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Phospholipase A2 group VI (PLA2G6)-associated neurodegeneration (PLAN) includes a

series of neurodegenerative diseases that result from the mutations in PLA2G6. PLAN

has genetic and clinical heterogeneity, with different mutation sites, mutation types and

ethnicities and its clinical phenotype is different. The clinical phenotypes and genotypes

of PLAN are closely intertwined and vary widely. PLA2G6 encodes a group of VIA

calcium-independent phospholipase A2 proteins (iPLA2β), an enzyme involved in lipid

metabolism. According to the age of onset and progressive clinical features, PLAN can

be classified into the following subtypes: infantile neuroaxonal dystrophy (INAD), atypical

neuroaxonal dystrophy (ANAD) and parkinsonian syndrome which contains adult onset

dystonia parkinsonism (DP) and autosomal recessive early-onset parkinsonism (AREP).

In this review, we present an overview of PLA2G6-associated neurodegeneration in the

context of current research.
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INTRODUCTION

PLA2G6-associated neurodegeneration (PLAN) is a complex group of neurodegenerative diseases
that result from mutations in a gene known as PLA2G6. According to the age of onset and
clinical features, PLAN can be mainly classified into four subtypes: infantile neuroaxonal dystrophy
(INAD), atypical neuroaxonal dystrophy (ANAD), adult-onset dystonia-parkinsonism (DP) and
autosomal recessive early-onset parkinsonism (AREP). The onset of INAD and ANAD occurs in
childhood and these diseases manifest as progressive psychomotor deterioration, axial dystonia,
spasticity, and ataxia, as well as optic atrophy in some children. Cerebellar cortical atrophy and
iron deposition in the globus pallidus and substantia nigra can be detected by Magnetic Resonance
Imaging (MRI) in most patients (1, 2). Past research has suggested that PLAN can be classified
as neurodegeneration with brain iron accumulation II (NBIA II) (3, 4). However, although there
is a phenotypical intersection between NBIA and PLAN, we propose that neither disease can
completely include the other. The onset of DP and AREP occurs in adulthood and patients often
have normal birth, achieve early age mile-stones and have a normal childhood. Patients with DP
or AREP show clinical manifestations of parkinsonian syndrome. These patients are characterized
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by bradykinesia and tremors with occurrence of dystonia, in
addition to cognitive regression as well as gait instability.
Some symptoms are similar to those of parkinsonism, but
cerebellar cortical atrophy and iron deposition do not occur in
these patients. A high clinical variability is exhibited in these
phenotypes, but age of onset and clinical manifestations are the
main criteria used to make distinctions between the subtypes of
PLAN.

In 2006, the PLA2G6 gene was initially cloned in two
unrelated Israeli INAD families, both of which included
consanguineous marriages (5). In 2010, for the first time,
the PLA2G6 gene mutation was associated with parkinsonism
(6). At present, the pathogenesis of the PLA2G6 mutation in
neurodegenerative diseases remains unclear. Different mutations
and even mutations at the same site may cause phenotypic
disparities. For example, the presence of pathogenic PLA2G6
gene mutation sites (p. D331Y) reported in AREP patients
can be associated with a 70% decrease in enzyme activity
(7), and the (His597fx69) frameshift mutation can cause the
activity of enzymes to differ from previous cases (8). Here, we
speculate whether different mutations can result in the diversity
of enzymatic activity, thus causing different clinical phenotypes.
In this review, we demonstrate clinical phenotypes with different
genotypes in PLAN and discuss the underlying relationships
of these symptoms with evidence from genetic studies, with
a primary focus on the clinical manifestations and genotypic
features supported by neuropsychology research, neuroimaging
and molecular genetics. Finally, we explore the link between
phenotypes and genotypes for PLAN in the light of current
PLA2G6 gene research.

THE CLINICAL PHENOTYPES OF
PLA2G6-ASSOCIATED
NEURODEGENERATION

The most common phenotype of the PLA2G6 gene mutation
is NBIA II. PLAN mainly includes INAD, ANAD, and
two other diseases are present in parkinsonian syndrome,
DP and AREP (9). In addition, some patients present
sporadic parkinsonism similar to AREP, known as sporadic
early-onset parkinsonism (EOP) (10). PLA2G6 mutations
that cause phenotypical clinical characteristics are shown
in Table 1. Moreover, these mutations are associated with
hypothyroidism, schizophrenia, diabetes and other diseases (11–
13). On magnetic resonance images, most patients carrying
the PLA2G6 mutation showed an iron accumulation in the
globus pallidus and/or the substantia nigra in T2-weighted
images (13, 14). In pathological examinations of individuals
with the PLA2G6 mutation, abnormal α-synuclein proteins
and hyperphosphorylation of tau proteins were found, and
may progress to become Lewy bodies (LBs), neurofibrillary
tangles and neuropil threads (15, 16). Neuronal biopsies of
patients’ central nervous systems and peripheral nervous systems
tissue provided evidence of the presence of axonal distension,
swellings and spheroid bodies (17). In other cases, brain tissue
sections with Perl’s staining showed iron deposition in the

globus pallidus or substantia nigra (18), and oculogyric crises
were also found in PLAN patients (19). Here, we describe the
clinical features of several PLA2G6-associated neurodegenerative
diseases.

Infantile Neuroaxonal Dystrophy (INAD)
INAD was first discovered and described by Seitelberger in 1952,
and was initially known as Seitelberger’s disease (20). INAD is
an autosomal recessive neurodegenerative disease (20). The age
of onset is around 2 years old, mostly occurring before the age
of 18 (21). Before the onset of the disease, compared to normal
infants, some patients may present a delay in psychomotor
development, while most cases present no indication (22). This
rare neurological disease is mainly characterized by progressive
psychomotor deterioration, truncal hypotonia, cerebellar ataxia,
extrapyramidal signs, and early visual failure caused by optic
atrophy. Generalized fast rhythms are frequently observed
in electroencephalogram (EEG) and seizures may also occur
(5, 13, 23–25). Patients often show slight psychomotor and
dystonia disorders during infancy and childhood. The other
clinical manifestations are bilateral limb spasticity, bulbar signs
(impaired swallowing and dyspnoea), pendular nystagmus,
strabismus, distal contractures, optic atrophy, and hearing
impairment (2, 18, 26–30). Cognitive impairment might also be
observed in the disease evaluations. In most INAD cases, an
MRI shows signs of iron accumulation in the globus pallidus
and/or the substantia nigra (21). At the early stages of the
disease, the MRI might not detect the iron accumulation, but as
the disease progresses, iron accumulation can often be detected
by the MRI between the ages of 3 and 25 years old (18).
Another typical sign of INAD is a fast progression of cerebellar
atrophy, which is shown by the MRI (31). In addition, some
MRIs also show thin optic chiasma, signal hyperintensity of the
dentate nuclei and white matter, and cerebral cortical atrophy
(32). An electromyography (EMG) also shows denervation in
the peripheral nervous system (29), and an EEG can reveal
the widespread high-amplitude fast activity at 16–22Hz after
2 years of age (33). Visual evoked potentials (VEPs) and
electroretinograms (ERGs) appear normal in the early stage of the
disease, followed by an increase in abnormal signs over time (27).
In a Chinese population, axonal spheroids were discovered in the
biopsy specimens of skin and sural nerves among ten patients
with INAD (34). In addition, neuroimaging showed cerebellar
atrophy occurring in the early stages of INAD, but not in other
late-onset diseases. Most patients with INAD have progressively
worsening symptoms throughout infancy and early childhood
and have a shorter survival period (2, 34). The main features of
the pathology are axon spheroids and vacuoles, which are widely
present in the central and peripheral nervous systems. Brain
tissue pathology can also reveal the presence of iron deposits
in the bilateral basal ganglia and globus pallidus (35), as well
as phosphorylated α-synuclein-positive LBs. Phosphorylated tau-
positive neurofibrillary tangles can also be found in some cases
(16). Currently, there are no effective treatments, only palliative
methods that can relieve symptoms and prevent secondary
complications.
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TABLE 1 | Summary of the clinical features in the PLA2G6-associated neurodegeneration.

INAD ANAD DP AREP

Age of onset 6 months to 3-year-old Early childhood to juvenescent phase 20-40 years old Below 40 years old

Progression Rapid Slower than INAD Slow Slow

Initial symptoms Psychomotor deterioration Cerebellar ataxia Parkinsonism Parkinsonism

Main clinical

symptoms

Tetraparesis, truncal hypotonia, limbo

dystonia, mental deterioration,

cerebellar ataxia, spasticity, optic

atrophy, epilepsy

Psychomotor regression, seizure, gait

instability, autism, dystonia,

dysarthria, eye movement

abnormalities, epilepsy

Bradykinesia, tremor,

dystonia, gait instability,

rigidity, cognitive

deterioration, psychiatric

symptoms

Bradykinesia, rigidity, tremor

Important signs Cerebellar ataxia,

hypotonia,hyporeflexia, nystagmus,

strabismus

Cerebellar ataxia, hypermyotonia Hypermyotonia,

extrapyramidal signs

Hypermyotonia (especially in

lower limbs)

Brain MRI/image

signs

Brain iron accumulation in the two

sides of globus pallidus and

substantia nigra, cerebellar atrophy

Brain iron accumulation in the two

sides of basal ganglia, cerebellar

atrophy

A substantial reduction in

dat

A substantial reduction in

dat

EEG Generalized fast rhythms Abnormal rhythms None None

Pathology Neuroaxonal swellings and spheroid

bodies, Lewy body,

hyperphosphorylated-tau

The loss of Purkinje cell in cerebellum,

hyperphospholipase-tau, Lewy body

None None

Lifetime Short Longer than INAD Longer Longer

Treatment Symptomatic treatment Symptomatic treatment Dopaminergic agents Dopaminergic agents

Clinical features of the PLAN presented in this review.

INAD, Infantile neuroaxonal dystrophy; ANAD, Atypical neuroaxonal dystrophy; DP, adult-onset dystonia-parkinsonism; AREP, autosomal recessive early-onset parkinsonism; EEG,

electroencephalogram; DAT, dopamine transporter.

Atypical Neuroaxonal Dystrophy (ANAD)
ANAD is another subtype of PLAN, with atypical clinical
characteristics. When the onset of the PLA2G6 mutation occurs
later, the phenotype may be atypical. Different from INAD, the
age of onset for ANAD ranges from 3 years old to the late teens.
Before the onset of clinical symptoms, motor and intelligence
development is relatively normal in these patients (16). Patient
symptoms include ataxia, rigidity, spasticity, dystonia, and
even myoclonic epilepsy. ANAD is also associated with mental
impairment and often visual failure. Some patients develop
symptoms before 3 years of age, similar to classical INAD, but
neurological deterioration during the course of the disease is
often delayed (26). In some cases, an MRI can reveal advanced
cerebellar atrophy and iron accumulation in the substantia nigra
(18, 21), albeit the absence of cerebellar ataxia (36). Iron deposits
in the substantia nigra are present in some atypical cases (15, 21),
but it is not a universal feature of PLAN. The majority of late-
onset cases lack signs of iron accumulation, and MRIs may
even appear completely normal. Other cases may show cortical
atrophy or white matter changes; for instance, in one study,
obvious cerebellar atrophy was detected during head imaging
examination and the bilateral basal ganglia showed signs of
iron deposition (2). Pathological examination also revealed the
loss of the cerebellar Purkinje cells, the deposition of highly
phosphorylated tau proteins that formed neurofibrillary tangles
and the deposition of phosphorylated α-synuclein that formed
LBs (16). Compared to patients with INAD, patients with ANAD
present a slower progression and longer survival times (37). The
treatment of ANAD is similar to that of INAD.

PARKINSONIAN SYNDROME IN PLAN

Adult-Onset Dystonia-Parkinsonism (DP)
From the perspective of onset age, DP differs from INAD or
ANAD, with a much later onset, occurring from 20 to 40 years
old, and exhibiting some typical symptoms, including marked
cognitive impairment and some parkinsonian manifestations,
such as bradykinesia, ataxia, limb tremors, dystonia, dysarthria,
and epilepsy (38, 39). Moreover, oculogyric crises are induced by
levodopa in some cases (40). In addition to motor disturbances,
non-motor symptoms, such as depression and other adolescent-
like behavior changes are observed in DP (41). An MRI of
patients with DP reveals some abnormal signals from the frontal
lobe, corresponding to severe cognitive impairment. Compared
with the MRI results observed in patients with INAD, the MRI
results of patients with DP exhibit a rate and degree of severity
of iron accumulation and cerebellum atrophy, indicating that
these features play a minor role in the manifestation of DP (39,
42). The disease progresses rapidly in patients and is effectively
treated with levodopa or polyamine receptor agonists. Patients
will often temporarily have dyskinesia after treatment with dopa
preparations (6, 38, 43).

Autosomal Recessive Early-Onset
Parkinsonism (AREP)
Based on our previous study, the PLA2G6 gene was confirmed
to be associated with AREP (7). Patients with PLA2G6-related
AREP exhibited tremors and bradykinesia in the lower limbs,
postural instability and hypomimia. Additionally, cerebellar
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FIGURE 1 | Identified mutation sites of PLA2G6 gene. (A) There are 17 exons of the PLA2G6 gene, and mutation sites were distributed on the exons. (B)

Schematic representation in scale of the full-length iPLA2β protein with functional regions and position of the variant protein. The mutations which cause

dystonia-parkinsonism, previously identified by others, are shown above. 1–7 = ankyrin repeat region. The position of calmodulin domains and motifs was provided by

https://www.uniprot.org/uniprot/O60733. Red, INAD; Blue, ANAD; Green, DP; Yellow, NBIA; Purple, parkinsonian syndrome.

ataxia and autonomic dysfunction were recognized in the
late stages of the disease. In the MRI, no evidence of
iron deposition was found on T2-weighted images. Levodopa
treatment can also be beneficial to AREP patients. In recent
years, the PLA2G6 mutation was found to be closely related
to sporadic early-onset parkinsonism (EOP) (6). Unlike AREP,
the genetic characterization of EOP is sporadic. The age
of onset of EOP is around 20 years old. The disease
is characterized by extrapyramidal signs, cognitive decline,
dystonia, dysarthria/dysphonia, swallowing problems, limb
tremors and abnormal gait, which are sensitive to dopaminergic
agents. The MRIs of EOP patients may show iron accumulations

in the brain but not in all individuals; frontal lobe and general
white matter atrophy can also be observed (44). EEG and EMG
examinations are normal in some individuals. Epileptic seizures

also occur during the progression of the disease. Currently, some
researchers believe that the PLA2G6 mutation is not a major
risk factor for Parkinson’s disease in Asian populations (45–
47). Moreover, patients with EOP are sensitive to dopamine
treatment.

In addition to DP and AREP, there is also a new view
regarding the link between PLAN and hereditary spastic
paraplegia (HSP). Reports from different countries show
that some clinical symptoms of patients with PLAN do
not solely include those related to parkinsonian syndrome
(48, 49). The clinical features of these patients are mental
retardation, extrapyramidal symptoms, lower limb spasticity,

cerebellar ataxia, and peripheral neuropathy. Thin corpus callosa
and iron accumulations can also be found on MRI images
(48, 50).
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THE GENOTYPES OF
PLA2G6—ASSOCIATED
NEURODEGENERATION

PLA2G6 mutations have both clinical and genetic heterogeneity.
Patients have different types of PLA2G6 mutations, including
missense mutations, truncation mutations, and copy number
variations. Individuals carrying the PLA2G6 mutation can
also have different clinical phenotypes depending on specific
genotypic features. The previous reported mutation sites of
PLA2G6 are listed in Figure 1 (1, 2, 6–8, 13, 15–18, 22, 23, 30, 34,
38, 41–43, 45, 47, 51–69). Reportedly, in two PLA2G6 mutation
families, all three patients carried PLA2G6 mutations (p.R632W)
but presented different clinical manifestations than previously
reported (13, 43). Shi et al. (7) also suggested that the incomplete
loss of enzymatic activity causes AREP.Moreover, expansive copy
number variants (CNVs) have been detected in the development
of PLAN (27, 57). The crystal structure of iPLA2β is complex,
and the different mutation sites are disparately located on the
enzyme (70). According to previous studies, mutation sites in
the ankyrin repeat (AR) domains, catalytic(CAT) domains, or
any other domains may lead to different enzyme activities. We
speculate that the coincident mutation of PLAN may initiate
the pathological mechanisms. The pivotal factor that affects the
relationships between mutations and clinical phenotypes may be
enzyme activity. However, more cases are needed to clarify the
relationships between genotypes and phenotypes of PLA2G6.

GENETIC FUNCTION OF PLA2G6

The PLA2G6 gene is located on 22q13.11 (71), with 17
exons. The protein, encoded by PLA2G6, is a member
of the A2 phospholipase family (PLA2), known as group
VI calcium-independent phospholipase A2 (iPLA2β). It is
an enzyme functioning in inflammation, immune responses,
cell proliferation, apoptosis and remodeling of membrane
phospholipids (36, 72).

iPLA2β is an intracellular and calcium ion-independent
protein. This protein was first isolated from the P388D1 cell line
and described in 1994 (73). iPLA2β contains 806 amino acids;
human iPLA2β is 88 KDa and contains an N-terminal domain,
ARs domain and CAT domains (70, 74, 75). The iPLA2β protein
encoded by the PLA2G6 gene is an important lipase in the human
body which is widely distributed in the tissues of human organs
(http://www.proteinatlas.org). In the human brain, iPLA2β

is highly expressed in the substantia nigra, cortex and the
hippocampus (76–78). iPLA2β can hydrolyse the sn-2 acyl chain
of phospholipids and the major decomposition products are
docosahexaenoic acid (DHA) and lysophospholipids (75). Under
the action of cyclooxygenase and lipoxygenase, DHA produces
neuroprotectin D1 (NPD1), and NPD1 plays a crucial role
in anti-inflammatory processes and immune responses in the
brain (79, 80). NPD1 is specifically involved in the catabolism
of fatty acids and arachidonic acid (AA)-related inflammatory
reactions (81, 82). iPLA2β exerts an anti-inflammatory function
through the action of NPD1, against AA, and has a protective

effect on cells in inflammatory reactions. The loss of iPLA2β’s
function may affect proteins and processes normally involved
in regulating the movement of membranes within axons and
dendrites, subsequently leading to mitochondrial abnormalities
and synaptic transmission impairment (83–86). Moreover,
animal models of PLA2G6 showed neurodegeneration (87)
and revealed that iPLA2β is closely related to dopaminergic
cells, axonal development (88), endoplasmic reticulum stress,
mitophagy impairment (89), and changes in Ca(2+) signaling
(90). Thus, these animals provide great disease models for PLAN.

iPLA2β is associated with a variety of diseases and
medical emergencies, including strokes, spinal cord injuries and
neurodegenerative diseases (91–93). However, the pathogenesis
of PLA2G6 in neurodegenerative diseases remains unclear and
the function of iPLA2β, resulting from different mutation sites
and types, may be the vital factor. It was reported that pathogenic
PLA2G6 gene mutation sites (p.A341T, p.G517C) in patients
with INAD\NBIA can cause significant decreases in enzymatic
activity (94). Moreover, the activity of iPLA2β was reduced by
70% compared to normal functioning, owing to the p.D331Y
homozygous mutation (7) and the (His597fx69) frameshift
mutation, making the activity of enzymes <6% compared to
that of WT iPLA2β (8). Differential enzymatic activity caused by
multifarious mutations may be a key factor in explaining the high
clinical variability in PLAN.

CONCLUSION

PLA2G6 mutations have both genotypic and phenotypic
heterogeneity. Here, we summarized the major subtypes of
PLAN and analyzed their potential relationships. Mutated forms
of PLA2G6 include missense mutations, truncated mutants,
fragment deletions, and CNVs. Individuals carrying different
PLA2G6 mutations may also display varied clinical symptoms.
The subtypes of PLA2G6 mutation-related disorders are INAD,
ANAD, DP, and AREP, with distinct characteristics associated
with each disorder. In recent years, HSP has also been found to
be associated with the PLA2G6 gene mutations. Some mutation
sites of HSP also coincide with the mutation sites of the
previous four phenotypes. Whether HSP can be considered a
PLAN phenotype requires additional research. In the cases of
INAD/ANAD, an MRI exhibited iron accumulation in the basal
ganglia and globus pallidus, as well as abnormal α-synuclein
and hyperphosphorylation of tau proteins in brain tissues, while
other cases had relatively moderate MRI features. Moreover, α-
synuclein and neurofibrillary tangles pathologies indicate that
PLAN may be consistent with idiopathic Parkinson’s disease
(iPD) to some extent. Interestingly, the view that later onset cases
tend to have less tau involvement but still severe α-synuclein
pathology may need further discussion. (3, 15, 16, 95).

The link between the phenotypes and genotypes of PLAN
suggests that different mutation sites lead to various protein
activities. Mutation sites in different domains, for example, ARs
or the CAT domains, may have different effects to physiological
processes. Based on a previously described case, a PLA2G6
gene mutation site can result in patients presenting several
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different phenotypes. Potentially, enzyme activity as well as DNA
methylation, synergistic genetic processes, or environmental
factors may participate in the pathogenesis of PLAN. Based on
the information presented in Figure 1, we speculate that there
is no obvious rule for mutation site distribution of PLAN, but
further studies are required to clarify why there is no mutation
localized in exon 9 and whether the mutations can be categorized
according to the 3D structure of iPLA2β (70).

In recent decades, the study on PLA2G6-related disorders
has been performed in terms of pathogenesis and iPLA2β

function, which provides hope of a detailed understanding of this
disease. iPLA2β is a vital protein involved in immune responses,
inflammatory processes, fatty acid metabolism, oxidative stress,
and apoptosis, which may be the pathogenic mechanisms
underlying the progression of neurodegenerative diseases.
iPLA2β is involved in the metabolism of DHA and NPD1,
which are closely related to human neurocognitive development
and anti-inflammatory properties, respectively (96). Whether
mental retardation manifesting in young children is caused
as a result of iPLA2β affecting the metabolism of DHA is
unclear; a better understanding would perhaps provide new

information regarding the treatment of PLAN. In addition,
iron metabolism may offer clues regarding disease therapy.
In summary, the features of PLAN may provide information
regarding the etiology of other neurodegenerative diseases.
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