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Summary

		  Influenza viruses comprise a major class of human respiratory pathogens, responsible for causing 
morbidity and mortality worldwide. Influenza A virus, due to its segmented RNA genome, is high-
ly subject to mutation, resulting in rapid formation of variants. During influenza infection, viral 
proteins interact with host proteins and exploit a variety of cellular pathways for their own bene-
fit. Influenza virus inhibits the synthesis of these cellular proteins and facilitates expression of its 
own proteins for viral transcription and replication. Infected cell pathways are hijacked by an ar-
ray of intracellular signaling cascades such as NF-kB signaling, PI3K/Akt pathway, MAPK pathway, 
PKC/PKR signaling and TLR/RIG-I signaling cascades. This review presents a research update on 
the subject and discusses the impact of influenza viral infection on these cell signaling pathways.
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Background

Infectious diseases such as AIDS, tuberculosis, malaria, men-
ingitis and influenza remain the most important cause of 
death and disabilities in human populations worldwide. 
Influenza virus causes epidemics almost every year and oc-
casionally pandemics, due to antigenic drift or antigenic 
shift [1]. Each year Influenza virus causes 65 million illness-
es and 25,000 deaths in the USA alone. Globally, the World 
Health Organization (WHO) estimates the burden of in-
fluenza at ~3–5 million cases of severe illness and >300,000 
deaths annually. Most recently the WHO declared a phase 
6 global pandemic on 11th June 2009, and more than 209 
countries and overseas communities have reported labora-
tory confirmed cases of pandemic influenza H1N1 2009, in-
cluding at least 14,142 deaths [2]. Influenza virus belongs to 
the Orthomyxoviridae family. Orthomyxoviridae are envel-
oped viruses with negative sense ssRNA genome, split into 8 
segments, encoding 11 proteins. Hemagglutinin (HA) and 
neuraminidase (NA) are 2 important proteins present on 
the surface of the viral envelope; mutation in these 2 pro-
teins gives rise to the 16 HA and 9 NA, different subtypes 
of influenza virus [3]. The viral RNA polymerase complex, 
composed of the 3 largest gene segments – PB1, PB2, PA 
and nucleoprotein (NP) – is associated with viral RNA ri-
bonucleoprotein complex. The 2 matrix proteins, M1 and 
M2, are the smallest RNA proteins and M2 forms ion chan-
nels in the viral membrane. The nonstructural gene (NS1) 
is a multifunctional protein, and NS2 protein is involved 
in the nuclear export of the viral RNPs to the cytoplasm. 
PB1-F2 protein is a product of the second gene product of 
PB1. To date it has been documented that Influenza viral 
proteins interact with 1023 host proteins [4]. Like other vi-
ruses, Influenza virus also takes advantage of the host cellu-
lar machinery for their efficient replication.

According to recent research reports, the following cellu-
lar signaling pathways are altered following influenza in-
fection: NF-kB signaling, PI3K/Akt pathway, MAPK path-
way, PKC/PKR signaling, and TLR/RIG-I signaling cascades 

[5–13]. These pathways are important for viral entry, viral 
replication, viral propagation and apoptosis, and are involved 
in antagonizing the host antiviral response. Influenza virus 
manipulates the molecular function of signaling molecules 
for efficient viral pathogenesis. This review addresses the 
impact of influenza infection on cellular signaling events.

NFkB/IkB Pathway

The NFkB/IkB pathway plays a vital role in mediating in-
flammation, immune response, proliferation and apopto-
sis [14,15]. NF-kB is a nuclear factor kB, a transcriptional 
factor which plays a central role in promoting the expres-
sion of more than 150 genes, which in turn governs the 
cellular status of genes encoding cytokine/chemokines, 
adhesion molecules and anti/pro-apoptotic genes [6,16]. 
NF-kB is present as a complex with its inhibitor IkB. For 
release from this complex, activation of IKK is required 
[17]. The IKK complex is composed of active IKK1/IKKa, 
IKK2/IKKb and scaffold protein NEMO (NF-kB essential 
modulator)/IKKg [15]. Upon activation, IKK phosphory-
lates and degrades the IkB protein [18], which leads to the 
release of transcriptionally active NF-kB subunits p65/p50 
from the inhibitory complex which translocate into the nu-
cleus, where they can ‘turn on’ the expression of specific 
genes that have DNA-binding sites for NF-kB in their pro-
moters [18,19] (Figure 1(2)). IKK2 degrades the IkB and 
activates NF-kB, while IKK1 primarily phosphorylates the 
other factors of the NF-kB family, such as p100/p52 [15].

It is well established that NF-kB is a major target of most vi-
ral pathogens [20,21]. During viral infection there is activa-
tion of the NF-kB signaling pathway and an increase in the 
gene expression levels of IFN-b/TNFa/IL8 [22,23], which 
suggests that IKK-mediated NF-kB signaling is essential for 
the host innate immune response [24]. For instance, vaccin-
ia virus expresses the TIR domain to suppress the TLR/IL-1 
receptor- induced NF-kB activation [25,26]. Oncogenic vi-
ruses such as Epstein Barr virus (EBV) and Kaposi’s sarco-
ma-associated herpes virus (KSHV), activate NF-kB during 

Figure 1. �Host cell machinery gets activated during 
influenza infection and leads to trigger 
Signaling pathways. Influenza is know to 
produce early and late viral proteins post 
infections. NS1, NP, PB1, PB2 are early 
protein and synthesize in 0-5 h.p.i. HA, 
NA, M1, NEP, M2, PB1-F2 are late proteins 
and synthesize in 5-10 h.p.i. This process 
leads to the virus production in between 
5-12 h.p.i. and followed apoptosis of 
the cells in 20 h.p.i. During this whole 
processes some of the pathways are 
know to induce: 1, PI3-Akt pathway; 2, 
NFkB/lkB pathway; 3, MAPK pathway (A, 
JNK pathway; B, p38 pathway; C, ERK1/2 
patyhway; D, ERK5 pathway); 4, protein 
kinase C (PKC)/PKR signaling; 5, TLR/
RIG-I signaling. 
Symbols used in the Figure: ^  inhibition; 
® unknown mechanism; ® direct 
activation; ®¬ reversible process.
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latent infection, which subsequently causes tumorogenesis 
[27]. Thus, viruses have evolved mechanisms to manipulate 
and thereby evade/modulate host immune responses [28].

Several lines of evidence suggest that activation of the NF-kB 
pathway is a primary requirement for influenza virus infec-
tion and its efficient replication [6,29–31]. NF-kB activation 
is biphasic after the influenza infection. Early activation of 
NF-kB has been observed 1 hour post-infection and the lat-
er activation was associated with viral replication [32]. Some 
studies also indicate that viral protein overexpression, spe-
cifically HA, NP and M1 (Figure 1(2)), may be responsible 
for activation of the NF-kB pathway [5,20,29,31,33]. These 
viral proteins are sufficient to transcriptionally activate NF-kB 
by involving the generation of oxidative radicals which ac-
tivates IKK as a signal transduction intermediate, a kinase 
which phosphorylate IkB, thereby regulating NF-kB activi-
ty [5]. As a result of activation of this pathway, the host im-
mune response is elicited, to combat which, non-structural 
protein NS1 of influenza virus comes to its rescue by serv-
ing as an antagonist of host IFN response [34].

PI3K – Akt Pathway

Influenza A virus infection also activates the PI3K/Akt path-
way. It has been recently reported that the PI3K/Akt signal-
ing pathway is induced by the viral NS1 protein to support 
its efficient replication [7,35,36].

PI3K is a family of enzymes that play a pivotal role in regu-
lation of essential cellular functions (cell survival, prolifer-
ation, differentiation, etc.) [37,38]. PI3K family is divided 
into 3 classes: class I, II and III. Class I PI3K are heterodi-
meric enzymes composed of a catalytic subunit, p110, and 
a regulatory subunit, p85 [39,40]. They catalyze the gener-
ation of phosphatidylinositol-3-phosphate (PIP), phosphati-
dylinositol-3,4-bisphosphate (PIP2) and phosphatidylinosi-
tol-3,4,5-triphosphate (PIP3) [8]. The regulatory subunit of 
PI3K p85 contains 2 Src homology domains, SH2 and SH3. 
Through its SH2 domain, the p85 subunit binds to autophos-
phorylated receptor tyrosine kinase, in the process activat-
ing PI3K. Following activation, the p110 subunit converts 
PIP2 to PIP3 [41], which in turn leads to phosphorylation 
and activation of a number of kinases, including Akt/PKB. 
Activation of Akt through phosphorylation at Thr 308 and 
Ser 473 residues [42] plays a major role in modulating di-
verse downstream signaling pathways, including cell surviv-
al, proliferation, migration, differentiation and inhibition 
of proapoptotic factors such as BAD and caspase-9 by their 
phosphorylation (Figure 1(1)).

The class II PI3K is composed of 3 catalytic subunits (C2a, 
C2b, and C2g) but no regulatory subunit. This is involved 
in the production of PIP and PIP2 from PI. Class III consists 
of catalytic (Vps34) and regulatory (Vps15/p150) subunits 
that catalyze the generation of PIP from PI.

Many viruses have been reported to induce the PI3K pathway, 
such as DNA tumor viruses and RNA viruses, promote cell 
survival or suppress cell death. For example, LMP1 protein 
of Epstein-Barr virus induces B-cell survival. Furthermore, 
E5 protein of papillomavirus and HBx protein of Hepatitis 
B virus have been reported to induce PI3K signaling [43]. 
Hepatitis C virus, an RNA virus, can cause chronic infection 

[39]. The NS5A protein of HCV directly binds to the SH3 
domain of p85 and induces PI3K/Akt-mTOR signaling to 
control cell survival [44]. Additionally, viruses which cause 
acute infection such as respiratory syncytial virus (RSV) ma-
nipulate PI3K activity for efficient viral replication.

Other viruses such as SARS coronavirus, poliovirus, den-
gue virus and influenza virus also utilize the PI3K signaling 
pathway to their advantage [8,45–47]. Influenza A virus has 
devised diverse mechanisms to activate PI3K, which in turn 
leads to activation of several other downstream kinases at 
different time points during viral replication. Though early 
activation of PI3K has also been reported in influenza B vi-
rus infection, late activation only occurs in type A virus [48]. 
During the later stages of replication, the NS1 protein binds 
to the SH2 domain of the p85 subunit and activates PI3K, 
which leads to suppression of cell death [37,38]. A recently 
proposed model for activation of PI3K by NS1 suggests for-
mation of an active heterotrimeric complex of p110/p85-
NS1 wherein NS1 disrupts the inhibitory interaction inter-
face between p110 and p85 [49,50]. The activated PI3K/Akt 
pathway is further involved in efficient virus replication and 
propagation [35,36] and may also regulate antiviral function, 
although these processes remain largely unclear.

MAPK Pathway

Mitogen activated protein kinase (MAPK) cascades are in-
volved in the conversion of various extracellular signals into 
cellular responses as diverse as proliferation, differentiation, 
immune response and cell death [51,52].

Four distinct subgroups of the MAPK family have been well 
studied [9,51]: (a) Extracellular signal-regulated kinases 
(ERKs), (Figure 1(3 C)), (b) The p38 MAPK, (Figure 1(3 B)) 
(c) c-jun N-terminal or stress-activated protein kinases (JNK/
SAPK) (Figure 1(3 A)), and (d) ERK5/Big MAP kinase 
1(BMK1) (20) (Figure 1(3 D)).

In mammals 3 major pathways have been identified:  
MAPK/ERK, SAPK/JNK and p38 MAPK. MAPK signaling 
promotes cell survival by a dual phosphorylation event on 
threonine and tyrosine residues [10]. The upstream MAPKK 
regulates these 4 enzyme activities. The 2 MAPKK (MKK3/6, 
MKK4/7) are responsible for activation of p38 and JNK, re-
spectively. These enzymes are involved in apoptosis and cyto-
kine expression [53], and can be activated by environmental 
stress conditions. The upstream Raf controls the phosphor-
ylation of MAPK/ERK kinase (MEK) ½, which regulates the 
activation of ERK ½, which plays a regulatory role in cell 
proliferation and differentiation. Lastly, but importantly, 
enzyme ERK5 is activated by MEK5 [10] (Figure 1(3 D)).

Viruses such as dengue, HIV and hepatitis activate RANTES 
expression, indicating a wide range of control at the tran-
scription level. In the case of HIV infection, RANTES gets 
upregulated by ERK activation. In the case of dengue virus, 
RANTES gets induced by bonding of NF-IL-6 [54]. Borna 
disease virus (BDV) and Visna virus replication are also de-
creased by MEK inhibition [55,56]. The E2 envelope protein 
of hepatitis C virus up regulates the p38 MAPK signaling.

Interestingly, influenza virus infection also activates the all 4 
members of the MAPK family [9,54], which has reportedly 
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been shown to promote vRNP (viral ribonucleoprotein cap-
sids) traffic and virus production. In the previous study, 
using  specific kinase inhibitors, p38 and JNK have been 
linked to virus-induced expression of RANTES (a chemo-
kine involved in the attraction of eosinophils during an in-
flammatory response) [54].Another study suggests that 
ERK and JNK are involved in the expression of inflamma-
tory mediator cytooxygenase and phosphorylation of cyto-
solic phospholipase A2 in bronchial epithelial cells [57]. 
It has been shown that there is activation of the activator 
protein-1 (AP-1) during early stages of infection. JNK acti-
vation is induced by accumulation of RNA produced by vi-
ral polymerase. AP-1 is a transcription factor that includes 
c-Jun and activating-transcription-factor-2 (ATF-2), whose 
transcriptional activity is enhanced by JNKs [53,58], a part 
of the MAPK signalling pathway [23]. AP-1 is also crucial 
for the expression of interferon-b (IFN-b) and antiviral cy-
tokines [59]. Furthermore, inhibition of JNK by dominant 
negative mutants of MKK7/JNK/c-Jun results in impaired 
transcription from IFN-b promoter during influenza virus 
infection, thereby increasing virus production [53]. Thus, 
this pathway is important as a mediator of inflammatory re-
sponse to an influenza infection by co-regulating IFN-b ex-
pression (Figure 1(3 A)).

P38 MAPK activation regulates the expression of RANTES 
production [47,60] and chemokines by influenza virus infec-
tion [54]. In highly pathogenic H5N1-infected cells, p38 in-
duces tumor necrosis factor (TNF) cytokine [47]. According 
to a recently published report, IL-1b stimulates activation of 
p38 MAPK with prostaglandin E2 production. The p38 inhib-
itor decreases the release of prostaglandin E2 [57] and also 
reduces the virus titer, which suggests that p38 MAPK activa-
tion is essential for inflammatory responses and contributes to 
the viral replication process. Influenza virus infection induc-
es TNF-a in a p38-dependent manner [47] (Figure 1(3 B)).

Raf/MEK/ERK pathway is the best proven MAPK signaling 
pathway [51,61]. Many RNA viruses induce cellular signal-
ing through MAPK cascades. The mechanism of this path-
way is initiated by G protein-coupled receptors, which leads 
to the phosphorylation of downstream molecules and acti-
vates the serine threonine kinase Raf (dual specificity kinase 
MEK and MAPK/ERK). ERK phosphorylates various sub-
strates, transforms the signals and followes different func-
tions in cells [62]. Influenza infection also upregulates this 
signaling, which is important for efficient export of nucle-
ar RNPs. The inhibition of MEK blocks this pathway [9], 
shown to impair the growth of viruses and decrease the nu-
clear RNP export [9]. Interestingly, it does not affect viral 
RNA or protein synthesis. This suggests that the nuclear 
RNP export appears in the inducible phase and correlates 
well with the hypothesis that ERK activation occurs in the 
late phase of infection. The ERK ½ are vital for the expres-
sion of pro-inflammatory IL1b, IL-6 and IL-8 [63]. ERK can 
regulate the expression of TNF-a, IL-12, IL-1b, and inhibi-
tion of ERK by U0126 inhibitor [64] can also reduce the 
rate of influenza replication by nuclear retention of vRNPs 
(Figure 1(3 C)).

A recent study suggests that Raf/MEK/ERK signaling is ac-
tivated by proper accumulation of HA/lipid-raft association 
within the cellular membrane [65]. If there is inadequate 
transport of HA from cytoplasm to cell surface, this could 

be a possible reason for the low activation of ERK [65]. 
The viral polymerase complex is responsible for HA accu-
mulation in connection with MAPK signaling, supporting 
the idea that more ERK activation follows more efficient 
nuclear RNP export and increased formation of infectious 
progeny virions [4].

Protein Kinase C (PKC)/PKR Signaling

Influenza viral infection induces antiviral responses in the 
host cell [66], which include increase in the levels of inter-
ferons, primarily of 3 types: IFN a, IFN b and IFN g [67]. 
IFN activates a number of cellular genes, one of the most 
prominent being PKR encoding double-stranded RNA acti-
vated protein kinase [68]. Following interaction with dsRNA 
[69], PKR gets activated and undergoes autophosphoryla-
tion. This activated form of PKR phosphorylates the alpha 
subunit of eukaryotic initiation factor 2 (eIF2a), which in 
turn leads to translational arrest. Indeed, reports have sug-
gested a critical role for PKR in mediating ds-RNA-induced 
apoptosis in cells [70].

Therefore, in order to counteract the effects of host IFN re-
sponse and PKR activation, viruses have developed multiple 
mechanisms to suppress PKR activation [71]. Several lines 
of evidence support the fact that viral genes (vaccinia virus, 
adenovirus and hepatitis C virus) encode proteins that inhib-
it the IFN pathway by targeting PKR [72,73]. For instance, 
non-structural 5A protein of hepatitis C virus (HCV) causes 
repression of PKR activation, eventually leading to suppres-
sion of host IFN response. During influenza infection, PKR 
activation is inhibited by 2 processes: (1) IAV facilitates bind-
ing of p58IPK to PKR, causing inhibition of kinase activity 
[11,74]; And (2) non-structural 1 protein (NS1) of influen-
za virus blocks activation of PKR. Studies carried out in vitro 
using reticulocyte lysates have suggested that NS1 binds to 
dsRNA causing inhibition of PKR activity and phosphoryla-
tion of eIF2a, thus inhibiting PKR-induced translational ar-
rest [75] (Figure 1(4)). However, direct interaction of PKR 
and NS1 has not yet been described.

The protein kinase C (PKC) is an upstream molecule of 
Raf, which transmits signals to the downstream molecules 
for the activation of the Raf/MEK/ERK pathway [65]. The 
PKC superfamily consists of 12 different isoforms which 
plays various roles in cells by activating several downstream 
signaling pathways. PKC is known to play a role in virus en-
try of enveloped viruses [76]. The viral HA acts as a signal-
ing activator, both inside the cells and at the cell surface. 
Binding of influenza virus HA protein to host cell surface 
receptor activates PKC [12,77,78], and overexpression of 
HA inside the cells induces ERK signaling. Use of a PKC in-
hibitor, bisindolylmalimide I, demonstrated the inhibition 
of influenza virus entry, which shows that PKC plays a cru-
cial role in influenza virus entry. It is likely that the PKCbII 
(PKC isoform) acts in this function. Furthermore, there is 
evidence suggesting that PKC phosphorylates the viral M1 
protein and helps in viral replication [20]. The mechanism 
of this process remains unknown.

TLR/RIG-I Signaling

Viral infection elicits antiviral response via activation of 
a variety of pattern recognition receptors (PRRs) such as 
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toll-like-receptors (TLR) and RIG-I like receptors (RLRs) 
[17,79]. While ssRNA viruses are known to recognize by 
Toll-like receptor (TLR) 7/8 [80], dsRNA viruses recognize 
TLR3 and retinoic-acid-inducible protein (RIG-I), and a cy-
toplasmic RNA helicase plays a crucial role in detecting ssR-
NA during influenza A virus infection [81]. RIG-I can also 
recognize dsRNA generated during viral replication. During 
viral infection, RIG-I and MDA5 play an essential role in ini-
tiating antiviral response [82]. RIG-I recognizes viral RNA in 
a 5’-triphosphate-dependent manner [83], following which 
its N-terminal caspase recruitment domain (CARD) inter-
acts with a downstream partner, MAVS (VISA/IPS-I/Cardif), 
and activates the antiviral signaling [84,85]. It has recently 
been shown that the TRIM25 (tripartite motif) protein in-
teracts with CARD of RIG-I, which is important for initiat-
ing the antiviral cascade [86].

Like other viruses, influenza virus also has evolved strategies 
to antagonize host antiviral responses. TRIM25 is an ubiqui-
tin ligase required for RIG-I activation. RIG-I activation leads 
to the association with the IPS-I, which phosphorylates IRF3 
and follows the activation of IFN-b [13,87]. The NS1 protein 
of influenza virus is known to interfere with IFN production 
by binding to TRIM25. This process suppresses the RIG-I sig-
naling and IFNb production in infected cells [13,88,89]. This 
inhibitory activity was shown to depend on the NS1 RNA bind-
ing domain. It is believed that NS1 sequesters intracellular 
dsRNA like nucleic acids produced during viral replication, 
thereby keeping these molecules away from cellular dsRNA-
sensor proteins, as TLR3/7 or RIG-I [88] (Figure 1(5)).

Conclusions

Influenza virus infection alters many cell signaling pathways 
involved in important physiological functions of the cell.

The virus takes over the host cell machinery to manipu-
late it for its own benefit. Influenza virus affects NF-kB sig-
naling, PI3K/Akt pathway, MAPK pathway, PKC/PKR sig-
naling and TLR/RIG-I signaling cascades by using various 
mechanisms. Most importantly, NS1 protein reduces the 
antiviral response by activating NF-kB signaling and also 
activates PI3K/Akt pathway for efficient viral replication. 
The virus misuses these (MAPK pathway, PKC/PKR signal-
ing and TLR/RIG-I signaling) signaling pathways for inhi-
bition of antiviral effects of cytokines and increasing forma-
tion of infectious progeny virions.
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