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The SLC2A9 gene, that encodes a renal uric acid reuptake transporter, has genetic
variants that explain ∼3% of variance in urate levels. There are previous reports
of non-additive interaction between SLC2A9 genotype and environmental factors
which influence urate control. Therefore, our aim was to further investigate the
general phenomenon that such non-additive interactions contribute to genotype-
specific association with variance at SLC2A9. Data from 14135 European individuals
were used in this analysis. The measure of variance was derived from a ranked inverse
normal transformation of residuals obtained by regressing known urate-influencing
factors (sex, age, and body mass index) against urate. Variant rs6449173 showed the
most significant effect on serum urate variance at SLC2A9 (P = 7.9 × 10−14), which was
maintained after accounting for the effect on average serum urate levels (P = 0.022).
Noting the stronger effect in a sub-cohort that consisted of pre-menopausal women
and younger men, the participants were stratified into males and pre-menopausal and
post-menopausal women. This revealed a strong effect on variance in pre-menopausal
women (P = 3.7 × 10−5) with a weak effect in post-menopausal women (P = 0.032) and
no effect in men (P = 0.22). The T-allele of rs6449173, which associates with increased
urate levels, was associated with the greater variance in urate. There was a non-additive
interaction between rs6449173 genotype and female gender in control of serum urate
levels that was driven by a greater increase in urate levels associated with the T-allele
in women. Female hormones, and/or other factors they influence or are associated
with (such as iron levels, temperature, testosterone) interact with SLC2A9 genotype
in women to determine urate levels. The association of SLC2A9 with greater variance in
pre-menopausal women may reflect the cyclical changes resulting from menstruation.

Keywords: genotype, exposure, interaction, urate, SLC2A9, variance, gout, uric acid

INTRODUCTION

Heterogeneity in genetic variance exists when the effect a genotype has on phenotype is influenced
by external factors. Such factors include differing environmental exposures, internal factors (such
as epistatic interactions with other genetic variants), or other biological phenomena. An example of
the latter are the stochastic processes underlying photoreceptor choice of cone cells in developing
tri-chromatic vision or increased variation with aging within individuals of a given genotype
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(Jacobs, 2009; Paré et al., 2010; Geiler-Samerotte et al., 2013).
In humans, genotypic control of phenotypic variability has been
demonstrated for FTO/IRX3 in body mass index (BMI; Yang
et al., 2012), LEPR in C-reactive protein levels and ICAM1 and
PNPLA3 in soluble ICAM1 levels (Paré et al., 2010). A total of
23 genome-wide significant variance expression quantitative trait
loci single nucleotide polymorphisms (SNPs) have been reported
in lymphoblastoid cell lines, of which ∼70% could be attributed
to non-additive gene by environment (GxE) interactions (Brown
et al., 2014).

Urate is a medically important metabolite. Elevated serum
urate (hyperuricemia) is a central cause of gout, the most
common form of inflammatory arthritis characterized by severe
pain, disability, and joint damage. A genome-wide association
study (GWAS) has demonstrated that levels of serum urate are
influenced by genetic variants in 28 loci, with the strongest effects
observed in renal and gut transporters of uric acid (Köttgen et al.,
2013). In particular, variants in SLC2A9 have a very large effect
on urate levels (e.g., rs12498742) and gout [e.g., rs11942223; in
strong linkage disequilibrium (LD) with rs12498742], explaining
2–3% of the variance in serum urate in European individuals and
a substantially stronger effect in women than in men (Hollis-
Moffatt et al., 2009; Köttgen et al., 2013). Sex is the strongest
reported interacting variable with SLC2A9 genotype to control
urate levels (P = 8.2 × 10−6 for sex, P = 0.02–0.03 for age
and alcohol intake, P > 0.38 for BMI, diabetes and hypertension
status; Voruganti et al., 2014).

In addition, non-additive interactions between SLC2A9
genetic variants, food items, and diuretic medication have been
reported. The influence of diet and diuretic medication on
serum urate is well-established. Use of diuretics and consumption
of seafood, red meat, alcohol and sugar-sweetened beverage
(SSB) and tomatoes all associate with increased urate and
the risk of gout (Choi and Curhan, 2004, 2008; Choi et al.,
2004a,b, 2005, 2008, 2012; Rasheed et al., 2013; Batt et al.,
2014; Flynn et al., 2015). Non-additive interaction between
rs6449173 (in strong LD with rs12498742 and rs11942223)

genotype at SLC2A9 and SSB consumption in control of serum
urate and risk of gout has been reported (Batt et al., 2014).
A similar interaction between rs6449213 genotype (in strong
LD with rs6449173) and alcohol has been reported in American
Indian individuals (Voruganti et al., 2014). There is evidence
that SLC2A9 (rs13129697) and SLC22A11 (rs2078267) genotype
interact with diuretics to determine the risk of gout (McAdams-
DeMarco et al., 2013), although this was not replicated in a
larger study (Bao et al., 2015). Whilst these findings require
further validation, the data suggest that non-additive gene–
environment interactions are involved in control of urate levels
at SLC2A9. Such interactions are important to understand in
order to increase insight into the molecular pathogenesis of
hyperuricemia.

To further investigate non-additive interactions between
SLC2A9 genotype and environmental exposures in control of
urate levels and risk of gout a series of classical interaction tests
focused on putative instrinsic and extrinsic interactors could
be conducted as has been performed previously (McAdams-
DeMarco et al., 2013; Batt et al., 2014; Voruganti et al., 2014).
Alternatively, because an interacting genotype would be expected
to result in larger variance (Paré et al., 2010; Struchalin et al.,
2010), a single dimensional analysis for genotypes influencing
phenotypic variance could be used. Therefore, the aim of
this study was to test for association with variance in serum
urate at SLC2A9 and potentially identify other environmental
interactions with SLC2A9 in serum urate.

MATERIALS AND METHODS

Participants
Participants of European ancestry were included from
five separate sample sets (Table 1). Two were from the
Atherosclerosis Risk in Communities study (ARIC; n = 5362)
and the Framingham Heart Study (FHS Generation 3; n = 3282)
from which people taking antihypertensive or urate-lowering

TABLE 1 | Demographic and clinical details of the three data sets, and associations of clinical features with serum urate concentrations.

FHS ARIC ARIC
diuretics

CARDIA CHS
r2∧ r2 r2 r2 r2

Serum urate
(SD), mmol/L

0.308 (0.086) – 0.332 (0.080) – 0.398 (0.097) – 0.284 (0.087) – 0.328 (0.087) –

Age (SD), years 39.4 (8.64) 8.51 × 10−5 53.5 (5.58) 0.0062 55.9 (5.55) 0.015 40.7 (3.33) 4.55 × 10−5 72.4 (5.47) 4.75 × 10−4

Females, % (n) 53.8 (1765) 0.44 54.2 (2903) 0.29 65.7 (786) 0.15 53.7 (803) 0.39 61.1 (1710) 0.11

BMI (SD),
kg/m2

26.4 (5.18) 0.16 26.0 (4.33) 0.14 29.2 (5.71) 0.070 27.1 (5.85) 0.14 26.2 (4.42) 0.088

Post-
menopausal
women, % (n)∗

9.0 (159) 0.0066 49.8 (1447) 0.022 51.0 (401) 0.017 5.2 (42) 0.0050 89.4 (1528) –

PC1 – 3.04 × 10−5 – 1.82 × 10−5 – 3.75 × 10−5 – 7.69 × 10−7 – 6.84 × 10−5

PC2 – 1.48 × 10−4 – 4.56 × 10−5 – 1.44 × 10−4 – 5.93 × 10−6 – 2.25 × 10−4

∗Excluding 90 FHS, 942 ARIC, 266 ARIC diuretic, 234 CARDIA, and 182 CHS participants for which menopausal status was unknown, intermediate or were receiving
hormone replacement therapy. The r2 value is the proportion of variance in urate explained by menopause in women with known menopause status.
∧r2 values, representing the proportion of variance in serum urate explained by the variable, were obtained by linear regression of urate against the variable listed, using
the lm function in R, and extracting the Multiple R2 value from the output summary.
SD, standard deviation; PC, principal component.
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FIGURE 1 | LocusZoom view of association of 5544 variants at the SLC2A9 locus with variance, unadjusted for effect on mean urate level.

medication, or who self-reported physician-diagnosed kidney
disease or gout were excluded. Two were from the Coronary
Artery Risk Development in Young Adults study (CARDIA;
n= 1496) and the Cardiovascular Health Study (CHS; n= 2799),
from which individuals taking urate-lowering medication
and who self-reported physician-diagnosed kidney disease or
gout were excluded. ARIC individuals self-reporting as taking
diuretics (n = 1196) were also included as the fifth sample set.
No individuals were excluded based on estimated glomerular
filtration rate (eGFR) – there were 47 (0.33%) individuals with
eGFR < 30, 46 of whom were from CHS and one from ARIC.
The research procedures were in accordance with the ethical
standards of the institutional review boards relevant to the
various data sets. Written informed consent was given by all
participants. The ARIC, FHS, CHS, and CARDIA analyses
(project #834) were approved by the relevant Database of
Genotype and Phenotype1 Data Access Committees. The overall
project was approved by the New Zealand Health and Disability
Ethics Committee (ref: 05/10/130).

Phenotypes
Phenotypes from baseline exams were used for all studies with
the exception of CARDIA, where phenotypes from exam six
were used. For the total 7967 European female participants
menopause status was determined by self-report. Those who were
pregnant, breastfeeding, taking hormone replacement therapy,
or did not report menopause status were excluded from the
menopause analysis. Subjects who reported as post-menopausal,

1http://www.ncbi.nlm.nih.gov/gap

but had menstruated in the last 12 months were also excluded
from the menopause analysis. Serum urate levels were measured
using a standard uricase assay (precision value of 8.6%)
in the ARIC and CARDIA datasets (Henry et al., 1957;
ARIC Investigators, 1989; Dyer et al., 1999). CHS used a
Kodak Ektachem 700 analyzer with reagents (Eastman Kodak,
Rochester, NY, USA), which had a coefficient of variation of
2.4% (Cushman et al., 1995). A phosphotungstic acid reagent
autoanalyzer was used to measure serum urate levels in the
FHS data set participants (Crowley, 1964). This method has
a precision value of 2.8% (Henry et al., 1957; Crowley,
1964).

Genotypes
Publicly available genome-wide genotype data (Affymetrix 6.0)
from the ARIC and CARDIA data sets, combined Affymetrix
50K and 500K platform data from the FHS data set and CHS
genotypes imputed from Illumina Human CNV370v1 was used
to impute the full SLC2A9 region (±200 kb) using Impute2
version 2.3.0 with the 1000 Genomes Phase 1 integrated variant
set phased with SHAPEIT2 as the reference haplotype panel
(Delaneau et al., 2014).

Statistical Analysis
Analysis was done using the R statistical software package
(version 3.22). R code is presented in Supplementary Table S1.

The variable used as a measure of variance was derived
from residuals obtained from sex- and cohort-specific analysis

2http://www.R-project.org/
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regressing age and BMI (BMI causally affects urate levels
Lyngdoh et al., 2012; Palmer et al., 2013). The top two
principal component eigenvectors (calculated using default
parameters with SMARTPCA Patterson et al., 2006) were also
included to account for cryptic relatedness within sample
sets. A ranked inverse normal transformation of the absolute
residual values yielded the z-score, with the z2-score being
the variance variable. The inverse normal transformation, while
likely to be overly conservative, minimizes a possible mean-
variance relationship of phenotype (Yang et al., 2012). To
account for the influence of the mean effect of rs6449173
genotype on the variance effect, using the approach of Yang
et al. (2012), the genotype-specific mean urate was subtracted
from the urate level of each individual participant and the
genotype effect on variance was retested on squared residuals
as described above. Data sets were combined by inverse-
variance weighted meta-analysis in R (meta version 4.2-03) using
a fixed effects model, except where there was evidence for
heterogeneity (PHet < 0.05) whereupon a random effects model
was used.

Interaction analysis betweenmenopausal status and rs6449173
was conducted using the R lm function with a linear model
regressing urate against age, BMI, rs6449173 allele, menopausal
status and the interaction term between menopause and
rs6449173 allele. Post-menopausal and pre-menopausal women
were compared to men (as the referent group) in separate models
and the effect of the interaction term reported.

RESULTS

Analysis of all SLC2A9 variants within ±200 kb of the gene
for association with variance in serum urate levels resulted
in a single association peak (Figure 1). We chose to analyze
SNP rs6449173 which is one of a large number (n = 136) of
SNPs (Supplementary Figure S1) in a haplotype block including
the variant (rs12498742, r2 = 0.96 with rs6449173) previously
reported as most strongly associated with average serum urate
by GWAS (Köttgen et al., 2013). Rs6449173 demonstrated
the strongest effect on serum urate variance at this locus
(Figure 1; Table 2; βT allele = −0.152, P = 7.9 × 10−14).
The initial region-wide analysis (Figure 1) was unadjusted
for the possible confounding effect of genotype-specific mean
urate levels. After adjustment of the mean effect the genotype-
specific effect on the variance was reduced in magnitude, and
the direction of effect was reversed, with the major T allele
associated with greater variance in urate (βT allele = 0.047,
P = 0.022).

The adjusted variance effect was statistically significant only
in the CARDIA data set (Table 2; β = 0.208, P = 7.3 × 10−4;
all other European sample sets β ≤ 0.043, P ≥ 0.14).
Noting that this sample set was comprised entirely of younger
individuals (Table 1; men and predominantly pre-menopausal
woman); noting that the effect of SLC2A9 on average urate
levels is stronger in women (Köttgen et al., 2013); and

3http://CRAN.R-project.org/package=meta

TABLE 2 | The influence of accounting for the rs6449173 average effect on
the estimated serum urate variance effect.

N β∗ SE P

ARIC 5356

Mean effect 0.023 0.002 8.7 × 10−56

Unadjusted variance effect −0.153 0.033 4.1 × 10−6

Adjusted variance effect 0.024 0.033 0.47

FHS 3282

Mean effect 0.023 0.002 2.7 × 10−38

Unadjusted variance effect −0.192 0.042 5.8 × 10−6

Adjusted variance effect 0.063 0.043 0.14

ARIC diuretics 1196

Mean effect 0.031 0.004 2.5 × 10−12

Unadjusted variance effect −0.117 0.073 0.11

Adjusted variance effect 0.043 0.073 0.56

CHS 2799

Mean effect 0.023 0.003 2.0 × 10−19

Unadjusted variance effect −0.156 0.045 4.7 × 10−4

Adjusted variance effect −0.016 0.045 0.72

CARDIA 1496

Mean effect 0.026 0.003 2.6 × 10−22

Unadjusted variance effect −0.079 0.062 0.20

Adjusted variance effect 0.208 0.061 7.3 × 10−4

Combined 14129

Mean effect 0.024 0.00095 4.7 × 10−140

Unadjusted variance effect −0.152 0.020 7.9 × 10−14

Adjusted variance effect 0.047 0.020 0.022

∗Mean effect units mmol/L urate; variance effect is estimate of allelic additive effect
on z2.

noting the association of menopause with serum urate levels
(Hak and Choi, 2008) we therefore reanalyzed the SLC2A9
genotype effect on variance in men and pre-menopausal and
post-menopausal women separately. This revealed that the
variance effect was stronger in pre-menopausal women in the
combined sample set (Table 3; β = 0.191, P = 3.7 × 10−5)
than post-menopausal women (β = 0.087, P = 0.032) or
men (β = −0.038, P = 0.22). The variance effect was
visualized using box plots (Figure 2). This showed that
increased median z2-scores and increased standard deviation
were observed with the TT-genotype and decreased median
z2-scores and standard deviation were associated with the
GG genotype in pre-menopausal women. This effect was less
obvious in post-menopausal women and was not observed in
men.

The hypothesis that there was non-additive interaction
between genotype and female hormone status in determining
serum urate (adjusting for age and BMI) was evaluated. Men
and post-menopausal women have similar estrogen levels and
estrogen has a similar paracrine role, not acting solely as
an endocrine factor produced by the ovaries in each group
(Khosla et al., 1998; Simpson and Davis, 2001). We therefore
expected pre-menopausal women to have an interaction effect
of greater magnitude than post-menopausal women (when
both groups are compared to men), reflective of the variance
results. However, allelic interaction terms were of approximately
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TABLE 3 | Association of rs6449173 genotype with serum urate variance in sample sets stratified into men, pre-menopausal women and
post-menopausal women, with adjustment for rs6449173 mean effect.

N Variance β∗ SE P r2 #

ARIC Total 5356 0.024 0.033 0.47 0.00010

Men 2453 −0.053 0.050 0.28 0.00047

Pre-menopausal women 515 0.188 0.105 0.074 0.00624

Post-menopausal women 1447 0.083 0.063 0.19 0.00119

FHS Total 3282 0.063 0.043 0.14 0.00067

Men 1517 −0.008 0.063 0.89 0.00001

Pre-menopausal women 1513 0.165 0.062 7.6 × 10−3 0.00470

Post-menopausal women 159 −0.015 0.187 0.93 0.00004

ARIC diuretics Total 1196 0.043 0.073 0.56 0.00029

Men 410 −0.088 0.126 0.49 0.00119

Pre-menopausal women 90 0.430 0.271 0.12 0.02811

Post-menopausal women 401 0.102 0.128 0.43 0.00159

CHS Total 2799 −0.016 0.045 0.72 0.00005

Men 1089 −0.121 0.073 0.097 0.00253

Pre-menopausal women 0 – – – –

Post-menopausal women 1528 0.093 0.062 0.13 0.00150

CARDIA Total 1496 0.208 0.061 7.3 × 10−4 0.00762

Men 693 0.112 0.092 0.23 0.00211

Pre-menopausal women 527 0.231 0.100 0.022 0.00997

Post-menopausal women 42 0.269 0.369 0.47 0.01304

Combined∧ Total 14129 0.047 0.020 0.022 0.00037

Men 6162 −0.038 0.031 0.22 0.00024

Pre-menopausal women 2645 0.191 0.046 3.7 × 10−5 0.00637

Post-menopausal women 3577 0.087 0.040 0.032 0.00129

∗Variance effect is estimate of allelic additive effect on z2
.

∧Combined by meta-analysis using a fixed effects model.
# r2 values, representing the proportion of variance in variance in serum urate explained by rs6449173, were obtained by linear regression of the adjusted z2 score against
rs6449173 using the lm function in R, and extracting the Multiple R2 value from the output summary.

equal effect for both pre-menopausal and post-menopausal
women as compared to men (βInteraction = 0.013 mmol/L,
P = 2.4 × 10−6 and βInteraction = 0.012 mmol/L, P = 3.5 × 10−6,
respectively). This effect was driven by a greater increase in
serum urate levels when the T allele is present in pre-menopausal
women (βTT – βGG = 0.075) and post-menopausal women
(βTT – βGG = 0.065) compared to men (βTT – βGG = 0.038;
Table 4).

We included an interaction term in the variance model
(adjusted for mean effect) resulting in βInteraction = 0.228,
P = 4.49 × 10−5 for pre-menopausal women and
βInteraction = 0.125, P = 0.015 for post-menopausal women,
both with men as referent group. In this model, for pre-
menopausal women the proportion of variance (r2) in
phenotypic variance explained by adding the interaction
term increased from 0.00018 to 0.0021 and in post-menopausal
women increased from 0.000011 to 0.00062. The increase in
r2 indicates that non-additive interaction with menopausal
status also contributes to the observed association between
rs6449173 and variance in urate levels. This interaction is
stronger in pre-menopausal than post-menopausal women.
This phenomenon is separate to the non-additive interaction
between rs6449173 and sex per se in determining mean urate
levels (Table 4).

DISCUSSION

We present evidence that the SLC2A9 genotype associated
with average serum urate levels also differentially associates
with variance in urate levels in pre-menopausal women. This
may reflect the cyclical changes resulting from menstruation.
There was also non-additive interaction between sex and
SLC2A9 in determining urate levels, replicating the findings
of Voruganti et al. (2014). We interpret these findings to
indicate that the intrinsic biological phenomenon of female
hormones (which change upon menopause) and/or other
factors that they directly affect (such as temperature, iron
levels, testosterone) interact with SLC2A9 genotype in a non-
additive fashion in women to determine urate levels. The
effect of the rs6449173 T-allele in raising urate is greater in
women.

Our data can be compared to the findings of Yang et al.
(2012) who associated FTO/IRX3with genotype-specific variance
in BMI. This locus, like SLC2A9, has the strongest mean effect
size on phenotype in the genome. At the FTO SNP rs7202116
the allelic effect on average phenotype did not contribute
to the observed effect on variance, in contrast with SLC2A9
rs6449173where the allelic effect onmean phenotype contributed
considerably to the genotype-specific association with variance

Frontiers in Genetics | www.frontiersin.org 5 October 2015 | Volume 6 | Article 313

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


Topless et al. SLC2A9 and phenotypic variability in serum urate

FIGURE 2 | Main effect adjusted z2-scores at rs6449173. The genotype-specific median (standard deviation) z2 for men was GG 0.439 (1.458), GT 0.487
(1.443), TT 0.441 (1.380), for post-menopausal women was GG 0.411 (1.103), GT 0.465 (1.304), TT 0.451 (1.470), and for pre-menopausal women was GG 0.408
(0.891), GT 0.373 (1.215), TT 0.507 (1.514).

in phenotype. Stratifying the sample set in our study clarified
the analysis and clearly showed a genotype-specific effect on
variance in urate in pre-menopausal women after accounting for
the average effect. While a number of changes occur throughout
the menstrual cycle (e.g., iron levels, temperature, estrogen
and progesterone levels) the factors with the most evidence
supporting a role in urate control are iron levels (Ghio et al.,
2005; Mainous et al., 2011) and hormones. Female hormones
(estrogens) increase the fractional excretion of uric acid and
reduce serum urate levels (Yahyaoui et al., 2008). Our data are
consistent with a model whereby female hormones contribute
directly via SLC2A9 in a genotype-specific fashion both to the
mean urate levels and variance in urate levels. In animals estrogen
reduces renal urate reabsorption by reducing Slc2a9 protein
levels (Takiue et al., 2011), so it is conceivable that in human
females estrogen could contribute to the SLC2A9-mediatedmean

effect by a rs6449173 genotype-specific effect on expression of
SLC2A9.

In pre-menopausal women urate levels vary across the
menstrual cycle with endogenous estradiol associated with
reduced, and follicle stimulating hormone associated with
increased, urate (Mumford et al., 2013). Thus, also in a
genotype specific manner, female hormones would be expected
to contribute to variance potentially owing to the cyclical changes
in levels of female hormones in pre-menopausal women or other
factors influenced or associated with menstrual cycling in pre-
menopausal women (e.g., oral contraceptive use Stöckl et al.,
2012). Whilst estrogen levels in post-menopausal women are
more similar to levels in men than pre-menopausal women
(Khosla et al., 1998), and serum urate levels rise to levels
approximately equivalent to those of men after menopause, the
data in Table 4 suggest that post-menopausal women and men

TABLE 4 | Association by linear regression and interaction of rs6449173 genotype with average serum urate levels in pre-menopausal women and
post-menopausal women and men stratified by genotype.

rs6449173 genotype GG β (mmol/L), P GT β (mmol/L), P TT β (mmol/L), P Interaction term
βinteraction (mmol/L), P

Men 0.000 (Reference) 0.021, 1.9 × 10−4 0.038, 2.1 × 10−15 0.000 (Reference)

Post-menopausal women −0.088, <2.0 × 10−16 −0.047, <2.0 × 10−16 −0.023, 6.1 × 10−6 0.012, 3.51 × 10−6

Pre-menopausal women −0.135, <2.0 × 10−16 −0.090, <2.0 × 10−16 −0.060, <2.0 × 10−16 0.013, 2.37 × 10−6

Adjusted by age and BMI.
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still control serum urate levels differently. However we were
unable to test for a direct interaction between female hormone
levels and SLC2A9 genotype. Owing to the use of cross-sectional
data we were also unable to test for any genotype-specific effect
on intra-individual variability in pre-menopausal women. Such
a study would allow some evaluation of the hypothesis that
SLC2A9 genotype interacts non-additively with female hormones
or another variable factor associated with menstruation.

The association with variance was largely restricted to pre-
menopausal women. There is epidemiological evidence from
cross-sectional observational data that menopause associates
(independent of measured confounders) with increased urate,
that post-menopausal hormone replacement therapy associates
with reduced urate (Simon et al., 2006; Hak and Choi, 2008;
Stöckl et al., 2012) and that estrogen levels are inversely associated
with urate levels during the menstrual cycle (Mumford et al.,
2013). This is consistent with clinical studies demonstrating a
urate-lowering effect of hormone replacement therapy (Nicholls
et al., 1973; Gotfredsen et al., 1983; Sumino et al., 1999),
however, there is little definitive evidence that this effect occurs
through an influence on renal uric acid handling (Nicholls
et al., 1973; Gotfredsen et al., 1983; Antón et al., 1986; Ghio
et al., 2005). The increased urate-associated TT genotype of
rs6449173 drives the association with variance in urate in
European pre-menopausal women (Figure 2), suggesting that
understanding the molecular consequence of the genetic effect
that this allele tags is key to understanding the mechanism for
the observed genotype-specific effects of SLC2A9 on average
urate and variability in urate. To this end, determining if
rs6449173 is in fact associated with the separate SLC2A9 isoforms
(full length and missing 28 cytoplasmic residues), as published
data suggest (Döring et al., 2008; Vitart et al., 2008), will be
important.

There are multiple independent effects at SLC2A9 with
the urate association signal at SLC2A9 encompassing 100s of
extremely strongly associated genetic variants over a very large
region (500 kb; Köttgen et al., 2013). In a GWAS of serum
urate levels in East Asians (Okada et al., 2012), the strongest
genome-wide association with urate was at SLC2A9, but with a
different SNP variant (rs3775948). The most strongly associated
European variant [rs12498742, in strong LD (r2 = 0.86) with
rs6449173; Köttgen et al., 2013] was not associated in the East
Asian GWAS probably because of the rarity of the minor allele
(prevalence of ∼1%). Interestingly the rs3775948 mean effect
in East Asians also has, by conditional analysis, an effect in
Europeans independent of the European mean effect (Stahl et al.,
2014). Furthermore, a GWAS testing for association of common
copy number variation with serum urate in Europeans (Scharpf
et al., 2014) found association with two copy number variations
200 and 350 kb upstream of SLC2A9 that were each genetically
independent of the rs12498742 effect at SLC2A9. Thus there is
evidence for at least three independent variants in SLC2A9 that
influence urate levels in Europeans, and a separate variant in East
Asians. The study of Wei et al. (2014) is consistent with the above
studies in providing evidence for multiple independent genetic
effects at the SLC2A9 locus – five independent genetic effects were
reported. Additional complexity in genetic control of urate levels

at SLC2A9was revealed with epistasis between genetic variants at
the SLC2A9 locus influencing urate levels. [Note that rs6449173
and SNPs in strong LD were not amongst SNP pairs in Wei et al.
(2014) exhibiting epistasis.] Combined with the evidence here
for a genotype-dependent effect at SLC2A9 on variance, previous
reports of non-additive GxE interaction at SLC2A9 (McAdams-
DeMarco et al., 2013; Batt et al., 2014; Voruganti et al., 2014)
and evidence for a population-specific influence of genotype to
fructose response (Dalbeth et al., 2013), it is clear that this is
an extremely complex urate and gout locus that will be very
challenging to understand using genetic epidemiology.

The contribution of non-additive GxE interactions to the
phenomenon of ‘missing’ heritability (predicted genetic variance
not explained by genome-wide studies assessing the contribution
of common genetic variants) is unclear, although it has been
suggested that a failure to include the possibility of interactions
in an inheritance model can lead to over-estimation of the
genetic heritability of a phenotype (Manolio et al., 2009; Zuk
et al., 2012). Urate levels are an ideal phenotype to address
this question given that there are established dietary and drug
environmental exposures (see Introduction) that have relatively
immediate temporal effects on urate levels via hepatic production
and perhaps also by interfering with excretion (Dalbeth and
Merriman, 2013; Batt et al., 2014). This means that data
on environmental exposures that are likely causal of changes
in urate levels are able to be collected at the same time
as phenotype in cross-sectional study designs. To facilitate
identification of non-additive GxE interactions, systematically
identifying genetic variants with a genotype-specific effect on
variance in phenotype, in genome-wide approaches using very
large sample sets and accounting for the average effect, can
prioritize variants that can be tested for non-additive GxE with
specific environmental exposures in linear and logistic models
that incorporate interaction terms. Furthermore, identification
of variance-associated genetic variants could allow identification
of new urate loci which may have average main effects obscured
in genome-wide studies that do not incorporate environmental
exposures.
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