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Abstract: This study aimed to determine the effect of the addition of apple juice concentrate (AJC) on
the properties of agar gel and dried materials. Agar gels with the addition of apple juice concentrate
in the range of 5–20% were prepared with or without the addition of maltodextrin. The gels were
also soaked in the solution of AJC. The water content, water activity, densities, some mechanical and
acoustic descriptors of gels, and the freeze-dried gels were analysed. The porosity and shrinkage of
dried products were also investigated. The addition of AJC significantly changed mechanical and
acoustic properties of gels. The hardness of gels decreased with a higher addition of concentrate.
Dried samples with a lower concentration of sugars (the lower addition of AJC) were characterised
by lower shrinkage and higher porosity, as well as crispness and glass transition temperature.
The investigated mechanical and acoustic properties of dried gels showed the addition of apple
concentrate at the level of 5% to agar solution was optimal.

Keywords: agar gel; texture; mechanical properties; acoustic properties; porosity; glass transition temperature

1. Introduction

Gels play an important role in the production of many food materials such as jelly
or dairy products [1]. The addition of sugars and other dry ingredients to gels may
significantly modify their taste and storage stability due to a decrease in water content and
water activity [2]. Gelled products can be also created with addition of fruit purees and
juices. The properties of gel with the addition of mango pulp as sweetening and texturizing
agents were analysed [3]. Some examples when the fruit or vegetable juices were added to
hydrocolloid solutions to prepare novel gelled products can be found in the literature [3–6].
However, the fabrication of dried snacks based on fruit concentrates and purees has been
less common [7–9], but some studies indicated that the application of drying fruit materials
enabled to obtain healthy products with attractive appearances and textures [7,8,10].

Drying is a popular unit operation frequently applied to reduce water content to a
level which enables the storage of food for a long time. This technology prevents microbial
contamination and slows down the enzymatic and non-enzymatic reactions which can
take place in food [11,12]. Many fruit snacks have been produced with application of a
freeze-drying technique. Drying at low a temperature and pressure requires a longer time
of process than other drying methods [11]. However, the quality of products obtained
by sublimation of frozen material is very high. The shape and structure of freeze-dried
products can be protected. Additionally, the method creates products with a high retention
of nutrients and flavours [13]. There are some studies that describe the properties of dried
materials produced with different gelling hydrocolloids.

The common hydrocolloid used in the creation of food gels is agar-agar which can form
a thermo-reversible and stable gel over a wide range of temperature [4,14]. Additionally,
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compared with other hydrocolloids such as gelatine, agar is suitable for vegetarians because
of its non-animal source of origin [15].

The application of drying to hydrocolloids gels results in the formation of a cellular
solid with a characteristic porous structure which can be a carrier for food ingredients such
as minerals, vitamins, and flavouring components [16]. The production of dried gels with
addition of other ingredients can be a method to obtain a wide range of food snack or fruit
bars [8]. Some studies have shown that the application of different drying methods as well
as the aeration of an agar solution with apple puree modified the sorption properties and
structure as well as stability of dried agar gels during storage [9]. The incorporation of
fruit ingredients (concentrates, pulps, and juices) to a gel structure can be a tool to obtain
products with a tailored texture, density and colour [4,17,18].

The texture of gels can be characterised by many different mechanical and acoustic
attributes perceived by consumers [19]. The textural properties of gelled products can be
analysed using different instrumental techniques. The large strain deformation method is
recommended to obtain fracture descriptors because they are strongly related to sensory
attributes of texture [20]. The texture of food can be also predicted based on the acoustic
emission which can be generated during deformation. Acoustic emission methods have
been applied to investigate the properties of many crispy foods such as extrudates [21,22],
dried gels [23], and sugar foams [24,25]. The structure of the material and composition of
foods may influence their acoustic properties. The fractures generated during the defor-
mation of a material can be a source of an acoustic signal which may contain information
about the texture of products [26]. The combination of mechanical and acoustic properties
can provide more information about the texture of food than any instrumental method
alone [27].

The addition of fruit juices or concentrates as liquid ingredients instead of fruit puree
(suspension of semi-liquid plant material with solid particles) to a gel matrix may lead
to a new structure of final product. Another important approach is to try and control the
texture of dried gels with fruit products. However, up to this point, little research has been
performed in this area [8].

Our previous study showed that the addition of chokeberry juice concentrate and
a foaming agent at different concentrations modified the structure (size of bubbles and
their distribution) as well as texture of foamed gels (marshmallows) [17]. Therefore, the
effect of the composition of gel with fruit concentrate and the pre-treatment of agar gel
(e.g., osmotic dehydration) on the texture of dried materials can be crucial in a new product
design and development.

This study aimed to determine the effect of the addition of apple juice concentrate,
soaking of agar gel in AJC solution, and the application of freeze drying on the mechanical
and acoustic properties of agar gel with or without maltodextrin.

2. Results and Discussion
2.1. Characteristics of Apple Gels

Pure agar gels (samples prepared only with a hydrocolloid addition as a gelling agent),
products obtained by gelling the mixture of agar solution with apple juice concentrate
(with or without maltodextrin), as well as agar gel and agar-maltodextrin gels soaked in the
osmotic solution of AJC were analysed. The overall appearance of gels after solidification in
Petri dishes and 24 h of storage was checked (visual observation). The presence of diluent
on the surface of gels indicated that the syneresis occurred. This means that some amount
of water was expelled from the gel. The syneresis was not observed for gels (C) with the
addition of apple juice concentrate (AJC) in the range of 5–15%, also for samples (C-DE)
prepared with AJC and maltodextrin. The increase in amount of AJC to 20% led to an
instable gel with released liquid on its surface. Additionally, it was difficult to remove the
sample from the dish without destroying the gel structure. For this reason, the properties of
gels with the addition of 20% AJC were not analysed. However, the agar gels and samples
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with the addition of maltodextrin soaked (OD) in the solution of AJC with concentration in
the range 5–20% showed negligible syneresis.

The addition of AJC to sol solution in the range of 5–15% (with or without maltodex-
trin) caused a decrease in water content in gels from 93.6 to 83.4% (Table 1). The decrease
in water content in gels was related to the addition of higher amount of concentrate and
incorporation of a higher concentration of sugars present in AJC. The gels soaked in AJC
solutions also contained a lower amount of water in comparison with agar gel (0%C).
The soaking of materials in sugar solution caused the dehydration of gels (Table 1). The
concentration of sugars in the solution of AJC was in the range from 5 to 20% which was
lower than the typical concentration of osmotic agents applied in the dehydration of fruits
(25–60%) [28]. However, the osmosis processes for some vegetables were carried out in
a concentrated solution of 10% sugars [29]. The slight reduction in water content due to
the diffusion of water form gel to AJC solution was observed for gels with maltodextrin
(C-DE), the water content decreased from 93.8 to 85.3% with increasing concentration of
sugars in the AJC solution.

Table 1. The selected physical properties of gels.

Samples Water Content, % Water Activity Geometric Density, g·cm−3 Failure Strain, %

0%C 98.1 ± 0.1 a* 0.991 ± 0.004 ab 1.12 ± 0.03 g 40.1 ± 1.2 a

5%C 93.6 ± 0.2 c 0.988 ± 0.001 bc 1.14 ± 0.01 fg 35.4 ± 0.9 ef

10%C 87.4 ± 0.1 g 0.985 ± 0.002 bc 1.20 ± 0.01 cdef 36.4 ± 0.8 cdef

15%C 83.4 ± 0.2 l 0.983 ± 0.001 c 1.23 ± 0.02 abcd 37.4 ± 0.5 bcde

5%C-OD 95.4 ± 0.4 b 0.988 ± 0.003 bc 1.13 ± 0.01 g 36.4 ± 1.4 cdef

10%C-OD 90.6 ± 0.1 e 0.986 ± 0.001 bc 1.18 ± 0.03 defg 37.8 ± 0.5 bcd

15%C-OD 88.1 ± 0.1 g 0.985 ± 0.003 bc 1.17 ± 0.02 defg 38.4 ± 0.4 abc

20%C-OD 85.3 ± 0.2 h 0.983 ± 0.002 c 1.20 ± 0.01 cdef 32.4± 0.1 g

5%C-DE 92.1 ± 0.2 d 0.994 ± 0.003 a 1.16 ± 0.02 efg 35.0 ± 0.8 f

10%C-DE 89.0 ± 0.5 f 0.990 ± 0.003 abc 1.23 ± 0.03 abcd 35.9 ± 0.6 def

15%C-DE 85.9 ± 0.4 h 0.987 ± 0.002 bc 1.27 ± 0.01 ab 36.9 ± 0.4 cdef

5%C-DE-OD 93.8 ± 0.2 c 0.993 ± 0.002 ab 1.15 ± 0.02 efg 36.0 ± 0.3 def

10%C-DE-OD 89.1 ± 0.1 f 0.988 ± 0.005 abc 1.21 ± 0.03 bcde 37.0 ± 0.5 bcdef

15%C-DE-OD 87.4 ± 0.2 g 0.986± 0.002 bc 1.25 ± 0.01 abc 37.9 ± 0.3 bcd

20%C-DE-OD 85.3 ± 0.4 h 0.984 ± 0.002 c 1.29 ± 0.02 a 39.1 ± 0.7 ab

* The different letters in the columns indicate the significant difference between the obtained values for samples
p ≤ 0.05.

The water activity of gels ranged from 0.983 to 0.994 but significant differences were
observed only for samples with the highest and the lowest addition of AJC or with the
application solution with 5 or 20% of sugars. The slight differences between water activity
for most gels can be related to the similar availability of water in all gelled samples. Water
content in food does not provide information about the nature of water (bond, inherent, or
occluded). Water activity depends on the structure of components as well as the surface
activity of the product [30]. Sugars are known to hold onto water. The slight decrease
in water activity was noted for gel with higher amount of AJC (Table 1). The significant
difference in water content was observed for gels with a different addition of AJC but their
water activity was similar. This means that only the high concentration of sugars may affect
the degree of water binding by gels matrix. A similar trend was also observed for gels with
chokeberry juice concentrate, the reduced water activity was related to the addition of a
higher amount of concentrate [17].
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The density of gels slightly increased with the addition of AJC and with the application
of osmotic dehydration of gels in the solution with a higher amount of AJC (Table 1). The
higher density of materials was related to an increase in dry matter in the gels, especially
produced with the addition of concentrate at the amount 15–20%.

The mechanical tests showed that the maximum force (at compression test) gradually
decreased with the addition of AJC in gel with or without the addition of maltodextrin
(Figure 1a). A similar tendency was observed by Banerjee et al. [4]; the incorporation of
carrot juice in the agar gel network caused a decrease in compression force and strain.
Nussinovitch and Peleg [18] noted that an increase in strawberry pulp reduced the strength
of gels. However, the addition of sugars to fruit based gels caused an increase in the material
strength up to a certain level, but further addition of sugars decreased the hardness of
samples. The presence of sugars increased the polymer interactions in gelled material but
at high concentrations of sugars the non-homogenic, week and soft gels were produced.
Sugars bound the free water in the gel samples. The presence of sucrose up to concentration
of 40% led to stronger gels; however, the gel network collapsed at the sucrose level of
60% [31]. The addition of juice to agar-alginate products weakens the gel strength [32]
which is in agreement with our results. The higher concentration of AJC and the addition
of maltodextrin did not affect the failure strain. The effect of a higher concentration of
sugars in the gels was observed after soaking of samples in the 20% solution of apple juice
concentrate. In this case, the maximum force decreased and the failure strain increased
in comparison with gel soaked in the 5% solution of AJC. This means that a less brittle
gel with a weaker structure was formed. The high concentration of sugars can hinder the
aggregation of hydrocolloid helices and it may reduce the size of junction zones [33] and
the hardness of gels.

The effect of the osmotic dehydration of the hardness of gels with maltodextrin with
the same amount of added AJC was not noticeable (Figure 1a). However, samples without
maltodextrin soaked at the osmotic solution were considerably stronger than gels with
added AJC (at the same concentration). Therefore, at high concentrations of sugars the
reduction in the strength of gels can take place [3].

The acoustic emission descriptors such as amplitude of signal, duration of acoustic
emission event, and the energy of AE event did not differ for investigated gels (data are not
shown). However, the total acoustic emission energy and number of AE events decreased
with the incorporation of a higher amount of concentrate (Figure 1b,1c). The changes in the
total AE energy with an increase in AJC were lower for samples obtained with the addition
of maltodextrin (Figure 1b). This may indicate that the presence of maltodextrin affected
the stronger structure of gels. Some investigations have shown that the concentration of
maltodextrin above 20% resulted in the formation of stronger gels [34,35]. The gelatin-
maltodextrin composite gels exhibited a brittle failure behaviour which occurred at a lower
strain than observed for the gelatin gels [36]. The presence of nuclei (aggregates of double
helices of amylose) in maltodextrin gels created larger number of crystallites, which led
to the rapid formation of a stronger gel. Increasing maltodextrin concentration from 15 to
40% caused a significant increase in the gel strength [37]. The maximum force for samples
with the addition of maltodextrin was slightly higher than observed for gels without the
carrier (at the same concentration of AJC in samples). It can be concluded that the gels
with maltodextrin were more brittle and generated more acoustic events (more cracks)
with a higher energy during the deformation of a stronger (harder) gel. The presence of
maltodextrin in gels at the 15% addition of AJC affected the structure of gels and generation
of a higher number of fractures then recorded for samples without the carrier (Figure 1c).
The acoustic emission characteristics depends on the mechanical properties of the material
and the presence of natural defects of raw material [38]. The effect of osmotic dehydration
on acoustic properties of gels had a similar trend as was observed for maximum force. Gels
prepared with the addition of AJC but without maltodextrin and the pre-treatment stage
(soaking) emitted a lower acoustic energy which can be related to the less brittle structure
of these soft gels.
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Figure 1. Effect of different composition and pre-treatment on the selected attributes of gels: (a) maxi-
mum force at compression test, (b) total AE energy, (c) number of AE events.

The principal component analysis (PCA) showed that density was highly correlated
with the acoustic parameters of samples (Figure 2). The maximum force can be a good
indicator of the hardness of materials. Thus, the higher the hardness of gels, the more
acoustic events and energy can be released during the deformation of sample. The density
of gels correlated well with the water content and water activity of investigated samples.
Gels with the same amount of added AJC and with maltodextrin or soaked in the solution
with the same concentration of AJC presented similar properties, e.g., 10%C-OD and 10%C-
DE-OD. Samples with a higher addition of AJC and agar gel (0%C) had different properties
than other samples. This means that the incorporation of a high amount of AJC caused the
creation of different a structure-texture product.
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2.2. Characteristics of Dried Apple Gels

The freeze-drying method was used to dehydrate the gels obtained with different
additions of AJC with or without maltodextrin. Pure agar gels and gels soaked at different
concentrations of AJC were freeze-dried. The parameters and conditions of freeze drying
were the same for all samples. The effect of different a composition of gel and applied
pre-treatment on the selected physical and physio-chemical properties of the freeze-dried
gel were analysed.

The water content of dried gel increased with the addition of AJC and after osmotic
dehydration of the AJC solution with a higher concentration of sugars (Table 2). The lowest
water content of dried gels was observed for samples with an addition of maltodextrin
and after osmotic dehydration of gels (as the pre-treatment method before drying). Many
investigations have shown the significant effect of the addition of biopolymers (mainly
maltodextrins) on the sorption properties of sugar-rich foods such as dried fruit juices.
The fruit freeze-dried products were characterised by very low values of glass transition
temperature from 25 ◦C and −38 ◦C for water content at the range from 3.3 to 25%. Many
dried fruit products obtained without carriers are in a rubbery state in room temperature
conditions [39,40]. Table 2 shows that the water content of dried gels without carriers
ranged from 4.46 to 17.42% which represents the same level of moisture content as obtained
by other investigators for dried fruit products. Table 3 shows the results of differential
scanning calorimetry (DSC) measurements of selected freeze-dried samples (with the lowest
and the highest addition of AJC) in each group of samples with and without maltodextrin
as well as soaked in AJC solutions. Data were collected as glass transitions determined on
onset, midpoint, and endpoint. The glass transition in midpoint is frequently used as the Tg.
The highest Tg value was recorded for freeze-dried gels without other ingredients. The agar
is a biopolymer of which the structure is based on disaccharides. Cooke et al. [41] obtained
dried agar powder with the application of different drying methods and at low water
activity (aw = 0.33), Tg values varied between 85 and 105 ◦C. The glass transition obtained
for freeze-dried gel was in a similar range (94.3 ◦C at aw = 0.239) (Table 3). The increase in
water content in dried gels caused the decrease in the glass transition temperature. The
water content of freeze-dried gels with the addition of maltodextrin did not exceed 10%
(Table 2). Incorporation of maltodextrin to the gel structure after drying led to an increase
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in Tg values (Table 3). The addition of maltodextrin as a biopolymer with high molecular
weight affected the increase in glass transition temperature which limited the problems
with sticking and caking [39,40].

Table 2. Selected physical and physio-chemical parameters of dried gels.

Samples Water
Content, % Water Activity Geometric

Density, g·cm−3
Pycnometric

Density, g·cm−3
Porosity,

% Shrinkage

0%C 8.12 ± 0.22 d* 0.239 ± 0.003 g 0.16 ± 0.04 i 0.65 ± 0.02 h 77.4 ± 3.6 a 0.258 ± 0.032 ef

5%C 5.69 ± 0.03 g 0.245 ± 0.002 fg 0.44 ± 0.01 fgh 1.12 ± 0.04 d 61.2 ± 0.5 cd 0.152 ± 0.061 gh

10%C 6.24 ± 0.15 g 0.249 ± 0.009 fg 0.47 ± 0.01 fg 1.27 ± 0.05 c 63.3 ± 0.5 c 0.432 ± 0.021 cd

15%C 17.42 ± 0.62 a 0.601 ± 0.002 a 0.95 ± 0.01 a 1.28 ± 0.03 c 26.0 ± 0.5 h 0.753 ± 0.042 a

5%C-OD 4.46 ± 0.09 h 0.158 ± 0.006 i 0.51 ± 0.05 ef 0.99 ± 0.01 e 50.2 ± 2.9 ef 0.065 ± 0.015 hi

10%C-OD 6.96 ± 0.12 f 0.277 ± 0.001 e 0.41 ± 0.03 gh 1.17 ± 0.01 d 65.8 ± 1.5 bc 0.199 ± 0.034 fg

15%C-OD 7.76 ± 0.46 e 0.306 ± 0.003 d 0.57 ± 0.01 de 1.34 ± 0.01 c 57.7 ± 0.4 cd 0.414 ± 0.042 cd

20%C-OD 12.17 ± 0.03 b 0.451 ± 0.002 b 0.99 ± 0.01 a 1.42 ± 0.01 ab 30.5 ± 0.4 h 0.601 ± 0.022 b

5%C-DE 4.32 ± 0.13 h 0.184 ± 0.013 h 0.42 ± 0.03 gh 0.75 ± 0.02 g 45.3 ± 2.3 fg 0.012 ± 0.017 i

10%C-DE 8.36 ± 0.16 de 0.400 ± 0.008 c 0.64 ± 0.01 cd 1.31 ± 0.01 c 51.4 ±0.4 e 0.595 ± 0.021 b

15%C-DE 8.13 ± 0.14 e 0.401 ± 0.003 c 0.74 ± 0.01 b 1.30 ± 0.03 c 43.3 ± 0.4 g 0.516 ± 0.043 bc

5%C-DE-OD 4.30 ± 0.21 h 0.137 ± 0.002 j 0.36 ± 0.04 h 0.89 ± 0.01 f 61.0 ± 2.6 cd 0.072 ± 0.053 hi

10%C-DE-OD 3.96 ± 0.14 h 0.149 ± 0.005 ij 0.44 ± 0.04 fgh 1.40 ± 0.04 ab 69.5 ±1.6 b 0.099 ± 0.032 ghi

15%C-DE-OD 5.99 ± 0.05 g 0.258 ± 0.009 f 0.71 ± 0.03 bc 1.41 ± 0.04 ab 50.4 ±1.2 ef 0.357 ± 0.019 de

20%C-DE-OD 9.78 ± 0.07 c 0.403 ± 0.007 c 0.79 ± 0.01 b 1.43 ± 0.02 a 45.0 ± 0.4 g 0.507 ± 0.026 bc

* The different letters in the columns indicate the significant difference between the obtained values for samples,
p ≤ 0.05.

Table 3. Glass transition temperature (Tg onset, Tg midpoint, Tg endpoint) of selected freeze-dried gels.

Samples Tg onset Tg midpoint Tg endpoint

0%C 88.74 94.03 98.12

5%C 27.90 33.11 39.41

15%C −35.24 −24.36 −29.75

5%C-OD 46.13 52.75 59.00

15%C-OD 9.99 16.91 23.82

5%C-DE 40.43 44.68 48.93

15%C-DE −2.93 0.54 8.01

5%C-DE-OD 56.15 61.63 67.11

15%C-DE-OD 7.00 12.56 18.13

20%C-DE-OD −24.44 −16.32 −20.81

Cassanelii et al. [42] observed the increase in water activity with an increase in solute
content (up to 20% of sucrose). The freeze-dried gel with the higher concentrations of AJC
is characterised by the higher values of water activity aw = 0.4–0.6 (Table 2). This behaviour
is related to the solute physical state (amorphous solid). Water in the freeze-dried materials
with sugars performs the role of plasticizers. Water may enhance the time-dependent
recrystallization process which leads to water desorption from samples and to the increase
in water activity [42]. Application of soaking with the higher amount of AJC caused an
increase in water content and water activity of freeze-dried gels. It may be concluded that
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the gels soaked in the lower amount of added concentrate contain the more crystalline
forms of sugars which are not very hygroscopic. The water content of soaked gels and dried
gels was lower than the samples prepared by direct addition of AJC to the agar solution.
During osmotic dehydration, water diffuses from the gel to the solution with the increase
in sugar concentration in the dehydrated material. The remaining free water was removed
from the gels during the drying process. In case of dried gels with the addition of AJC,
water was only removed during the freeze-drying process. The amount of sugars in the
soaked and dried material was probably lower than in samples with added AJC. The dried
samples with the addition of a lower amount of AJC (5%) with and without maltodextrin
and produced with the application of soaking showed the low water content around
4–6% and glass transition temperature between 33.11 (5%C) and 61.63 ◦C (5%C-DE-OD).
Tg temperatures obtained for these dried gels were higher than the storage temperature
(25 ◦C). At low Tg (at the high water activity and the high concentration of AJC for dried
gels) the presence of more hydrophilic groups caused higher hygroscopicity [43].

The water content of 17.42% and water activity of 0.601 obtained for 20%C-OD gel may
not prevent the undesirable changes that occur at this level of moisture content. Between
water activity of 0.4 to 0.7 changes in colour and texture as well as moisture migration
can be observed. Almost all microbial activity is inhibited below water activity of 0.6 [44].
However, the value of aw obtained for 20%C-OD gel was close to this limit. The Maillard
reaction reached its peak at aw = 0.6–0.7 [44]. This level of aw did not ensure the stability of
dried gel. Thus, 20%C-OD gel is not suitable for the practical application in production of
dried snacks with fruit juice.

The apparent (geometric) and true density (pycnometric) increased with the incor-
poration of AJC by direct addition to the mixture or by osmotic dehydration of the gel in
solution with a higher concentration of AJC (Table 2). However, the significant increase in
geometric density was observed for dried gels with the highest addition or concentration of
AJC due to a higher content of dry matter in applied solutions. The effect of the presence of
sugars on the density of samples was noted for alginate gels immersed in sucrose solution
for 48 h. Their apparent density after freeze drying (0.218–0.328 g·cm−3) was higher than
the dried samples prepared without infused sugars (0.193 g·cm−3) [45].

The density of dried gels with the addition of a higher amount of AJC increased. The
same trend was also observed for “wet gels”, the presence of sugar caused an increase in
sample density.

The porosity of dried gels increased at a low addition AJC but a high amount of
concentrate caused a decrease in porosity (Table 2). A similar effect was observed for
freeze-dried gellan gel, the increase in sugar incorporation in gel led to a drop porosity
from 84.8 to 48.6%. As the structure of freeze-dried gel (pore size distribution) depends on
the freezing step, the difference between gels can be linked with a different supercooling
mechanism. A higher degree of supercooling can be expected for sucrose which enhances
the ice nucleation but limits the crystal growth [42]. Freeze-dried gels with a higher
addition AJC were characterised by higher water content and water activity. Water can fill
the pores present in the freeze-dried gel and reduce the size of pores as well as porosity of
the material.

It can be noted that with a high presence of sugars, the structure of dried gels collapsed.
The shrinkage represents the changes in volume of gel in comparison with dried samples.
The shrinkage was larger with the application of a higher amount of AJC or with the use of
a solution with a higher concentration of sugars. This high shrinkage of gels samples can be
observed in Figure 3. The presence of low molecular substances in dried products during
storage may result in the formation of the amorphous state which is the no-equilibrium
state. Amorphous materials may change from a solid glassy to rubbery state while glass
temperature is reached. Low molecular solids can show changes in physical properties
and the structure of materials during storage. The significant changes in structure can
be observed such as the collapse of structure with the increase in water content in the
amorphous systems [46–48]. The stability of dried materials is related to water activity
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by the glass transition temperature (Tg). Collapse of structure occurs at temperatures of
20 ◦C or more above the Tg [49]. The incorporation of high molecular weight biopolymers
such as maltodextrin before drying may overcome this problem [50,51]. The moisture
content of date syrup powders containing maltodextrin at different water activities were
lower than those of date syrup. The addition of maltodextrin changed the balance of
hydrophilic/hydrophobic sites which limited the amount of sorbed water. The increase
in maltodextrin addition from 0 to 60% in date powders caused an increase in glass
temperature from −1.27 to 31.11 ◦C [52,53]. The glass transition temperature of many fruit
and vegetables powders as well as polymers decreased with increasing moisture content
due to the plasticizing effect of water [54].
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The reduced shrinkage and higher porosity of dried gels with addition of maltodextrin
were observed for samples with a high concentration of AJC in comparison with samples
without the incorporation of this carrier (Table 2).

Figure 4 shows the example of the compression curves obtained for dried gels. The
failure strain was equal to the maximum applied strain at compression for all samples
(80%). The compression test showed that the dried samples with a higher addition of
AJC were characterised by the lower values of forces at a smaller deformation (<30%), but
the maximum compression stress at the final deformation was the highest for analysed
samples. Nussinovitch et al. [45] also noted that the incorporation of sugars during the
immersion of alginate gels caused an increase in stress of freeze-dried gels. The irregular
jagged shape of stress-strain relationships obtained dried gels with an addition of a smaller
amount of concentrate or for gels obtained by osmotic dehydration in 5% AJC (Figure 4)
was typical for brittle cellular foods and crispy dehydrated gum gels. The concave shape of
the compression curve was characteristic for samples obtained with the higher addition of
AJC (Figure 4). The sigmoidal stress-strain curve was also observed for freeze-dried gels
with orange juice and banana puree which was linked with the densification of products.
Authors observed that the addition of fruit particles into the gels increased the bulk density
and the thickness of solids’ edges and struts, but the porosity of dried gels decreased from
98 to 88% [8]. This indicates the plastic behaviour of dried gels with a high concentration
of fruit juices [55]. A similar tendency was observed for the freeze-dried gels with the
addition of apple juice concentrate.
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Figure 4. Compression curves of dried gels with addition of maltodextrin soaked in osmotic solution
with 5, 10, 15, and 20% of AJC.

The mechanical properties of dried gels showed that the maximum force obtained at
the compression test increased with an addition of AJC (Figure 5a). However, dried gel
prepared with the addition of maltodextrin and soaked in AJC were less hard than other
samples with 10 and 15% addition of concentrate. This dried gel also had lower shrinkage,
water activity, and water content. The lower amount of infused sugars (form AJC) may
affect the structure and thickness of pore walls.
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The materials with a high Tg are harder and more brittle at an ambient temperature,
but at a low Tg temperature the products are more elastic [56].

The dried gels showed different mechanical properties than gel samples. The addition
of a higher amount of concentrate caused a decrease in hardness with the decrease in
the water content in gels. In the case of dried gels, the higher the amount of added
AJC, the higher the compression force. However, samples with a lower content of water
also showed lower values of maximum force. This effect was observed for dry cereal
products and glassy polymers when the increase in water content and water activity caused
the hardening of the samples (antiplasticizing effect of water). In some solid systems
the increase in plasticizer addition leads to a harder structure despite Tg decrease. The
situation may occur in amorphous cell foods. In some solid matrices small amounts of
sorbed water led to an increase in the rigidity of samples [57,58]. Some researchers have
stated that antiplastification can be observed due to “hole-filling” by the diluent [59]. SEM
micrographs of dried agar gels with the higher addition of AJC showed the edges of pores
were more round, and the thickness of walls increased in comparison with dried gels
produced with a lower amount of AJC and without maltodextrin (Figure 6).
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The acoustic descriptors of dried gels were characterised by high values of standard
deviations which can be linked to the heterogenous structure of materials with many cracks,
pores, and defects (Figure 5bc, Table 4). The acoustic emission energy of the event and the
duration of the AE event did not differ for most dried gels samples. The amplitude of AE
signal, total AE energy, and the number of AE events decreased with the incorporation
of a higher amount of apple juice concentrate. The highest number of events with a high
acoustic energy was observed for samples prepared with an addition of maltodextrin and
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the lowest amount of added AJC. The results of DSC showed that for these dried gels, the
glass transition was considerably higher than the ambient temperature. It can be concluded
that these dried gels behaved as brittle and crispy products. The incorporation of a higher
amount of concentrate decreased the intensity of acoustic emission generated during the
compression of dried samples. The effect of sugars addition on the reduction in acoustic
activity during the deformation was observed in dried samples with a higher addition
of AJC. Dried samples with a higher addition of AJC were harder but less brittle. The
structure of dried gels collapsed and shrinkage was observed.

Table 4. Selected acoustic parameters of dried gels.

Samples AE Energy of Event, pJ Amplitude,
mV

0%C 3890.3 ± 1779.0 a* 545.7 ± 162.9 ab

5%C 2358.5 ± 832.6 ab 457.0 ± 160.3 ab

10%C 4186.3 ± 1655.6 a 718.7 ± 181.9 a

15%C 1232.2 ± 745.2 ab 125.3 ± 32.1 cde

5%C-OD 1767.4 ± 641.9 ab 425.1 ± 85.6 abc

10%C-OD 3407.3 ± 1608.7 ab 497.50 ± 52.8 ab

15%C-OD 1699.5 ± 922.1 ab 353.5 ± 51.5 bcde

20%C-OD 452.1 ± 99.4 b 85.4 ± 11.1 e

5%C-DE 2013.2 ± 935.4 ab 458.0 ± 118.0 ab

10%C-DE 3688.2 ± 999.9 a 681.7 ± 147.6 a

15%C-DE 1201.1 ± 101.1 ab 98.8 ± 14.7 ed

5%C-DE-OD 3887.7 ± 840.4 a 675.6 ± 88.9 ab

10%C-DE-OD 2872.9 ± 804.8 ab 603.7 ± 159.3 ab

15%C-DE-OD 2349.8 ± 936.5 ab 403.9 ± 54.3 abcde

20%C-DE-OD 2321.1 ± 935.6 ab 416.0 ± 64.8 abcd

* The different letters in the columns indicate the significant difference between the obtained values for samples,
p ≤ 0.05.

In the case of stored dried samples at different water activities, sugar crystallisation
can occur. Amorphous sugars can absorb water vapour which leads to a decrease in
Tg below the storage temperature, crystallisation starts, and the release of water can be
observed. The process of sugar of crystallisation is time-dependent [60]. The properties
of dried gels (glass transition and other mechanical properties and acoustic properties)
were performed directly after drying. The texture-structure properties of dried gels were
related to the composition of gels as well the changes in products during the freeze-drying
process (the collapse of freeze-dried products with high concentrations of AJC and without
maltodextrin). However, SEM microphotographs of surface and cross sections of dried gel
with a 15% addition of AJC without maltodextrin showed the presence of coarse rough
structures (Figure 6). This may indicate patrial sugar crystallisation. These structures (sugar
crystals) were also observed for freeze-dried mango powders stored at the humidity of 55
and 66% [61]. The dried gels with 15% AJC addition showed high water activity aw = 0.601
and compression force but very low values of glass transition.

The samples after freeze drying showed similar trend as observed for wet gels with
the addition of AJC. The gels samples with 5% addition of AJC were characterised by the
intensive acoustic energy with a high number of AE events. Gel samples prepared without
soaking and addition of maltodextrin after drying generated a smaller number of events
with lower energy. However, this effect was clearly evident for dried samples.



Gels 2022, 8, 110 13 of 18

The principal component analysis (PCA) indicated the relation between investigated
attributes (Figure 7). In the case of dried gels, the opposite trend was observed for the
relation between the mechanical and acoustic properties than was noted for wet gels.
Acoustic descriptors were negatively corelated with maximum force. The porosity of dried
gels was positively correlated with the acoustic energy of events and their amplitude. The
higher porosity and the presence of many pores in dried samples may generate more
acoustic energy during the compression of samples. Force was positively correlated with
water content and water activity which can be linked with the hardening of material with
the presence of water. The increase in shrinkage caused the collapse of the gel matrix
and the increase in the hardness of dried gel. The amount of added AJC affected the
properties of dried gel to a greater extent than pre-treatment before the drying of gels. The
high crispness is related to the higher number of acoustic events generated during the
deformation of materials [22,27]. The addition of maltodextrin had a significant effect on
the higher number of acoustic events (crispness) only for the dried gels with the lowest
addition of AJC (5%C-DE).
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3. Conclusions

The addition of apple juice concentrate changed the mechanical and acoustic properties
of gels as well their water content. The higher concentration of AJC the softer gels were
obtained. The pure agar gel was the most brittle sample. However, the addition of
maltodextrin to agar gel enabled a stiffer product. Osmotic dehydration in apple juice
concentrates also affected the higher hardness and stronger gel network in comparison
with gel produced by the addition of AJC to the agar sol solution. The composition of
gels as well the method or preparation of gel influenced the texture of dried gels and their
glass transition temperature. The hardness of the freeze-dried gels increased with a higher
amount of added AJC, samples with a lower concentration of sugars (the lower addition of
AJC) were characterised by the lower shrinkage and higher porosity. This led to obtaining
products with lower hardness and the higher crispness and more stability due to the high
glass transition temperature. The addition of apple juice concentrate and maltodextrin
may modify the texture-structure properties of dried gel. However, the amount of added
concentrate should be low. The investigated mechanical and acoustic properties of dried
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gels showed the addition of apple concentrate at the level of 5% to agar solution was
optimal. The incorporation of maltodextrin to the gel structure led to obtaining a less hard
and more crispy product with a low water content.

4. Materials and Methods
4.1. Materials and Production of Gels and Dried Materials

The gels were produced through the following ingredients: agar-agar powder (Hor-
timex Sp. z o.o., Konin, Poland), apple juice concentrate (70.5 Brix) (Binder International,
Tarczyn, Poland), and maltodextrin DE 10–13 (Pepees S.A., Łomża, Poland). The gels were
prepared using two different methods. Table 5 presents the composition of gels obtained
with the addition of apple juice concentrate to sol solution (dissolved gelling agent in
water). The agar powder with or without maltodextrin was dispersed in distilled water,
heated to 90 ◦C and continuously stirred at a speed of 80 rpm. The solution was cooled in
the water bath until 60 ◦C and the required amount of apple juice concentrate was added
and stirred. The mixture was poured into Petri dishes and allowed to set at temperature
of 4 ◦C. After 24 h of storage, the gels were diced in to 10 mm cubes. A constant ratio of
1:0.5 was kept between juice solids and maltodextrin. Additionally, one type of gel (with
composition presented in Table 6) was obtained by soaking gel cubes in the solution of
diluted apple juice concentrate with concentration of 5, 10, 15, and 20%. The mass ratio of
gels to the apple concentrate solution was kept at 1:4. After 24 h of soaking, the gels were
blotted dry.

Table 5. Composition of gels with addition of apple juice concentrate.

Type of Gel Apple Juice
Concentrate, % Agar Powder, % Maltodextrin, % Water, %

0%C 0 2.0 0.0 98.0
5%C 5 2.0 0.0 93.0

10%C 10 2.0 0.0 88.0
15%C 15 2.0 0.0 83.0

5%C-DE 5.0 2.0 1.8 91.2
10%C-DE 10.0 2.0 3.5 84.5
15%C-DE 15.0 2.0 5.0 78.0

Table 6. Composition of gels before soaking in 5, 10, 15, and 20% solution of apple juice concentrate.

Type of Gel Agar Powder, % Maltodextrin, % Water, %

5%C-OD 2.0 0.0 98.0
10%C-OD 2.0 0.0 98.0
15%C-OD 2.0 0.0 98.0
20%C-OD 2.0 0.0 98.0

5%C-DE-OD 2.0 1.8 96.2
10%C-DE-OD 2.0 3.5 94.5
15%C-DE-OD 2.0 5.0 93.0
20%C-DE-OD 2.0 7.0 91.0

In the next step, the gels were frozen at −40 ◦C for 1 h using a shock freezer (Irinox,
Corbanese, Italy). Samples were freeze-dried under the pressure of 63 Pa and at a shelf
temperature of 20 ◦C with an application of Gamma 1–16LSC freeze-dryer (Martin Christ
Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany).

4.2. Measurements of Properties of Gels and Dried Materials

Water activity was measured using a Hygrolab C laboratory analyser (Rotronic,
Bassersdorf, Switzerland) with a measurement accuracy of ±0.001. The measurement
of the moisture content of gels after drying was carried out with the application of the
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vacuum drying method at the temperature of 80 ◦C and pressure of 1 kPa for 24 h. The
measurements were repeated in triplicate.

The geometric (apparent) density of the gels was calculated based on the volume and
mass of samples. The dimension of samples (cubes) was measured with a calliper, and the
volume of the cubes were calculated (Vo). The volume of dried gels (Vf) was measured
using the toluene displacement method [62]. The pycnometric (true) density was measured
using a helium stereopycnometer (Quantachrome Instruments, Boynton Beach, FL, USA).
The porosity of dried gels was calculated according to the formula:

ε =

(
1−

ρg

ρp

)
·100%

where: ε is the porosity, %; ρp is the pycnometric density of dried gels, g·cm−3; ρg is the
geometric density of dries gels, g·cm−3.

Shrinkage of samples Sv was calculated as:

Sv =

(
1−

Vf

Vo

)
where: Vo is the volume of gel, cm−3; Vf is the volume of dried gel, cm−3.

The mechanical properties of gels were measured using a TA-HD plus texture analyser
(5-kg load cell) and flat-type probe (Stable Micro Systems, Surrey, UK). Samples (cubes
with a side of 10 mm) were compressed at a constant speed of 1 mm·s−1 and up to strain
80%. The maximum force (N) and the failure strain (%) was recorded for gels. Compression
curves present the relationship between stress and strain. Strain was calculated as the ratio
of absolute deformation (mm) and the specimen’s initial height (mm). Stress (kPa) was
defined as the ratio of force and the cross-sectional area of samples. Twenty individual
samples were subjected to a compression test.

The measurement of the acoustic emission (AE) was carried out during the compres-
sion of the gels and dried samples. Acoustic emission signal from the range 0.1–16 kHz was
recorded using a piezoelectric accelerometer type 4381 (Brüel and Kjær Naerum, Denmark).
The total number of AE events and total AE energy (arbitrary unit- a.u.) were recorded for
gels and analysed according to the protocol described by Jakubczyk et al. [63]. Additionally,
the analysis of acoustic emission signal enabled to obtain AE energy of the event (pJ) and
the signal amplitude (mV) [22]. Acoustic measurements were carried out in 20 replications.

The glass transition temperature of the selected dried gels was measured using
the Q200 DSC (TA Instruments, New Castle, DE, USA) according to protocol described
by Ostrowska-Ligęza et al. [64]. Samples were heated from −50 to 150 ◦C at a heat-
ing rate of 3 ◦C/min. The onset, midpoint, and endpoint glass transition temperature
were determined.

The SEM structure of selected dried samples were analysed with the application of
Quanta 200 ESM (FEI Company, Hillsboro, OR, USA) according to procedure applied by
Jakubczyk et al. [9].

One-way analysis of variance (ANOVA) and paired Tukey’s Honest Significant Differ-
ence method test were used to establish the significance of differences among samples at
the 95% significance level. Principal component analysis (PCA) was applied to describe
relations between the different parameters of analysed samples of gels as well as dried
materials. The results are presented as a biplot. The STATISTICA software v. 12.5 (StatSoft
Inc., Tulsa, OK, USA) was applied to statistical analysis of data.
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