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requirement for nursing care has become a serious problem.

Furthermore, successful aging is one of the highest priorities for

individuals and societies. Centenarians are an informative cohort

to study and inflammation has been found to be a key factor in

predicting cognition and physical capabilities. Inflammation scores

have been determined based on the levels of cytokines and C�

reactive protein, however, serum antioxidants and lipid profiles

have not been carefully examined. We found that the redox

balance of coenzyme Q10 significantly shifted to the oxidized

form and levels of strong antioxidants, such as ascorbic acid and

unconjugated bilirubin, decreased significantly compared to 76�

year�old controls, indicating an increased oxidative stress in

centenarians. Levels of uric acid, an endogenous peroxynitrite

scavenger, remained unchanged, suggesting that centenarians

were experiencing moderate, chronic inflammatory conditions.

Centenarians exhibited a hypocholesterolemic condition, while an

increase in the ratio of free cholesterol to cholesterol esters sug�

gests some impairment of liver function. Serum free fatty acids

and monoenoic acid composition, markers of tissue oxidative

damage, were significantly decreased in centenarians, indicating

an impairment in the tissue repair system. Despite an elevation of

the coenzyme Q10 binding protein Psap, serum total coenzyme Q10

levels decreased in centenarians. This suggests a serious deficiency

of coenzyme Q10 in tissues, since tissue levels of coenzyme Q10

significantly decrease with age. Therefore, coenzyme Q10 supple�

mentation could be beneficial for centenarians.
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IntroductionAging populations are expanding worldwide, and the increasing
requirement for nursing care has become a serious problem.

Successful aging without cognition loss and physical deficiencies
is one of the highest priorities for individuals and societies. Arai
et al.(1) found that only 20% of centenarians enjoyed physical and
cognitive independence at the age of 100 years, although most
remained independent in daily living into their 90s. Those who
maintained physical independence at 100 years of age were highly
likely to become semi-supercentenarians (over 105 years) or
supercentenarians (beyond 110 years).(1)

To identify key factors in successful aging, Arai et al.(2) focused
on the characteristics of centenarians, semi-supercentenarians,
and supercentenarians. They found that inflammation predicted
cognition and physical capabilities in (semi-) supercentenarians
better than chronologic age or gender. Interestingly, the inflam-
mation score was lower in centenarian offspring compared to
age-matched controls.(2) They concluded that inflammation is an
important malleable driver of aging up to extreme old age in
humans.(2) Other reviews also emphasize that the suppression of

chronic inflammation is an important driver of successful aging
at extreme old age.(1,3,4)

In the above study, an inflammation score was estimated using
cytomegalovirus immunoglobulin G antibody titers and plasma
levels of interleukin- 6, tumor necrosis factor-α, and C-reactive
protein.(2) Acute inflammation, such as sepsis, is characterized
by the formation of reactive oxygen and nitrogen species such as
superoxide and nitric oxide.(5–7) Therefore, peroxynitrite is also
an important reactive molecule since it is produced from the
combination of superoxide and nitric oxide.(5–7) In fact, we ob-
served a decline in plasma antioxidants, namely vitamin E (VE),
ubiquinol-10 (CoQ10H2), vitamin C (VC), and uric acid (UA),
in patients with sepsis.(8) However, no comprehensive study has
been reported for centenarians. In this study, we compared serum
levels of antioxidants in centenarians and 76-year-old controls.
We found a significant decrease in VC and unconjugated bilirubin
(BR) and a significant increase in the percentage (%CoQ10) of the
oxidized form of coenzyme Q10 (CoQ10) to total coenzyme Q10
(TQ10) in centenarians, suggesting an increase of oxidative stress.

The plasma levels of high density lipoprotein (HDL) were
reported to be decreased in centenarians.(2) We, therefore, measured
serum free cholesterol (FC) and cholesterol esters (CE) because
their ratio (FC/CE) is determined by the activity of lecithin-
cholesterol acyltransferase (LCAT) secreted with HDL from
liver.(9,10) We confirmed a significant decrease in CE and total
cholesterol (TC) and a significant increase in FC/CE ratio in
centenarians.

We also measured serum free fatty acids (FFA) and the content
of oxidatively vulnerable polyunsaturated fatty acids in total FFA
(%PUFA) as markers of tissue oxidative damage.(11) It is common
that stearoyl-CoA desaturase is activated to compensate for the
loss of PUFA; therefore, the percentages of palmitoleic acid and
oleic acid in total FFA (%16:1 and %18:1, respectively) are also
appropriate markers of tissue oxidative damage.(11)

It is well known that human tissue levels of TQ10 decrease with
age after the age of 20.(12) For example, decreases in TQ10 of
>30% and 50% in human heart were observed at ages 40 and 80,
respectively.(12) However, such a decline of TQ10 was not
observed in human plasma within the range of 20 to 60.(13) In this
study, we found a significant decrease in serum TQ10 levels in
centenarians as compared with 76-year-old controls. On the other
hand, a significant increase of the coenzyme Q10 binding and
transfer protein prosaposin (Psap)(14–16) was observed. The possible
role of Psap will be discussed.
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Materials and Methods

Study design. This study comprised 99 Japanese centenarians
(25 males aged 100.8 ± 1.3 years and 74 females aged 100.9 ± 1.5
years) and 62 Japanese controls (25 males aged 74.6 ± 8.5 years
and 37 females aged 76.2 ± 8.0 years). The above 4 groups are
abbreviated as 101M, 101F, 75M and 76F, respectively. Written
informed consent to participate was obtained either from the
participants or a proxy when individuals lacked the capacity to
consent. The protocol of this study was approved by the Ethical
Committee of the Keio University School of Medicine. Non-fasting
venous blood was sampled. Serum was collected and stored at
−80°C until analysis. We also compared with previously reported
60-year-old controls(17) (consisting of 38 males and 17 females,
60.1 ± 9.3 years).

Analytical procedures. Serum levels of VE, CoQ10H2,
CoQ10, FC and CE were determined as previously described
with some modifications.(18) In brief, serum was extracted with 19
volumes of 2-propanol and the extract was analyzed by HPLC
using two analytical columns (Supelcosil ABZ+, 3 μm, 3.3 cm ×
4.6 mm i.d. and Ascentis LC-8, 5 μm, 25 cm × 4.6 mm i.d.;
Supelco Japan, Tokyo, Japan) connected in tandem, a reduction
column (RC-10-1; Irica, Kyoto, Japan) and an amperometric
electrochemical detector (Model Σ985; Irica) with an oxidation
potential of +600 mV (vs Ag/AgCl) on a glass carbon electrode.
The mobile phase consisted of 50 mM sodium perchlorate in
methanol/2-propanol (78/22, v/v), delivered at a flow rate of
0.8 ml/min. The analytical columns were cooled to 25°C.

Serum levels of VC, UA and BR were determined by HPLC
on a bonded-phase aminopropylsilyl column (Supelcosil LC-NH2,
5 μm, 25 cm × 4.6 mm i.d.; Supelco Japan) with UV/VIS
detection (265 nm for 0–15 min and 460 nm for 15–22 min), as
described previously.(19)

Serum FFA were derivatized with monodansylcadaverine for
analysis by HPLC.(20) Briefly, serum samples (50 μl) were mixed
with 200 μl of methanol and then centrifuged at 13,000 × g for
5 min. Aliquots (50 μl) of supernatants were mixed with 20 μl of
methanol containing 25 μM tridecanoic acid (internal standard)
and dried under a stream of nitrogen gas, and the residue was
admixed with diethyl phosphorocyanidate (1 μl) and N,N-
dimethylformamide (50 μl) containing monodansylcadaverine
(2 mg/ml) and kept at room temperature in the dark for 20 min. A
5-μl sample was injected onto an octadecylsilyl column (3 μm,
3.3 cm × 4.6 mm i.d.; Supelco Japan) and a pKb-100 column
(5 μm, 25 cm × 4.6 mm i.d.; Supelco Japan) connected in tandem.
The FFA components were measured by fluorescence detection
(Model 821-FP; Japan Spectroscopic, Tokyo, Japan) with excita-
tion at 320 nm and emission at 520 nm. The mobile phase
consisted of acetonitrile/methanol/water (17.5/65.0/17.5, v/v/v)
delivered at a flow rate of 1.5 ml/min. The analytical columns
were heated to 40°C.

Serum levels of Psap were measured by a sandwich ELISA
using monoclonal and polyclonal antibodies against human
saposin B.(14) Plasma was diluted 100 times with a phosphate-buffer
saline containing 0.1% Triton X-100, 1 g/L NaN3, 10 g/L BSA,
and 1 mM EDTA. Purified saposin B was used as a standard.(14)

Statistical analysis. Data are presented as mean values with
standard deviations. Statistical analysis was performed using one-
way ANOVA followed by the Scheffe’s multiple comparisons
test. P<0.05 was considered statistically significant.

Results and Discussion

Serum antioxidants and oxidative stress. Figure 1 shows
serum %CoQ10 and serum levels of VC, BR, and UA among
male and female centenarians (101M and 101F, respectively) and
75-year-old male and 76-year-old female controls (75M and 76F,
respectively). There were no significant differences between the

male and female groups in each age category. However, a signifi-
cant increase in %CoQ10 was observed in centenarians compared
with 76-year-old controls, indicating that the redox balance of
coenzyme Q10 shifted to the oxidized form. This confirms an
increase in oxidative stress in centenarians and agrees with a
significant decrease in serum antioxidants such VC(11) and BR(21)

in centenarians. These results are also consistent with the observa-
tion that chronic inflammation is present in centenarians.(2)

Under acute inflammatory conditions like sepsis, the substantial
formation of superoxide and nitric oxide, and their product
peroxynitrite, is expected. In fact plasma UA levels declined
significantly in patients with sepsis during a stay at an intensive
care unit(8) because UA is a good inhibitor of peroxynitrite.(22–24)

However, serum UA levels remained constant in centenarians
and 76-year-old controls, suggesting that inflammation in cente-
narians is moderate and chronic.

Since there were no significant differences in %CoQ10, VC,
BR, and UA between the male and female groups of centenarians
and 76-year-old controls, the data were combined into centenarians
and 76-year-old controls (abbreviated as 101 and 76) and com-
pared with 60-year-old controls(17) as shown in Fig. 2. %CoQ10
consistently increased with age, while levels of VC and BR in
centenarians were significantly lower than 60- or 76-year-old
controls. These data confirm that centenarians are under oxidative
stress. However, levels of UA remained unchanged, suggesting
that the formation of peroxynitrite is not very significant in
centenarians and they are under moderate, chronic inflammatory
conditions.

Serum levels of cholesterols. Figure 3 shows serum levels
of FC, CE and TC, as well as the FC/CE ratio. A slight decrease
in FC was observed in centenarians, however the difference was
not significant. A significant decrease in CE and TC was observed,
resulting in an increase in the FC/CE ratio. There were no signifi-
cant differences in the levels of FC, CE and TC, and the FC/CE
ratio between male and female groups in each age category. Thus,
we plotted the pooled data against age (Fig. 4). FC, CE and TC
were all observed to decrease with age. Since the decline of CE
was more profound than FC, the FC/CE ratio increased with age.
The FC/CE ratio is determined by the activity of LCAT secreted
with HDL from liver.(9,10) Therefore, these data indicate a degree
of impairment in the secretion of LCAT with HDL and liver
function. This is consistent with the previous observation that
serum levels of HDL are low in centenarians.(2)

Serum FFA composition and tissue oxidative damage.
Figure 5 shows serum levels of FFA, %PUFA, %18:1 and %16:1.
A significant decrease in FFA was observed in centenarians.
Under oxidative stress, plasma levels of FFA have been observed
to increase in many cases, such as in newborn babies(25) and
patients with hepatitis,(11) cirrhosis,(11) hepatoma, (11) juvenile fibro-
myalgia,(26) and post-cardiac arrest syndrome.(27) Elevated plasma
FFA was observed in the rat middle cerebral artery occlusion
model of stroke.(28) It is of interest that repeated administration
of the antioxidant edaravone significantly improved the neuro-
logical symptoms and impairment of motor function induced by a
middle cerebral artery occlusion, and reduced the levels of FFA to
those of a sham operation.(28) Formation of FFA under oxidative
stress is assumed to be a result of phospholipase activity,(29–32)

therefore, a significant decrease in serum FFA in centenarians must
be ascribed to impairment of the repair system that counteracts
increases in oxidative stress.

Under conditions of elevated oxidative stress, oxidatively
vulnerable PUFA is selectively damaged which results in
decreased membrane fluidity.(11) To compensate for the loss of
PUFA, stearoyl-CoA desaturase is activated and converts stearic
and palmitic acids to 18:1 and 16:1, respectively.(33) Accordingly,
a decrease in %PUFA and an increase in %18:1 and %16:1 have
been observed under oxidative stress.(11,25–28)

Since there were no significant differences in FFA levels,
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Fig. 1. Comparison of the percentage of oxidized coenzyme Q10 to total coenzyme Q10 (%CoQ10) in serum, and serum levels of ascorbic acid
(VC), unconjugated bilirubin (BR), and uric acid (UA) among male centenarians (101M), male 75�year�old controls (75M), female 76�year�old controls
(76M), and female centenarians (101F). Data are presented as mean + SD. *p<0.01 and **p<0.001, significant differences as determined by Scheffe’s
multiple comparison test.

Fig. 2. Changes in the percentage of oxidized coenzyme Q10 to total coenzyme Q10 (%CoQ10) in serum, and serum levels of ascorbic acid (VC),
unconjugated bilirubin (BR), and uric acid (UA) with age. Data are presented as mean ± SD. *p<0.05 and **p<0.001, significant differences as
determined by Scheffe’s multiple comparison test.
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Fig. 3. Comparison of serum free cholesterol (FC), cholesterol esters (CE), total cholesterol (TC), and the FC/CE ratio among male centenarians
(101M), male 75�year�old controls (75M), female 76�year�old controls (76M), and female centenarians (101F). Data are presented as mean + SD.
*p<0.01 and **p<0.001, significant differences as determined by Scheffe’s multiple comparison test.

Fig. 4. Changes in serum free cholesterol (FC), cholesterol esters (CE), total cholesterol (TC), and the FC/CE ratio with age. Data are presented as
mean ± SD. *p<0.01 and **p<0.001, significant differences as determined by Scheffe’s multiple comparison test.
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Fig. 5. Comparison of serum free fatty acids (FFA), the percentage of polyunsaturated fatty acids in total FFA (%PUFA), the percentage of
palmitoleic acid in total FFA (%16:1), and the percentage of oleic acid in total FFA (%18:1) among male centenarians (101M), male 75�year�old
controls (75M), female 76�year�old controls (76M), and female centenarians (101F). Data are presented as mean + SD. *p<0.001, significant
differences as determined by Scheffe’s multiple comparison test.

Fig. 6. Changes in serum free fatty acids (FFA), the percentage of polyunsaturated fatty acids in total FFA (%PUFA), the percentage of palmitoleic
acid in total FFA (%16:1), and the percentage of oleic acid in total FFA (%18:1) with age. Data are presented as mean ± SD. *p<0.05 and **p<0.001,
significant differences as determined by Scheffe’s multiple comparison test.
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%PUFA, %18:1, and %16:1 between the male and female groups
in each age category, we plotted the pooled data against age
(Fig. 6). No significant changes in %PUFA were observed in
centenarians. In contrast, significant decreases in %18:1 and %16:1
were observed in centenarians, indicating impairment in the
oxidative repair system. However, this hypothesis should be
investigated further.

Serum TQ10 and Psap. Figure 7 shows serum levels of
TQ10 and Psap, as well as the ratio of VE/TC and TQ10/TC in
centenarians and 76-year-old controls. A significant decrease in
TQ10 was observed in centenarians compared with 76-year-old
controls, suggesting a coenzyme Q10 deficiency in centenarians.
This is also the case in male centenarians even if TQ10 was
normalized to TC, however, female centenarians were not signifi-
cantly different. A similar trend was observed in VE/TC values.

On the other hand, a significant increase in coenzyme Q10
binding and transfer protein (Psap)(14–16) was observed in female
centenarians compared with 76-year-old female controls, and
male centenarians showed a similar tendency. Figure 8 shows the
combined male and female data of 60- and 76-year-old controls,
and centenarians. Psap levels increased progressively and signifi-
cantly with age while TQ10 levels and the TQ10/TC ratio reached
a maximum at 76 years and subsequently decreased. It is well
known that tissue TQ10 levels decrease with age; for example
>30% and 50% decreases in TQ10 were observed at the ages of
40 and 80, respectively, in human heart.(12) Furthermore, the rate
of coenzyme Q biosynthesis in rat heart is much less than that
in rat kidney.(34) This should be also the case in human. These
observations suggest that the human heart in octogenarians has a
serious requirement for exogenous TQ10. Therefore, coenzyme
Q10 should be transferred from its pool (most likely to be kidney)
to heart using Psap. This is a likely explanation for the observed
increase in serum Psap levels in 76-year-olds, and the consequent
increase in serum TQ10 levels, compared with 60-year-old controls.

In centenarians, it is reasonable for Psap levels to increase
in order to compensate for the loss of coenzyme Q10. Despite
further elevation of Psap in centenarians, their TQ10 levels were
decreased, indicating their tissue TQ10 levels were likely to be
critically low.

Coenzyme Q10 is essential for ATP production in the mito-
chondria and is an important antioxidant in every cellular mem-
brane and lipoprotein.(35) Its importance is also suggested by the
observation that serum coenzyme Q10 levels were inversely
associated with the risk of disabling dementia.(36) Furthermore, a
mutation in the coenzyme Q10 synthesis enzyme was identified
in patients with familial multiple system atrophy (MSA).(37)

Plasma levels of coenzyme Q10 in patients with MSA were signif-
icantly lower than controls.(38,39) Now the phase 2 clinical study
of coenzyme Q10 supplementation to patients with MSA is on
going. Therefore, coenzyme Q10 supplementation would be bene-
ficial for centenarians, although this hypothesis requires further
serious investigation.

Conclusion

Oxidative stress in centenarians was demonstrated as an
increase in serum %CoQ10 and a decrease in VC compared with
76-year-old controls. Centenarians are suggested to exist in a
moderate, chronic inflammatory condition because serum levels
of UA were similar to those in 76-year-old controls. Centenarians
exhibit a hypocholesterolemic condition and the observed increase
in the FC/CE ratio suggests some impairment of liver function.
A significant decrease in serum FFA, %18:1 and %16:1 also
indicates impairment of the tissue repair system in centenarians.
Despite an elevation of the coenzyme Q10 binding protein Psap,
serum TQ10 levels decreased in centenarians, suggesting a serious
TQ10 deficiency in tissues. Therefore, coenzyme Q10 supple-
mentation is likely to be beneficial for centenarians.

Fig. 7. Comparison of serum total coenzyme Q10 (TQ10), the ratio of vitamin E to total cholesterol (VE/TC), the ratio of TQ10/TC, and serum prosa�
posin (Psap) among male centenarians (101M), male 75�year�old controls (75M), female 76�year�old controls (76M), and female centenarians (101F).
Data are presented as mean + SD. *p<0.01 and **p<0.001, significant differences as determined by Scheffe’s multiple comparison test.
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