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Alzheimer’s disease (AD) is a progressive and incurable neurodegenerative disorder of

integrative areas of the brain, characterized by cognitive decline and disability resulting in

negative impacts on the family of the patients and the health care services worldwide. AD

involves oxidative stress, neuroinflammation and accelerated apoptosis, accompanied by

deposition of amyloid-β peptide plaques and tau protein-based neurofibrillary tangles in

the central nervous system. Among the multiple factors that contribute to the onset and

evolution of this disease, aging stands out. That is why the prevalence of this disease has

increased due to the constant increase in life expectancy. In the hope of finding new, more

effective methods to slow the progression of this disease, over the last two decades,

researchers have promoted “omics”-based approaches that include the gut microbiota

and their reciprocal interactions with different targets in the body. This scientific advance

has also led to a better understanding of brain compartments and the mechanisms that

affect the integrity of the blood-brain barrier. This review aims to discuss recent advances

related to the gut-brain-microbiota axis in AD. Furthermore, considering that AD involves

psychiatric symptoms, this review also focuses on the psychiatric factors that interact

with this axis (an issue that has not yet been sufficiently addressed in the literature).
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INTRODUCTION

With the aging of the population, as a result of the change in the age pyramid, neurodegenerative
diseases are increasing their percentage as a cause of death and disability, besides representing
a large and growing economic impact on health care (1, 2). Among neurodegenerative diseases,
Alzheimer’s disease (AD) is the most important, since it corresponds to 60% of dementias, being
the most prevalent etiology worldwide (3). The costs related to the treatment and medical care of
people with AD are considerably high and dementia is one of the most expensive conditions for
society (4). Thus, AD stands out in the development of public policies to increase survival, reduce
the socioeconomic impact, as well as improve the quality of life of people diagnosed with AD and
the caregivers and family members (3).

AD affects the various cognitive domains of an individual, such as memory, executive functions,
language, behavioral habits, as well as visuospatial skills and attention (5). Symptoms are explained
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by progressive synaptic loss, cholinergic dysfunction, and
neuronal death observed in brain regions responsible
for cognitive functions, especially in the cerebral cortex,
hippocampus, and striatum (6–8). Such neuropathological
findings appear before the manifestation of cognitive
deterioration and neuropsychic dysfunctions (9).

In this context, intestinal dysbiosis has been strongly
associated with the etiopathogenic mechanisms of cognitive
and neuropsychiatric dysfunctions of AD and may be closely
related to the promotion of neuroinflammation, oxidative
stress, hyperphosphorylation of tau protein, and aggregation of
amyloid-β protein (Aβ) (10, 11).

Aging, a main risk factor for AD, involves a process of changes
in the gastrointestinal system: hypochlorhydria, difficulties in
transit and intestinal motility, degenerative changes in enteric
nerve cells, reduced absorption capacity as well as changes
in the quality and quantity of the intestinal microbiota (12–
14). Therefore, scientific evidence indicates the importance of
understanding the underlying mechanisms involved in the brain
microbiota-gut axis as a promising pathway for new therapeutic
strategies for the prevention and treatment of AD.

Gut-brain cross-talking is crucial in the regulation of the
central nervous system (CNS) and the gastrointestinal system,
and several studies have characterized its importance in the
homeostatic health-disease process (15–18). In recent years,
there has been a growing interest in the characterization of
the gut microbiota as a main regulator of this bidirectional
communication that impacts the neurophysiological bases of
psychiatric and neurodegenerative disorders (19–21). Thus,
the development of technologies for the study of microbiota-
brain communication has gained prominence, as well as the
investigation of new therapies for neuropsychiatric symptoms
through intestinal modulation. This review aims to update
knowledge about the role of the gut-brain-microbiota axis in the
development and prevention of neuropsychiatric symptoms in
Alzheimer’s disease (AD).

GUT MICROBIOTA, AGING AND
ALZHEIMER’S DISEASE

The gut microbiota comprises a range of microorganisms of
around 1,000–5,000 different non-redundant species. The vast
majority correspond to bacteria belonging to Phyla Firmicutes,
Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria and
Verrucomicrobia, and the existence of 150 times more genes than
in the human genome has been demonstrated (22, 23). It consists
of more than 100 trillion microbial cells that interfere not only
in intestinal and absorptive functions, but also in a wide network
of neuronal, mental, immunological, endocrine, and metabolic
actions (24).

The intestinal microbiota plays important functions in the
body, including the maintenance of a mucous barrier of
enterocytes responsible for a complex system of defense against
pathogens in the host, the control over intestinal permeability
and the regulation of absorption, immunomodulation, and anti-
inflammatory mechanisms (25). In addition, it is responsible for

metabolic pathways of production of vitamins, hormones, amino
acids, and the biotransformation of short-chain fatty acids (26).

Gut-brain communication is based on signals generated in
the gut microbiota that send and receive information from
distant organs. This axis of information includes neural pathways
through autonomic nervous system with branches of the
vagus nerve, endocrine transmission through hormones (mainly
the hypothalamus-pituitary-adrenal system) and immunological
propagation through chemokines and cytokines (16, 27, 28)
(Figure 1).

This symbiotic community of non-pathogenic
microorganisms has wide variability and changes due to
exposure to intrinsic and extrinsic factors throughout life,
such as use of antibiotics, sedentary lifestyle, infections, diet,
aging, cesarean sections, genetics, chronic stress and lack
of breastfeeding (29–32). Some of the factors that regulate
communication through the gut-brain axis are represented in
Figure 2, although their review is beyond the scope of this article.

The imbalance in the composition of the intestinal
microbiota is called intestinal dysbiosis and triggers a cascade of
dysfunctional processes, including neuropsychiatric symptoms
of neurodegenerative diseases such as AD (33–36) (Figure 1).

With age, microbiota suffers a reduction in the amount
of Lactobacillus, Bifidobacteria, Bacteroidetes, Firmicutes,
Lachnospiraceae, Ruminococcaceae, Coprococcus, Roseburia
and Faecalibacterium, and an increase in the proportion of
Odoribacter and Butyricimonas (37–39). Such changes are
associated with gastrointestinal disorders that favor increased
intestinal permeability, dysbiosis, and the development of a
neuroinflammatory cascade (Figure 1) (40, 41).

MICROBIOTA AND
NEUROTRANSMITTERS

Neurotransmitters play an important role in the etiopathogenic
mechanisms involved in the neurodegeneration of Alzheimer’s
disease since they are responsible for the satellite transmission
and interneuron communication (Table 1) (42). According to
this, the main agents approved for the treatment of AD are
acetylcholinesterase inhibitors (donepezil, tacrine, galantamine
and rivastigmine), which prevent the decrease in acetylcholine, a
neurotransmitter related to cognitive functions such as learning
and memory, in the synaptic cleft (43).

Gut microbiota participates in the production and release
of neurotransmitters through enteroendocrine cells, which
consequently interfere with CNS functions (44). Strains of
Lactobacillus have been shown to be capable of producing
acetylcholine (45). Furthermore, in an animal model of AD,
the administration of Bifidobacterium bifidum and Lactobacillus
plantarum for 8 weeks, associated with physical training, relieved
amyloid-β protein neurotoxicity and improved spatial learning
by an acetylcholine-mediated mechanism (46).

The main CNS inhibitory neurotransmitter, γ-aminobutyric
acid (GABA), important for maintaining neuronal homeostasis,
is produced by strains of Lactobacillus and Bifidobacterium (47,
48). Enteric dysbiosis reduces GABA in the gastrointestinal tract
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FIGURE 1 | Illustrative diagram regarding the bidirectional relationship of the microbiota-gut-brain axis in the pathophysiology of neuroinflammatory parameters

characteristic of AD. Dysbiosis is a condition characterized by increased intestinal permeability due to gut epithelial disruption. It impacts microglial and astrocytic

activation and causes blood brain barrier disruption. Consequently, dysbiosis activates neuroinflammatory pathways, oxidative stress and neuronal dysregulation,

leading to apoptosis and accumulation of β-amyloid protein. For more details, see text.

FIGURE 2 | Outline of the main factors that can produce alterations in the communication between the intestine and the brain through the gut-brain-axis.
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TABLE 1 | Scientific evidence of the association of bacteria, neurotransmitters, and neuropsychiatric effects.

Neuromodulators Bacteria Effects References

Acetylcholine Bacillus; Bifidobacterium bifidum

Lactobacillus plantarum

Neurotransmitter related to cognitive functions such as

learning, memory and executive abilities of daily living.

(46)

Gamma-aminobutyric acid (GABA) Lactobacillus and Bifidobacterium Main inhibitory neurotransmitter of the CNS, responsible for

information processing, mood besides being involved with

sleep and modulation of muscle contractions.

(48)

Glutamate Campylobacter jejuni The main excitatory neurotransmitter of the CNS, being

associated with the ability to find alternative ways to solve

problems, increased mental timing and information

processing efficiency.

(55, 56)

Serotonin Streptococcus, Escherichia,

Enterococcus, Lactococcus and

Lactobacillus

Linked to the regulation of emotions, mood, appetite, sleep

and cognitive functions.

(61, 62)

Brain-derived neurotrophic factor (BNDF) Lactobacillus plantarum IS-10506 Main neurotrophin present in the CNS, involved in the

maintenance of neuronal homeotase, allows adequate growth

and differentiation of neural cells and synapses.

(69)

Dopamine Escherichia, Bacillus, Staphylococcus

aureus and Serratia marcescens

Dopaminergic pathways are associated with neuropsychiatric

effects on mood control, emotion, behavior, as well as in

command of movements.

(70, 73, 75)

and brain, unbalancing the GABA/glutamate ratio, increasing
the excitotoxic potential and leading to AD progression (49).
In fact, GABA levels are reduced in the cortex of AD
patients (50). Also, in experiments with diet-induced obese
and metabolically dysfunctional mice, GABA production by
lactobacilli has been shown to reduce metabolic and depressive
behavior disturbances (51).

Glutamate, the main excitatory neurotransmitter in the CNS,
is also a key part of balanced synaptic transmission and
neuronal plasticity, since it acts directly through N-methyl-
D-aspartate (NMDA) receptors in the acquisition of new
knowledge, as well as storage capacity (52, 53). An overactivation
of glutamate may be involved in neurotoxicity, leading to
neuronal damage/death, which justifies the introduction of
memantine (NMDA antagonist) in the pharmacotherapy of AD.
Research in humans has associated glutamate metabolism by
the gut microbiota with neurocognitive functions, such as the
ability to find alternative ways to solve problems, increased
mental timing, and efficiency in information processing (54).
Finally, Campylobacter jejuni was associated with a stimulus to
glutamate synthesis through direct stimulation of the enzyme
γ-glutamyltranspeptidase (GGT) (55, 56).

Other authors have shown an association between intestinal
diseases and neuropsychiatric disorders. One study identified
reduced anxiety-like behavior associated with the absence
of gut microbiota in mice, related to lower expression of
NMDA receptor messenger RNA in the amygdala (57). Also,
colitis induction in mice generated anxious behaviors and
cognitive loss associated with the reduction of intestinal
bacteria due to acute local inflammation, mainly lactobacilli and
segmented filamentous bacteria. These effects were prevented by
administration of probiotics containing Lactobacillus rhamnosus
R0011 and Lactobacillus helveticus R0052 (58).

The serotonergic system is also associated with brain
dysfunctions such as mood swings, cognition, and the

circadian cycle (59, 60). Serotonin is a product of tryptophan
metabolism and about 90% of its synthesis occurs through
bacteria of the gastrointestinal tract, such as Streptococcus,
Escherichia, Enterococcus, Lactococcus and Lactobacillus
(61, 62). Tryptophan concentrations are increased in the
plasma of germ-free male animals and anxiety normalized after
restoration of the gut microbiota, reinforcing the importance
of bidirectional communication of the gut-brain axis in
serotonergic neurotransmission (63).

Eubiosis (a healthy and balanced bacterial ecosystem) was
also related to the regulation of brain-derived neurotrophic
factor (BNDF) levels in brain regions associated with memory,
learning, cognition, and visuospatial abilities (64, 65). BDNF
mediates important beneficial effects of exercise, including
various neuronal processes of development and neuroplasticity
(66), and a reduction in its expression is considered a reliable
marker for AD, as it can exacerbate pathophysiological tau
protein and β-amyloid deposition (67). BDNF has been shown
to decrease Aβ production by enhancing α-secretase processing
of amyloid precursor protein (APP) (68). Upregulation of brain
BDNF expression was shown in rats after probiotic treatment
containing Lactobacillus plantarum IS-10506, suggesting its
prophylactic value against AD (69).

In addition, studies increasingly demonstrate the interaction
of the dopaminergic system with the neuropsychiatric symptoms
of AD (70). Neuronal death and age-dependent dopaminergic
degeneration were observed exclusively in the ventral tegmental
area in pre-plaque stages in a mouse model of AD (71).
Dopaminergic neurons are located mainly in the ventral
tegmental area, which is responsible for the motivation and
reward system, and in the substantia nigra pars compact, mainly
involved in movement control. Dopamine may be directly
related to neuropsychiatric symptoms common in AD, such as
anhedonia and apathy (72). Also, the cholinergic deficit in AD
was transiently restored by the administration of a dopaminergic
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receptor agonist under transcranial magnetic stimulation (73,
74). Finally, the in vitro production of dopamine by several
bacteria, including Bacillus cereus, Bacillus mycoides, Bacillus
subtilis, Escherichia coli, Serratia marcescens, and Staphylococcus
aureus, has been reported (75, 76).

This experimental and clinical evidence suggests the relevance
of the gut microbiota not only for host intestinal health,
but also for neurocognitive protection and improvement of
clinical outcomes.

MICROBIOTA AND NEUROINFLAMMATION
IN AD

Neuroinflammation has been reported to play an important
role in the pathophysiological mechanisms of AD (77, 78).
It may have a peripheral origin, since increased peripheral
cytokine production may lead to endogenous cerebral cytokine
production (79). Thus, intestinal inflammatory processes can
affect brain function, and have been postulated as a prominent
factor in the progression of neurodegenerative diseases (80).
Symptoms associated with cognitive and functional impairment
of Alzheimer’s, such as apathy (81) or agitation (82) have been
related to an increase in peripheral proinflammatory mediators.
In fact, there is considerable experimental evidence indicating
that systemic inflammation causes disruptive effects on the blood
brain barrier BBB, facilitating the entry of inflammatory factors
into the brain, a process implicated in the pathogenesis of
neurodegeneration (83, 84) (Figure 1).

The disruptive processes of the BBB that allow the entry of
inflammatory factors into the CNS have been related to altered
states of the intestinal microbiota. In 2014, a study showed
that germ-free mice showed increased permeability of their
BBB, compared to mice with normal gut flora, and a lower
permeability of the barrier could be restored by a recolonization
of the normal microbiota (85). In fact, eubiosis helps keep
intestinal intercellular junctions intact, favoring a correct @
control of intestinal permeability, which prevents the entry of
proinflammatory substances into the bloodstream (86). However,
dysbiosis increases permeability, giving rise to a dysfunctional
intestinal barrier and culminating in an inflammatory process
that compromises the integrity of the BBB (87), and, therefore,
facilitates the onset of neurodegenerative processes.

Other studies have also suggested a relationship between
alterations in the intestinal microbiota and neuroinflammation.
Inflammatory neurodegeneration could be triggered by the
activation of the pro-inflammatory nuclear factor κB (NF-kB)
by lipopolysaccharides produced by Bacteroidetes species (88).
Also, the induction of cerebral amyloidosis in patients with AD
has been related to an inflammatory process due to an imbalance
between proinflammatory bacteria (Escherichia and Shigella) to
the detriment of beneficial species, mainly Escherichia rectale.
Likewise, the reduction of proinflammatory cytokines has been
related to the presence of anti-inflammatory intestinal bacteria in
patients with dementia and amyloidosis (89).

Kim et al. (90) showed that the gut microbiota of mice with
amyloid disease and neurofibrillary tangles had a loss of epithelial

barrier integrity in addition to gut inflammation. Interestingly,
transplantation of fecal microbiota from healthy wild-type mice
to diseased mice reduced the formation of β-amyloid plaques and
neurofibrillary tangles, glial reactivity, and cognitive impairment
and also reversed abnormalities in colonic gene expression
related to the activity of intestinal macrophages and circulating
inflammatory monocytes in the blood (90).

Using transgenic animals, other researchers have shown
that fecal microbiota transplantation reduces amyloid plaques,
inflammatory markers, and improves neuroplasticity and
cognitive aspects (91). Therefore, modulation of the gut
microbiota by probiotics and fecal microbiota transplantation
interventions is relevant to protect the host’s cognitive behavior,
an effect in which the reduction of neuroinflammation is
involved (92).

For a recent review on the role of the microbiota in
neuroinflammation and synaptic dysfunction in AD see, e.g.,
Bairamian et al. (41).

MICROBIOTA AND OXIDATIVE STRESS IN
AD

Oxidative stress leads to increased inflammation through
mitochondrial destruction and activation of astrocytes by reactive
oxygen species (ROS) (93). According to the oxidative stress
theory, neuronal death in AD is due to an imbalance between
ROS production and clearance. Thus, the excessive concentration
of ROS acts on the membranes of neuronal cells, causing a
change in permeability and, consequently, an alteration in cell
communication and neuronal signal transduction through a
deregulation of calcium influx (94, 95).

In addition to this loss of neuronal synapses, oxidative stress
contributes to the pathogenesis of AD through participation
in the process of abnormal proteolytic cleavage of APP with
production and deposition of the β-amyloid substance, formation
of senile plaques, and hyperphosphorylation of tau protein (96,
97). In this way, oxidative stress contributes not only to the onset
of AD, but also to the progression and severity of the disease (98).
Recently, the importance of oxidative stress in the pathogenesis,
diagnosis and monitoring of various neurodegenerative diseases,
including AD, has been reviewed (99, 100).

Thus, the regulation of oxidative stress could play an
important role in the control of these diseases. In this
sense, the maintenance of eubiosis can play a prominent
role. In fact, intestinal microbiota plays an important role
in regulating oxidative stress. Gastrointestinal bacteria such
as lactobacilli and bifidobacteria can convert nitrate and
nitrite into nitric oxide (NO) (101). Moreover, species such
as streptomycetes and bacilli synthesize NO from L-arginine
through the enzyme NO synthase (NOS) (102). NO is essential in
the transmission of information from the noradrenergic enteric
nervous system, besides being excreted by the glutamatergic
stimulus via activation of NMDA receptors. Although it has
an essential role in neuroprotection, exacerbated NO levels
can also cause oxidative stress, culminating in apoptotic cell
damage and axonal degeneration (103). In this sense, intestinal
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eubiosis is important, since its ability to stimulate microglia
leads to increased production of inducible NOS (iNOS),
increasing NO production and helping to maintain immune
balance (104, 105).

Recently, we have demonstrated that synbiotic kefir
supplementation in elderly AD patients improves cognitive
dysfunction on specific tests, with benefits related to
memory, language, executive functions, visuospatial function,
conceptualization, and abstraction skills. This outcome was
observed with an increased NO and a reduction in protein
oxidation and ROS levels (106).

MICROBIOTA AND HYPERACTIVATION OF
THE HYPOTHALAMIC-PITUITARY-
ADRENAL AXIS BY STRESS

Chronic stress is a physiological adaptive response of the
organism to external events that can cause some harm
to the individual and a risk factor for the development
of neurodegenerative diseases, including AD. In fact, a
neuroadaptive response to sustained and chronic stress
causes immunological and neuroendocrine imbalance,
increases inflammatory activity, and generates behavioral
and psychological changes (107–109).

The hypothalamic-pituitary-adrenal (HPA) axis regulates the
response to acute and chronic stressors, such as sedentary
lifestyle, altered circadian rhythm, alcohol abuse, and exposure
to noisy environments (110–112). The HPA axis responds
to stress with the production of corticotrophin-releasing
hormone (CRH) by the hypothalamus. CRH stimulates the
pituitary gland to produce adrenocorticotrophic hormone
(ACTH), which, in turn, acts on the adrenal glands to
release cortisol (113). Persistent overactivation of the HPA
axis leads to neuroinflammation, neuroendocrine dysfunction,
hippocampal atrophy, and consequently cognitive deficits and
neuropsychiatric symptoms (114, 115).

While chronically elevated cortisol levels negatively affect
brain function, activation of the HPA axis also modifies the
composition of the gut microbiota, causing dysbiosis (116).
Treatment with prebiotics containing fructooligosaccharides and
galactooligosaccharides had antidepressant and anxiolytic effects
associated with reduced levels of corticosteroids caused by stress
(117). Accordingly, recent studies have shown that a treatment
with fructooligosaccharides could ameliorate the cognitive
impairment and neuropathology change, as well as alleviate Aβ

accumulation in the brain of the APP/PS1 double transgenic
mice model of AD (118, 119). Similarly, galactooligosaccharides
have been reported to reverse cognitive behavioral impairment
in APP/PS1 mice, as well as reduce their levels of depression
(120). In addition, the intake of lactobacilli was related to the
improvement of cognitive parameters and the decrease in serum
corticosterone levels (121).

A probiotic formulation consisting of Bifidobacterium longum
1714 given to 22 healthy male volunteers was able to
mitigate increases in cortisol levels and subjective anxiety in
response to an acute stressor. In addition, there was also an

improvement in hippocampal-dependent visuospatial memory
performance and changes in brain activity, as assessed by
electroencephalography (122).

In another clinical study, the consumption of a probiotic
formulation composed of Lactobacillus helveticus R0052 and
Bifidobacterium longum R0175 in combination mitigated
psychological distress without showing adverse effects,
demonstrating the role of intestinal flora in stress, anxiety
and depression (123).

Finally, germ-free mice exhibited higher levels of ACTH and
corticosterone compared to the control group in response to
restraint stress. This effect was fully reversed after reconstitution
with Bifidobacterium infantis (124). Thus, the interaction of the
intestinal microbiota was verified as an important factor in the
stress response of the HPA axis.

CONCLUSION AND EXPECTED
FORTHCOMING ADVANCES

The gut microbiota is associated with functions that extend to the
local gastrointestinal context, but are related to the modulation
of important endocrine, metabolic, immunological, and neural
pathways in the body. The existence of the microbiota-brain-
gut axis demonstrates how crucial the maintenance of eubiosis
is for brain homeostasis. In the context of AD, the intestinal
microbiota plays a key role in microglial activation, neurogenesis,
and BBB permeability.

Scientific evidence indicates that intestinal dysbiosis causes a
neuroinflammatory cascade, changes in membrane permeability,
in addition to worsening β-amyloid protein aggregation and tau
protein hyperphosphorylation.

This article aimed at a narrative review of new knowledge
and more recent evidence on the relationship between the brain-
microbiota axis and the neuropsychiatric symptoms of AD.
Greater efforts should be made to obtain scientific data for
the development of therapeutic interventions consisting of the
modulation of the intestinal microbiota that provide satisfactory
clinical results and an improvement in the quality of life of
patients with AD.
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