blocks have a phase difference of half a cycle. 

Figure 3. Mechanism of the self-excited oscillation in anti-phase mode. The parameters are 5~
f =K

, 1.0~
s =K , 1.0~ =c , 15.1p =λ , 5.0~ =I , 7.00 =C , 0~0

1 =u , 0~0
2 =u , 3.0~0

1 =u , and

3.0~0
2 −=u . The illuminated zone is represented by the shaded area. (a) Time histories of the num-

ber fractions of cis-isomers in the two LCE fibers. (b) Time histories of contraction strains. (c) The 
spring forces of the two LCE fibers (driving forces). (d) The dependence of the spring force of LCE 
fiber on the mass displacement. (e) The spring force of the spring (spring force); (f) The displace-
ments of the two mass blocks. 

Numerical calculations show that the mechanisms of the self-excited oscillation of in-
phase mode and non-phase-locked mode are similar to that of anti-phase mode. The num-
ber fraction of cis-isomers, the shrinkage strain, the driving force, the spring force, and the 
displacement of two mass blocks change periodically with time histories too. Driving 
force and mass displacement are also in a closed-loop relationship, and the area enclosed 
by the closed loop represents the network created by the driving force. This is because a 

Figure 3. Cont.
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K̃s = 0.1, c̃ = 0.1, λp = 1.15, Ĩ = 0.5, C0 = 0.7, ũ0
1 = 0, ũ0

2 = 0,
.̃
u

0
1 = 0.3, and

.̃
u

0
2 = −0.3. The

illuminated zone is represented by the shaded area. (a) Time histories of the number fractions of
cis-isomers in the two LCE fibers. (b) Time histories of contraction strains. (c) The spring forces
of the two LCE fibers (driving forces). (d) The dependence of the spring force of LCE fiber on the
mass displacement. (e) The spring force of the spring (spring force); (f) The displacements of the two
mass blocks.

Numerical calculations show that the mechanisms of the self-excited oscillation of
in-phase mode and non-phase-locked mode are similar to that of anti-phase mode. The
number fraction of cis-isomers, the shrinkage strain, the driving force, the spring force, and
the displacement of two mass blocks change periodically with time histories too. Driving
force and mass displacement are also in a closed-loop relationship, and the area enclosed by
the closed loop represents the network created by the driving force. This is because a part
of the LCE fiber continuously enters and exits the illuminated area, causing the periodic
contraction and relaxation of the LCE fiber, which causes the self-excited oscillation of the
two mass blocks.

3.3. Triggering Conditions for Three Synchronization Modes

Numerical calculations show that the synchronization mode depends on the combi-
nation of various parameters. We took the combination of coupling stiffness and initial
state as an example to study the effects of the system parameters on synchronous mode.
In the computation, we fixed K̃f = 5, c̃ = 0.1, λp = 1.15, Ĩ = 0.5, C0 = 0.7, ũ0

1 = 0, ũ0
2 = 0,

and
.̃
u

0
1 = −0.3 and studied the effects of the phase difference between the two mass blocks

and the coupling stiffness on the three synchronization modes at the initial moment by

changing
.̃
u

0
2 and K̃s. By analyzing a large amount of calculation data, the attractive domains

of the three steady synchronization modes can be drawn, as shown in Figure 4.
Figure 4 shows the phase diagram of three steady synchronization modes under

different coupling stiffnesses and different initial states. It can be seen from the figure that
the smaller the coupling stiffness and the greater the phase difference between the two mass
blocks of the initial state are, the easier it is to obtain the anti-phase mode. Conversely,
it is conducive to the realization of the in-phase mode. In general, the in-phase mode is
more easily achieved than the anti-phase mode, indicating a difference in robustness and
the corresponding basins of attraction between the three synchronization modes. When
the phase difference between the two LCE spring oscillators corresponding to the initial
condition is large enough and the coupling stiffness K̃s is of moderate size, then there is
a stable non-phase-locked mode between the in-phase mode and anti-phase mode. It is
worth mentioning that when the two mass blocks are in anti-phase at the initial state (i.e.,
.̃
u

0
1 = 0.3), then the phase diagram of the anti-phase synchronization mode is the largest.

The system is in anti-phase mode when K̃s < 2.9, and when K̃s ≥ 2.9, it is in in-phase mode.
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After sorting out a large amount of calculation data, we briefly summarize the in-
fluence of other parameters on the three steady synchronization modes. When other
parameters remain unchanged and the smaller the light intensity and contraction coef-
ficient are, the easier it is to obtain the anti-phase mode, and the larger the damping
coefficient and the spring coefficient of the LCE fiber are, the easier it is to obtain the
anti-phase mode. Conversely, it is conducive to the realization of the in-phase mode. When
the size of other parameters is moderate, there is a stable non-phase-locked mode between
the in-phase mode and anti-phase mode. Studying the phase diagram of three steady
synchronization modes under different parameters is extremely important in the design of
automatic machines and soft robots.

4. Parametric Study
4.1. Effect of Coupling Stiffness

Figure 5a,b plot the effect of three different coupling stiffnesses on the self-oscillation
model in the in-phase mode. The parameters are K̃f = 5, c̃ = 0.1, λp = 1.15, Ĩ = 0.5,

C0 = 0.7, ũ0
1 = 0, ũ0

2 = 0,
.̃
u

0
1 = −0.3, and

.̃
u

0
2 = −0.2. Under the action of different

coupling stiffness, the domain of attraction ũ1(t) and ũ2(t) overlap, and the corresponding
limit cycles also overlap, indicating that the coupling stiffness K̃s has no effect on self-
oscillation in in-phase mode. This is because when the LCE oscillators are in in-phase
mode, the distance between the two mass blocks remains unchanged, and the spring force
is a constant force. Figure 5c,d plot the effect of three different coupling stiffnesses on the
self-oscillation in the anti-phase mode. The parameters are K̃f = 5, c̃ = 0.1, λp = 1.15,

Ĩ = 0.65, C0 = 0.7, ũ0
1 = 0, ũ0

2 = 0,
.̃
u

0
1 = −0.3, and

.̃
u

0
2 = 0.3. The results show that the larger

the coupling stiffness, the smaller the limit cycle and the stronger the suppression of self-
excited oscillation. The reason for this phenomenon is because the light energy absorbed
from the environment decreases as the coupling stiffness K̃s increases in anti-phase mode.
Figure 5e–h plot the effect of coupling stiffness on the non-phase-locked mode for K̃f = 5,

c̃ = 0.1, λp = 1.15, Ĩ = 0.5, C0 = 0.7, ũ0
1 = 0, ũ0

2 = 0,
.̃
u

0
1 = −0.3, and

.̃
u

0
2 = 0.25. The results

are similar to the anti-phase mode; that is, the larger the coupling stiffness, the smaller the
limit cycle and the stronger the suppression of self-excited oscillation. The change of the
amplitude within a doubling period increases as the coupling stiffness K̃s increases within
a doubling period. More calculations show that the effects of the coupling stiffness are
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the same in non-phase-locked mode. By calculating the data, it was determined that the
self-oscillation frequencies in the anti-phase mode and non-phase-locked mode increase as
the coupling stiffness K̃s increases.
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C0 = 0.7, ũ0
1 = 0, ũ0

2 = 0,
.̃
u

0
1 = −0.3, and

.̃
u

0
2 = −0.2. (c,d) Effect of coupling stiffness on the

anti-phase mode for K̃f = 5, c̃ = 0.1, λp = 1.15, Ĩ = 0.65, C0 = 0.7, ũ0
1 = 0, ũ0

2 = 0,
.̃
u

0
1 = −0.3,

and
.̃
u

0
2 = 0.3. (e–h) Effect of coupling stiffness on the non-phase-locked mode for K̃f = 5, c̃ = 0.1,

λp = 1.15, Ĩ = 0.5, C0 = 0.7, ũ0
1 = 0, ũ0

2 = 0,
.̃
u

0
1 = −0.3, and

.̃
u

0
2 = 0.25. The coupling stiffness has no

effect on the self-oscillation in in-phase mode and has an effect on the period and amplitude of the
self-oscillation in anti-phase mode and non-phase-locked mode.

4.2. Effect of Light Intensity

Figure 6a,b plot the effect of three different light intensities on self-oscillation in in-
phase mode. The parameters are K̃f = 5, c̃ = 0.1, λp = 1.15, K̃s = 0.3, C0 = 0.7, ũ0

1 = 0,

ũ0
2 = 0,

.̃
u

0
1 = −0.3, and

.̃
u

0
1 = −0.2. Figure 6c,d plot the effect of three different light

intensities on self-oscillation in anti-phase mode. The parameters are K̃f = 5, c̃ = 0.1,

λp = 1.15, K̃s = 0.1, C0 = 0.7, ũ0
1 = 0, ũ0

2 = 0,
.̃
u

0
1 = −0.3, and

.̃
u

0
1 = 0.3. The light intensities

have the same effect on the in-phase mode and the anti-phase mode. The results show that
the smaller the light intensity, the smaller the limit cycle, and the stronger the suppression of
self-excited oscillation, as shown in Figure 6b,d. This is because the light-driven contraction
of the LCE fiber increases as the light intensity increases, and the light energy absorbed
by the LCE fiber from the environment increases. This is consistent with the self-excited
oscillation of a single oscillator [55]. Figure 6e–h plot the effect of light intensity on the
non-phase-locked mode for K̃f = 5, c̃ = 0.1, λp = 1.15, K̃s = 0.2, C0 = 0.6, ũ0

1 = 0, ũ0
2 = 0,
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.̃
u

0
1 = −0.3, and

.̃
u

0
1 = 0.1. It can be seen that the greater the light intensity, the greater the

amplitude and the corresponding limit cycle and the greater the change of the amplitude
within a doubling period, until it evolves into in-phase mode. The results show that the
light intensity has no effect on the frequency of the three synchronization modes.
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4.3. Effect of Contraction Coefficient

Figure 7a,b plot the effect of three different contraction coefficients on the self-oscillation
in the in-phase mode. The parameters are K̃f = 5, c̃ = 0.1, λp = 1.15, K̃s = 0.3, ũ0

1 = 0,

ũ0
2 = 0,

.̃
u

0
1 = −0.3, and

.̃
u

0
1 = −0.2. Figure 7c,d plot the effect of three different contraction

coefficients on the self-oscillation in the anti-phase mode. The parameters are K̃f = 5,

c̃ = 0.1, λp = 1.15, K̃s = 0.1, ũ0
1 = 0, ũ0

2 = 0,
.̃
u

0
1 = −0.3, and

.̃
u

0
1 = 0.3. The contraction

coefficients have the same effect on the in-phase mode and the anti-phase mode. It can be
seen form Figure 7a,c that the amplitudes increase as the contraction coefficient increases.
The smaller the contraction coefficient and the smaller the corresponding limit cycle are
shown in Figure 7b,d. The reason for this phenomenon is that the light-driven contraction
of the LCE fiber increases as the contraction coefficient C0 increases and as the light energy
that is absorbed from the environment increases. This is consistent with the self-excited
oscillation of a single oscillator [55]. Figure 7e–h plot the effect of the contraction coefficient
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on the non-phase-locked mode for K̃f = 5, c̃ = 0.1, λp = 1.15, K̃s = 0.2, Ĩ = 0.6, ũ0
1 = 0,

ũ0
2 = 0,

.̃
u

0
1 = −0.3, and

.̃
u

0
1 = 0.1. It can be seen from the figures that the greater the

contraction coefficient, the greater the amplitude and the corresponding limit cycle, and
the greater the change of the amplitude within a doubling period, until it evolves into
in-phase mode. More calculations show that the effect of the contraction coefficient is the
same during non-phase-locked mode and that it has no effect on the frequency of the three
synchronization modes.
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The contraction coefficient only affects the amplitude of the three synchronization modes.

4.4. Effect of Damping Coefficient

Figure 8a,b plot the effect of three different damping coefficients on self-oscillation
in the in-phase mode. The parameters are K̃f = 5, λp = 1.15, K̃s = 0.2, Ĩ = 0.6, C0 = 0.7,

ũ0
1 = 0, ũ0

2 = 0,
.̃
u

0
1 = −0.3, and

.̃
u

0
1 = −0.2. Figure 8c,d plot the effect of three different

damping coefficients on self-oscillation in the anti-phase mode. The parameters are K̃f = 5,

λp = 1.15, K̃s = 0.2, Ĩ = 0.8, C0 = 0.7, ũ0
1 = 0, ũ0

2 = 0,
.̃
u

0
1 = −0.3, and

.̃
u

0
1 = 0.3. The

damping coefficients have the same effect on the in-phase mode and the anti-phase mode.
The results show that the greater the damping coefficient, the smaller the corresponding
limit cycle, as shown in Figure 8b,d. This is because that as the damping coefficient
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increases, the energy consumed by the system increases, and the net energy input during
the oscillating decreases. This is consistent with physical tuition and other self-oscillating
systems [57]. Figure 8e–h plot the effect of the damping coefficient on self-oscillation in
non-phase-locked mode. The parameters are K̃f = 5, λp = 1.15, K̃s = 0.2, Ĩ = 0.8, C0 = 0.7,

ũ0
1 = 0, ũ0

2 = 0,
.̃
u

0
1 = −0.3, and

.̃
u

0
1 = 0.1. It can be seen from the figure that the greater the

damping coefficient, the smaller the amplitude, limit cycle, and the change of the amplitude,
and it then evolves into anti-phase mode until it is in static mode. More calculations show
that the frequency of the three synchronization modes does not change with the changes in
the damping coefficient.
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1 = 0, ũ0

2 = 0,
.̃
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0
1 = −0.3, and

.̃
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0
1 = 0.1. The

damping coefficient only affects the amplitude of the three synchronization modes.

4.5. Effect of Spring Constant of LCE Fiber

Figure 9a,b plot the effect of three different spring constants of the LCE fiber on the
self-oscillation in in-phase mode. The parameters are c̃ = 0.1, λp = 1.15, K̃s = 0.3, Ĩ = 0.5,

C0 = 0.7, ũ0
1 = 0, ũ0

2 = 0,
.̃
u

0
1 = −0.3, and

.̃
u

0
1 = −0.1. Figure 9c,d plot the effect of

three different spring constants on self-oscillation in anti-phase mode. The parameters

are c̃ = 0.1, λp = 1.15, K̃s = 0.3, Ĩ = 0.6, C0 = 0.7, ũ0
1 = 0, ũ0

2 = 0,
.̃
u

0
1 = −0.3, and

.̃
u

0
1 = 0.3. The spring constants of LCE fiber K̃f have the same effect on in-phase mode and
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anti-phase mode. The results show that the greater the spring constant of the LCE fiber,
the greater the corresponding limit cycle is, as shown in Figure 9b,d. The reason for this
phenomenon is that the light energy that is absorbed from the environment increases as
the spring constant of the LCE fiber K̃f increases. This is consistent with the self-excited
oscillation of a single oscillator [56]. Figure 9e–h plot the effect of the spring constant of
the LCE fiber on self-oscillation in non-phase-locked mode. The parameters are c̃ = 0.1,

λp = 1.15, K̃s = 0.3, Ĩ = 0.5, C0 = 0.7, ũ0
1 = 0, ũ0

2 = 0,
.̃
u

0
1 = −0.3, and

.̃
u

0
1 = 0.2. It can be

seen from the figure that the greater the spring constant of the LCE fiber, the greater the
amplitude, the limit cycle, and the change in the amplitude within a doubling period, and
it then evolves into anti-phase mode. This is because as the spring constant of the LCE fiber
K̃f increases, the ratio of the spring force F̃s to the driving force F̃f1

(
F̃f2

)
decreases, which is

equivalent to reducing the coupling stiffness K̃s and is more conducive to the realization
of anti-phase mode, and this result corresponds to Figure 4. More calculations show that
the self-oscillation frequencies of the three synchronization modes increase as the spring
constant of the LCE fiber K̃f increases.
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.̃
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0
1 = −0.3, and

.̃
u

0
1 = −0.1. (c,d) Effect

of three different spring constants on self-oscillation in anti-phase mode. The parameters are c̃ = 0.1,

λp = 1.15, K̃s = 0.3, Ĩ = 0.6, C0 = 0.7, ũ0
1 = 0, ũ0

2 = 0,
.̃
u

0
1 = −0.3, and

.̃
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0
1 = 0.3. (e–h) Effect of spring

constant of the LCE fiber on the self-oscillation in non-phase-locked mode for c̃ = 0.1, λp = 1.15,

K̃s = 0.3, Ĩ = 0.5, C0 = 0.7, ũ0
1 = 0, ũ0

2 = 0,
.̃
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1 = −0.3, and

.̃
u

0
1 = 0.2. The spring constants of the LCE

fiber have effects on the frequency and amplitude of the three synchronization modes.
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4.6. Effect of Initial Condition

Figure 10a,b plot the effect of the initial condition on self-oscillation in in-phase mode

for K̃f = 5, c̃ = 0.1, λp = 1.15, K̃s = 0.2, Ĩ = 0.5, C0 = 0.7, ũ0
1 = 0, ũ0

2 = 0, and
.̃
u

0
1 = −0.3.

Figure 10c,d plot the effect of the initial condition on self-oscillation in anti-phase mode for

K̃f = 5, c̃ = 0.1, λp = 1.15, K̃s = 0.05, Ĩ = 0.65, C0 = 0.7, ũ0
1 = 0, ũ0

2 = 0,
.̃
u

0
1 = −0.3, and

.̃
u

0
2 = 0.3. Under the action of the different initial conditions, the domains of attraction ũ1(t)

and ũ2(t) overlap, and the corresponding limit cycles also overlap, indicating that the initial
conditions have no effect on the self-excited oscillation in in-phase mode and anti-phase
mode. This is because the initial condition does not affect the elastic strain energy input
to the system. More calculations also show that the influence of initial condition is the
same, and this is consistent with the self-excited oscillation of a single oscillator [55,60].
Figure 10e–h plot the effect of initial condition on the self-oscillation in non-phase-locked
mode for K̃f = 5, c̃ = 0.1, λp = 1.15, K̃s = 0.2, Ĩ = 0.5, C0 = 0.7, ũ0

1 = 0, ũ0
2 = 0, and

.̃
u

0
1 = −0.3. It can be seen from the figures that the smaller the phase difference between the

two mass blocks of the initial state, the greater the amplitude of the amplitude change until
it evolves into in-phase mode. More calculations show that the initial conditions have no
effect on the frequency of the three synchronization modes.
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2 = 0, and
.̃
u

0
1 = −0.3. (c,d) Effect of initial condition on the
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5. Equivalent Systems

Figure 11a,b plot the equivalent systems of the in-phase mode and anti-phase mode,
respectively. In in-phase mode, the length of the spring does not change with time, and
thus, the system in in-phase mode is equivalent to a single self-excited oscillator with
a constant spring force (Figure 11a). Furthermore, it can be easily predicted that the
amplitude of the equivalent system increases as the light intensity, contraction coefficient,
and spring coefficient of the LCE fiber, and decreases as the damping coefficient increases.
The frequency of the self-excited oscillation increases as the spring coefficient of the LCE
fiber increases.
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In the anti-phase mode, the midpoint of the spring does not move during the oscil-
lation, and thus, the system is equivalent to single self-excited oscillator constrained by a
fixed spring with half of its original length, as shown in Figure 11b. Therefore, it can also
be predicted that the amplitude of the equivalent system increases as the light intensity,
contraction coefficient, and spring coefficient of the LCE fiber increases and decreases
as the damping coefficient and spring coefficient of the spring increase. The frequency
of self-excited oscillation increases as the spring coefficient of the LCE fiber and spring
coefficient of the spring increase.

6. Conclusions

The study of the self-excited oscillation coupling of two or more systems and their
collective motion is beneficial to the construction of richer and more complex motions,
and the more abundant motion modes are constructed, the richer the functions of micro-
robots will be. In this article, we constructed two joint LCE spring oscillators that are
connected by a spring and theoretically investigated their synchronization phenomenon
based on the well-established dynamic LCE model. The numerical calculations show that
the self-oscillation coupling system has three steady synchronization modes: in-phase
mode, anti-phase mode, and non-phase-locked mode. The synchronization mode depends
on the combination of various parameters, and we provided phase diagrams for three
steady synchronization modes under different coupling stiffnesses and different initial
states. In addition, the results show that the amplitude of three synchronization modes
and the changes in the amplitude within a doubling period in the non-phase-locked mode
increased as the light intensity, contraction coefficient, and spring coefficient of the LCE
fiber increased and decreased as the damping coefficient decreased. The frequencies of
the anti-phase mode and non-phase-locked mode increased as the coupling stiffness and
spring coefficients of the LCE fiber increased, and the frequency of the in-phase mode
increased as the spring coefficients of the LCE fiber increased. The coupling stiffness and
initial conditions had no effect on the in-phase mode. These results are consistent with
the self-excited oscillation of a single oscillator, for which we also proposed equivalent
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systems in the in-phase mode and the anti-phase mode. The coupled self-oscillation system
proposed in this paper may be used to design complex systems and have broad application
prospects in the fields of signal monitoring, medical equipment, micro-active machines,
and micro-robots.
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