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Abstract

Respiratory Syncytial Virus is a yearly respiratory virus that causes significant frequencies of morbidities, particularly in

the young and elderly populations. However, preventive vaccines and/or treatment therapies are generally lacking,

although much attention is now being placed on this virus. Moreover, there are now multiple strategies currently

being explored in a race to the first licensed vaccine. While vaccines are being developed, multiple treatment strategies

are being explored to attenuate the severity of infection and thus reduce hospitalization rates in vulnerable populations.

This review outlines current strategies to prevent or treat this virus in the hopes of reducing significant human morbidity

and mortality that occurs yearly with this seasonal virus.
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Introduction

Respiratory Syncytial Virus (RSV) is a serious respira-

tory infection that infects almost everyone by the age of

two.1 In fact, RSV accounts for more than 60% of

acute respiratory infections in children worldwide.2 In

healthy adults, symptoms are generally not severe,

often mimicking a bad cold or, in some cases, that of

the flu. However, in vulnerable populations such as

infants and the elderly, RSV causes almost 60,000 hos-

pitalizations in children under five, and the hospitali-

zation of 200,000 elderly people each year in the United

States3,4 alone. Children born before full gestation

(premies) are particularly prone to severe RSV mediat-

ed disease. This virus is adept at evading and counter-

ing the immune system and often leads to bronchiolitis,

an inflammation, and congestion of the airways,5 or

secondary bacterial infections like pneumonia or

more often as acute otitis media.6,7 The immune sys-

tems of the young and the elderly have limitations in

preventing the onset of these complications leading to

the higher disease severity in these populations.8,9

Bacterial pneumonia, for which RSV is not often cor-

rectly recognized as a significant viral catalyst unlike

flu, is attributable to RSV in 20.3% of children aged
younger than one year and 10.1% of children aged 1 to
2 years.7 Thus, development of effective therapeutics or
a vaccine would be significant for human health.
However, despite many years of trying, no licensed vac-
cine exists for this virus, and current therapies for
reducing viral pathogenesis are limited.

RSV is an enveloped negative-sense single-stranded
RNA virus of the family Pneumoviridae and the order
Mononegavirales. RSV has ten genes coding for 11
proteins in the following order: Ns1, Ns2, N, P, M,
SH, G, F, M2 (–1,–2), and L. To undergo successful
transcription, RSV requires its M2-1 protein, a tran-
scription elongation factor, in addition to the N, P, and
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L proteins. Other members of the Mononegavirales

order, such as its closest relatives metapneumovirus

and parainfluenza, only require the N, P, and L pro-

teins for this process. While only Ns1 and Ns2 have the

primary purpose of suppressing the immune system

(through interference of the type 1 interferon response,
TLR signaling, and adulteration of normal T helper

cell ratios), many of the other genes also interfere

with the antiviral response to varying degrees.10–17

Moreover, the G protein can be produced either in a

secreted or non-secreted form, with the former thought

to act as a decoy to prevent targeting of the RSV virion

by host antibodies.18 The SH protein is involved with

the modulation of TNF-a secretion from macrophages

under certain conditions.19,20 Many of the RSV pro-
teins are of interest in the development of targeted ther-

apies and vaccines. This article will discuss historical

and contemporary treatment approaches for RSV as

well as current immunogen designs to elicit durable

host immunity from vaccination.

RSV modeling limitations and the impact

on vaccine research and therapeutics

Although much is being discovered concerning RSV

protein pathogenicity, in vitro and in vivo models

pose another difficulty in RSV vaccine or therapy

development. To test preclinical vaccine candidates,

models must be developed and utilized to assess the

potential for vaccine enhanced respiratory disease or
vaccine-induced immunity.21 In vitro, RSV replicates

in a wide range of cell lines from various tissues and

hosts. HEp-2 cell line is most commonly used to grow

RSV; however, the purity of this cell line is unclear, so

replication in this line may be less suitable for the pro-

duction of virus used for in vivo applications. The can-

cerous nature and non-respiratory origin of several cell

lines are limitations for translating RSV treatments to

humans. To counter this, isolated human airway epi-

thelial cells grown at an air-liquid interface have been
used to adapt clinical RSV isolates to cell culture.

These cells contain pseudostratified, mucociliary

airway epithelium that is similar to the morphologic

and phenotypic characteristics of in vivo human carti-

laginous airway epithelium.22 However, these are still

cell culture models and limited in the complexity for

treating RSV in a human.
In vivo, animal models present an additional chal-

lenge. Viruses like bovine RSV and ovine RSV have

been identified in their respective species to model dis-

ease pathology and immune responses similar to

human RSV infections in children.22 Researchers

have been able to utilize these models to understand

the pathology and mechanisms of immunity towards

pneumovirus infections. This understanding has
helped serve as a way to evaluate human RSV vaccine
concepts during pre-clinical development.23 Although
beneficial, these models are genetically different from
humans in things such as antibody structures (i.e., long
CDR3 regions in cow antibodies or fewer antibody-
related genes in lambs and cows than humans).
Neonatal lambs have been challenged with human
RSV and have shown successful disease replication
that mirrors human infection. The similarity of size
and organization of airway and lymphoid tissue make
this model attractive, but lack of cell typing antibodies
and genetic sequencing tools, along with the complexity
of population maintenance, are pitfalls of human RSV
modeling in sheep.24

Other non-human primates and small animal mam-
malian models have also been explored. Chimpanzees
are currently a non-human primate model that is per-
missive to human RSV replication. ARLI (acute lower
respiratory tract infection) and SRLI (severe lower
respiratory tract infections) have not been induced in
this model. The genetic similarity and size of chimpan-
zees make then this an animal an attractive model, but
the ethical burden and economic resources required for
the logistical maintenance of small chimpanzee popu-
lations inhibits this model’s use.23,24 Other non-human
primates like African green monkeys, three species of
macaques (rhesus, cynomolgus, and bonnet monkeys),
owl monkeys, Cebus monkeys, and baboons have been
explored as models for human RSV with varying ben-
efits and limitations. Unlike chimpanzees, these non-
human primate species are semi-permissive to human
RSV replication, so their viral replication responses
were comparatively moderate to low to inoculum
levels. Often, clinical signs of disease did not develop
or were limited to mild symptoms. Pathology studies
were not done on all species models, but those reported
showed signs of broncho-interstitial pneumonia, alveo-
litis, and syncytium of cells. Vaccine-enhanced pathol-
ogy has been studied in African green monkeys and
macaque species, but limited vaccine-enhanced pathol-
ogy has been explored in the other non-human primate
species discussed.23

Small animal mammalian models mostly consist of
rodent species, including mice, rats, and to lesser
degrees ferrets, guinea pigs, Syrian hamsters, and chin-
chillas.23 The BALB/c mouse has been the most
common animal model for experimental human RSV
disease.24 This mouse model is semi-permissive and
shows intermediate susceptibility to human RSV infec-
tion. A high, >106 plaque-forming units (PFU), dose of
human RSV is required to produce clinical signs of
disease. Unlike clinical signs in humans that focus on
ARLI or SRLI, BALB/c mouse disease induced by
human RSV is measured as weight loss, ruffled fur,
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and hunched posture. Pathological sectioning of air-
ways must be done to measure the pulmonary manifes-
tation of human RSV with studies showing mild to
moderate bronchiolitis has been induced.23 The conve-
nience provided by the vast amount of genetic knowl-
edge and mouse-specific reagents and molecular tools
makes this model attractive. However, the innate and
adaptive immune response stimulated in BALB/c mice
differs significantly from humans and does not provide
sufficient antigenic modeling of human disease. The
anatomy and size of mice lungs also differ significantly
due to fewer bronchioles and less complex airway
branching that complicates disease monitoring when
compared to humans.24

An alternate rodent, the cotton rat, has proven to be
a good model. Although semi-permissive, this rat
model requires 104 PFU to induce ALRI, while peak
replication levels are nearly 100 fold higher than in
mouse models.22 Both URI and LRI have been moni-
tored in cotton rat models, and clearance of the virus
follows a similar timeline as in humans with clearance
happening by day seven post-infection. Pathologic sec-
tioning of the airways has shown mild to proliferative
bronchiolitis, sloughed epithelial cells, and patchy atel-
ectasis.23,24 The cotton rat model has become widely
used to evaluate the efficacy of vaccines, antivirals,
and neutralizing antibodies like palivizumab.24 It has
also been used to model alveolitis after FI human RSV
vaccination, as a model for enhanced respiratory dis-
ease (ERD). Although these uses are productive, the
extrapolation of vaccine results from this model to
show safety in higher mammals should be done with
discretion as complete protection stimulated against
human RSV in the cotton rat model has failed to
show the same efficacy in African green monkeys.23

Cotton rat care also adds an added difficulty due to
their fragile and easily agitated nature. Specialized
training is required for their care and handling, but
specific immunological reagents are being developed
to advance the usage of this model.24

Thus, there are a number of limitations of animal
models that creates difficulties in testing experimental
vaccines. Generally, rodents are used first to rule out
whether a vaccine fails to elicit antibodies. These vac-
cines then need to undergo additional testing in pri-
mate models to establish whether they have potential
protective efficacy. Only then do vaccines proceed into
human clinical trials since vaccine safety and not just
efficacy are important before testing in humans. Thus,
vaccine develop for RSV can be a very slow process.
For therapies, testing candidate treatments that show
efficacy in cell culture can also be difficult. Animal
models that have divergent replication kinetics can
make therapies that target the replication machinery
difficult. Limited viral replication or alternative

replication sites (i.e., lower versus upper airways)
could also lead to misleading efficacy rates using
animal models and trying to translate those findings
to human clinical trials.

Current treatment standards for RSV

While our understanding of RSV pathogenesis and
viral biology has increased over time, prevention of
the virus is still lacking with some years, often with
severe disease burdens. Treatment for RSV infection
is currently limited to supportive care and prophylactic
antibody use, with the latter only reserved for preemies.
For non-severe infections, treatment often follows that
of the common cold, bedrest and ensuring the individ-
ual stays hydrated with oral fluids.2 If the infection is
more severe, and the child’s oxygen saturation drops
below 90%, the patient is often given warm humidified
oxygen or intubation with supplemental oxygen.2

Infants who have a more severe RSV infection are
often at risk of aspirating food particles, and can be
placed on a feeding tube.2 Hypertonic saline has also
been used in hospitalized patients to improve mucocili-
ary clearance.2 Pharmacological agents like bronchodi-
lators or corticosteroids have been used to relieve RSV
symptoms, but efficacy has not been proven during
randomized controlled trials.25 In elderly populations
with chronic lung disease, inhaled and systemic cortico-
steroids are prescribed to relieve acute exacerbation
associated with wheezing and bronchospasm.26 This
practice has not been supported for infants during the
first year of life because of safety concerns regarding
corticosteroids’ effects on rapid lung growth during this
developmental time period.2,27

In at-risk groups like preemies or infants with com-
promised immune systems, a prophylactic neutralizing
antibody treatment (Palizumab) may be adminis-
tered.28 Palizumab, a humanized IgG monoclonal anti-
body developed by MedImmune, targets the F protein
in prefusion formation 29 and has been used since 1998.
The antibody targets the RSV F protein on the enve-
lopes of virions and prevents the virus from fusing with
a host cell, thus preventing entry and infection.29 The
therapy is currently recommended for preemies born
before 35weeks of gestation or for infants (<2 years
old) with chronic lung diseases or heart disease.2,28

This monoclonal must be given every month intramus-
cularly or intravenously in preemies27 and ideally
started before the beginning of the RSV season 29

although premies are often treated in the hospital
after evidence of infection by the virus. The use of
Palizumab is limited to at-risk groups, is expensive
($3,000 per vial), can still allow for breakthrough
cases of severe RSV infections,2,29–31 and is not effica-
cious for RSV prevention after two years of age.

Thornhill et al. 3



Attempts to design improved second generation

monoclonal therapies have been slow. Medimmune’s

next-generation candidate Motazumab reduces hospi-

talization rates due to RSV by 87%, does not clear

virus in treated infants, and can exhibit severe side

effects.32 Thus, development of third-generation mono-

clonal therapies is ongoing to increase the half-life of

these antibodies through protein engineering.
Ribavirin, a synthetic nucleoside analog, has broad

in vitro activity against many RNA and DNA viruses.

Approved for severe RSV infection therapy or

Hepatitis C infections, ribavirin only provides a

modest short-term improvement for RSV. Once sup-

ported for routine use in 1993 by the American

Academy of Pediatrics Committee on Infectious

Diseases, the committee changed its recommendation

for the use of Ribavirin to treat RSV in 1996 to ‘may be

considered’.33 In immunocompetent patients, RSV

infection is asymptomatic for the first 3–5 days post-

infection. During those first days, the virus reproduces

exponentially and reaches the lungs, causing respirato-

ry distress symptoms after 5–7 days.34 Administering

Ribavirin at this point, post-infection does not have a

large effect on the already disappearing RSV viral load,

and multiple randomized trials were not able to dem-

onstrate any short- or long-term benefits.2 Ribavirin’s

use has further significant drawbacks such as limiting

host defenses, prolonged hospitalization due to aerosol

administration, risks for potential toxicity, and high

cost.33 Thus, there is certainly a need for additional

therapeutics and especially efficacious vaccines to

cure or prevent this virus. We outline some of those

approaches next.

Vaccines in development

In the 1960s, a formalin-inactivated RSV vaccine was

produced and tested in humans but enhanced immuno-

pathology and was withdrawn from further testing.

Children given the vaccine had more severe sympto-

mology upon infection, including two deaths,35 likely

from a conformational change in the F vaccine immu-

nogen, creating low-avidity and non-protective anti-

bodies while polarizing the immune response toward

Th2 during infection. The non-protective antibodies

formed pathogenic immune complexes in the lung,

leading to complement activation and lung damage

when infected by the virus. This, combined with the

skewed Th2 response, triggered an excess of eosino-

phils, and neutrophils further exacerbated lung

damage.32 Thus, this vaccine set RSV vaccine develop-

ment back, and all current candidate vaccines are rig-

orously tested for signs of similar immune profiles.

Correlates of protection

Due to the heterogeneity of the RSV protein landscape

and models utilized for vaccine development, the cor-

relates of protection (CoP) against RSV infection and

disease have been difficult to determine. Due to the

nature of humoral immunity, there may be many inhib-

itory mechanisms responsible for antigenic neutraliza-

tion of RSV.36RSV-specific nasal IgA, a component of

mucosal antigenic memory, may be useful for establish-

ing CoP for infection. One study has shown that IgA

more strongly correlates with protection compared to

measurements of serum neutralizing antibody in

adults.37 This highlights the importance mucosal

immunity may play in RSV protection. The same

study also showed that rapidly waning IgA levels

caused individuals to be susceptible to RSV reinfection

within months. Upon reinfection, IgA producing

memory B cells were not significantly mobilized and

suggested a vaccine handicap that may need to be over-

come through dosage and administration strategies or

stimulation of enhanced immunologic memory. Other

definitive CoP may be vaccine-type specific. Times-rise

in antibody titer could be an indicator of B-cell prim-

ing, relevant for live-attenuated vaccines. This vaccine

type is targeted towards the naı̈ve pediatric immune

system because it generates replication of high amounts

of antigenic non-virulent material that stimulates a nat-

ural host immune system response.
Standardization of neutralizing assays is a consider-

able feat, and a recent PATH, WHO, and the National

Institute for Biological Standards and Control

(NIBSC) exercise examined 12 different neutralizing

assays in order to establish standardized neutralizing

antibody titers.36 This regulatory effort led to a new

RSV International Standard Antiserum with 1000 IU

of RSV subtype A neutralizing activity per vial avail-

able through NIBSC.21 Further standardization of

other immunological assays will need to be developed

in the future.
Besides humoral immunity, T cell-mediated immune

responses could act as a CoP. In cases of LTRI,

CD8 T cells are essential for viral clearance.21,38

Kulkarni et al. 36 suggest that “neutralizing antibodies

will likely serve as a CoP in infants and young children,

but in older adults, a CoP associated with CTL induced

virus clearance might be a better target.” Despite this

recommendation, measurements of Th1 and Th2

responses have been used as safety measures for most

RSV vaccine platforms due to their relationship with

ERD in children. High levels of Th2 are indicative that

ERD may be induced, and high levels of Th1 are indic-

ative of an appropriate immune response in vulnerable

populations. These indications only further support
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that establishing CoP will vary depending on vaccine

study, target age, and host immune factors.21,36

Vaccine strategies

There are currently multiple types of RSV vaccines

being pursued, specifically targeting populations of

pregnant women, infants, and elderly. Maternal vac-

cines have typically been targeted at women in their

third trimester so that the maternally generated anti-

bodies will be passed on to their offspring and likely

protect them from RSV infection after breastfeeding.

Many of these vaccines can be seen in PATH,39 which

shows their current status in clinical testing. We outline

a select few of these with others shown in Table 1. We

illustrate vaccine and therapy targets in relation to the

viral life cycle in Figure 1. A vast majority of these

vaccines are directed at the F protein, which the virus

requires for entry and is fairly well conserved between

strains and one that natural infection evokes neutraliz-

ing antibodies toward. However, the F protein

spontaneously cleaves from a pre-fusion form to a

post-fusion form either as a recombinant protein or

even on the virus itself. While neutralizing antibodies

to both forms can inhibit viral entry, the pre-fusion

targeted antibodies are thought to be more protective

in vivo. However, no vaccines have yet shown protec-

tion, though some have shown a reduction in sympto-

mology. In bovine trials using a pre-fusion F vaccine,

complete protection is achieved, although it should be

noted that cow’s antibodies are quite different from the

majority of human antibodies, characterized by their

long CDR3 regions that might better reach into

active receptor sites that tend to be heavily

glycosylated.

Live vaccines. There are a number of live vaccines under

development with the advantage that lung mucosal

immunization is possible with most of them. Often

deleting Ns2 or G protein or using another virus that

expresses RSV F protein are the most common live

Table 1. Overview of other RSV vaccine approaches.

Vaccine Type Phase Feature

Codagenix,LID/NAID/NIH (RSV) Live Attenuated PreClinical Uses SAVE (Synthetic Attenuated Virus

Engineering) to generate an artificially

created RSV strain

LID/NAID/NIH (PIV-3/RSV) Live Attenuated PreClinical Chimeric PIV virus expressing the RSV F

protein

Meissa Vaccines (RSV) Live Attenuated Phase 1 Trial Has Fast Track Designation, increased

thermostability, modified G region, and

deleted SH region

Artificial Cell Technologies

(Peptide microparticle)

Particle Based Discontinued Synthetic nanoparticle carrying RSV-G

peptide coupled with RSV T-cell target

antigens

Fraunhofer (VLP) Particle Based PreClinical Low-energy electron irradiation (LEEI)

used to inactivate virus, antigen conser-

vation above 70%

Icosavax (VLP) Particle Based PreClinical Expresses stabilized prefusion F protein

Georgia State University (VLP) Particle Based PreClinical Inactivated detergent-Split RSV exposes

epitopes

Sanofi (RSV F Nanoparticle) Particle Based PreClinical Expresses the F protein

Virometix (VLP) Particle Based PreClinical A Phase 1 trial with V-306 is beginning

University of Massachusetts (VLP) Particle Based PreClinical Viral Like Particle containing the matric of

New Castle Virus that expresses RSV G

and F ectodomains

Instituto de Salud Carlos III (RSV F) Subunit PreClinical Chimeric RSV F protein containing epito-

pes from hRSV and hMPV. Proof of

concept for chimeric F creation.

University of Georgia (RSV G) Subunit PreClinical Nanocapsule containing G peptides

University of Saskatchewan (RSV F) Subunit PreClinical Codon-optimized F formulated with poly

(I:C) and polyphosphazene

BravoVax (Adenovirus) Recombinant

Vectors

PreClinical Adenovirus expressing the RSV B strain full

length and truncated F protein

Vaxart (Adenovirus) Recombinant

Vectors

PreClinical Expresses the RSV F protein on an

adenovirus vector

Thornhill et al. 5



vaccines under development, although cold adaptive

RSV is also being explored. RSV replication is attenu-

ated when either of the Ns genes are deleted (Ns2 dele-

tion is less attenuating than Ns1 deletion), and the

same is true for deletion of G14,40 but only in vivo.

With the G protein, there are recorded cases of clinical

isolates obtained from infected individuals lacking the

G protein and still being virulent,41 and thus the effi-

cacy of these vaccines needs to be explored. Intravac is

currently testing a G deletion vaccine in phase 1 clinical

trials.42,43 Sanofi is currently testing three NS deletion

mutant vaccines in phase 1 and 2 clinical trials. Their

DNs2/D1313/I1314L vaccine was made through reverse

genetics with deletions to the Ns2 gene, codon 1313 in

the L polymerase, and a substitution of leucine for iso-

leucine at codon 1314. The 1313 deletion is intended to

assist in attenuation and to confer temperature sensi-

tivity to the polymerase, which is stabilized by the 1314

substitution.44 Their 6120/DNs2/1030s vaccine also has

a Ns2 deletion and a mutation to the L polymerase like

the DNs2/D1313/I1314L vaccine though the L muta-

tion is at a different nucleotide location it also is

intended to confer some temperature sensitivity to the

polymerase. This vaccine also contains a deletion in the

membrane pore protein SH.45 St. Jude’s RSV vaccine

candidate is also in phase 1 trials and is based on

expressing the RSV F protein in murine Sendai

virus.39,46 Finally, the Pontifica Universidad Catolica

de Chile is testing a mycobacterium bovis

Calmette-Guerin (BCG) vaccine that expresses RSV

N protein, which in mice decreased viral loads in the

lungs and protected from RSV-induced innate immune

cell damage.
Another recombinant RSV vaccine candidate from

Janssen Pharmaceutical uses adenovirus and is current-

ly being tested during phase two clinical trials

(NCT03339713) for efficacy in pediatric and elderly

populations. This vaccine uses the gene for the Pre-F

conformation as antigenic material. Results from a

phase 2 trial in the elderly showed lower RSV infection

and reduced disease severity over time.47,48 A follow-up

study is ongoing.49 The phase two clinical trial

(NCT03303625) for the pediatric targeted version of

the Janssen Pharmaceutical Adenovirus vaccine candi-

date is currently vaccinating 60 participants in two age

ranges: healthy adults 18–50 years old and RSV-

seropositive toddlers 12–24months old (Janssen

Vaccines). GlaxoSmithKline also has an adenovirus-

based RSV vaccine, but it differs from Janssen in that

it expresses RSV’s N and M2-1 proteins in addition to

a modified form of F.50,51

The other recombinant RSV vaccine candidate,

from Bavarian Nordic MVA, uses modified vaccinia

Ankara (MVA), a live-attenuated poxvirus derivative

as its recombinant vector. This RSV recombinant vac-

cine candidate utilizes genes for F, G (both RSV sub-

types), N, and M2 proteins as its antigenic material.21

Phase two interim (NCT02873286) results show the

Figure 1. Current vaccine and therapy targets and the location of their inhibition in the replication cycle of RSV are shown in context
of the RSV lifecycle. The vast majority of vaccines and therapies target F and its function as an entry protein.
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vaccine candidate is well tolerated and induces humoral
and T cell responses in older adults after a single vac-
cination. Planning has begun for the design of a phase
three study (Bavarian Nordic). However, the use of
even attenuated vaccinia in infants or the elderly may
pose an issue as well as if the need for booster vaccines
is needed to maintain immunity year after year.

Particle-based vaccines. In contrast, to live attenuated
vaccines, a number of groups are developing inacti-
vated, particle, or subunit vaccines. While unlikely to
induce similar levels of mucosal immunity as live vac-
cines, these immunogens would likely have better safety
characteristics in infants and the elderly. Moreover, the
same issues that have prevented Flumist, an attenuated
live flu vaccine, to be approved in children less than
two years of age or adults over 55 could similarly
restrict live vaccines from the populations. Thus,
particle-based vaccines may be preferred. An inacti-
vated RSV vaccine by Blue Willow Biologics uses a
nanoemulsion to inject a whole virion retaining
RSV’s native F antigen structure and has been shown
to induce strong Th1 and Th17 associated immunity in
mice and cotton rats.52

While there are several particle-based vaccines in
preclinical trials, Novavax has a RSV F nanoparticle
vaccine that entered phase 3 trials several times. This
aluminum adjuvanted nanoparticle expresses a modi-
fied version of the RSV F protein that exposes the anti-
genic sites, one being antigenic site two, which
Palizumab targets.53–55 The phase 3 trial is for a mater-
nal immunization vaccine and was tested on 4636 preg-
nant women who were in their third trimester had no
complications and were 18–40 years of age. The women
were in either a treatment or placebo group and were
vaccinated three months prior to the RSV season. The
vaccine was given via intramuscular injection. The pri-
mary objective was “Incidence of medically significant
RSV LRTI with either hypoxemia (SpO2< 95% at sea
level or <92% at altitudes >1800 meters) or tachypnea
in infants through 90 days of life with several secondary
objectives.53 Unfortunately, the phase 3 trials failed to
meet their primary objective of preventing medically
significant RSV LRTI through the first 90 days of
life. The vaccine did, however, show a reduction in
the amount of “all-cause” LRTI hospitalizations
(25%) and hypoxemia (39%).56 The vaccine appears
safe in infants and mothers, and Novavax intends to
move forward with additional attempts to license the
vaccine 56,57 in the near future.

Subunit vaccines. Another broad vaccine platform being
explored is the subunit vaccine type. This vaccine type
is targeted towards elderly and maternal populations.
Due to previous episodes of ERD elicited in animal

models following subunit vaccination, this vaccine plat-
form may be unsuitable for infant populations.58,59

Subunit vaccines utilize specific purified viral proteins
often paired with an adjuvant to elicit immunity. There
are currently several vaccine candidates in phase one of
clinical trials and one candidate in phase two. Four
candidates utilize the F protein as their antigenic mate-
rial. However, many of these candidate vaccines have
been withdrawn due to failure to meet endpoints of
protection . One recent late phase vaccine failure in
2016, MEDI-7510 (NCT02508194), a subunit vaccine
candidate utilizing a Post-F conformation as its anti-
genic material, was thought to have failed because the
antibodies generated in response lacked appropriate
epitope specificity when induced by Post-F. Another
company is using the G protein as the antigen in a
vaccine though it is still in the early stages.60,61

Nucleic acid vaccines. There have been a number of DNA
vaccines tested for RSV prevention,62–67 but they gen-
erally have not demonstrated enough efficacy in animal
models to advance toward human clinical trials or are
continuing to be tested in preclinical models. These
vaccines may have suffered from limited antibody
development toward F surface proteins and instead
favored CD8 T cell memory development. However,
most of the CD8 T cells are non-resident memory
and would be slow to prevent RSV infection in the
lungs. One vaccine that appears to generate good pro-
tective immunity in non-human primate models is
mRNA vaccine by Merck and Moderna, which
expresses the RSV F protein.68 mRNA vaccines may
have more favorable CoP than DNA vaccines, but the
long-term protective profile is unknown at this point.

Antiviral therapies in development

Many RSV therapies currently being investigated are
small molecule therapeutics that have been shown to
inhibit RSV replication, as highlighted further in the text
below or Table 2. TMC353121 is an RSV fusion inhibitor
that reduces viral replication and shedding in mice and
African Green monkeys when administered within
48hrs.69–71 TMC353121 doesn’t destroy the virus; it only
inhibits its entry and reduces inflammatory cytokine levels
caused byRSV. This effect is dose-dependent and requires
a lower dosage that is administered for palizumab
treatment to be effective.70,71

JNJ-53718678 is like TMC353121 in that they are
both RSV F fusion inhibitors, but they differ in that
JNJ-53718678 binds to a pocket in the prefusion form
of F and prevents it from cleaving into its active post
fusion conformation. JNJ-53718678 has specific activi-
ty towards RSV F and inhibits established RSV
infection in rodent and neonatal lamb

Thornhill et al. 7



models.72JNJ-53718678 is being tested in phase 2 clin-
ical trials. In a challenge study of participants aged 18–

45 who were mostly men, JNJ-53718678 reduced peak
viral load, severity of clinical symptoms, and duration

of viral shedding. No concerning adverse effects were
reported. The authors of the study acknowledge its

small sample size and plan to follow up with a larger
study.73 Currently, a phase 2 clinical trial is recruiting

participants aged 28 days to 3 years who have been hos-

pitalized or are receiving outpatient care due to a RSV
infection. The goals of this trial are to test the safety

and efficacy of JNJ-53718678 to reduce viral load, and
disease severity in RSV infected individuals.74

ALS-008176 is the bioavailable product of
ALS-008112, which is a cystidine nucleoside analog.

ALS-008176 enters the respiratory tract and has a

half-life of 29 hrs. It has been tested as a RSV inhibi-
tory molecule and inhibits RSV replication intracellu-

larly. A phase 2 trial was conducted in 2014 by Alios
Biopharma Inc to determine efficacy and pharmody-

namics in an RSV challenge model. The trial was
conducted in adult participants 18–50 years of age.

ALS-008176 was shown to be safe and to reduce viral
loads in this challenge study. There is also a phase 1

trial of infants who were hospitalized due to an RSV

infection, though results for this study do not appear to
have been published at this time.75–79

Another therapy approach highlighted on the
PATH Snapshot is the immune-prophylaxis/

combination platform focused on developing mAb
for passive immunity targeting the F protein.

Pharmaceutical companies MedImmune and Sanofi

have joined during the development of this prophylaxis
and indicated that pricing would emulate vaccine

markets.21

Conclusion

RSV is a dangerous respiratory pathogen that causes
thousands of hospitalizations and deaths each year.

Science has tried to combat RSV infection since the

‘60s, and yet little progress has been made. Care is
mostly supportive, and the prophylactic antibody
Palizumab is restricted in use and is expensive.
Vaccine development for RSV has been hampered by
the failed formalin-inactivated vaccine, which led to
increased RSV pathology and killed two toddlers.
While there are many vaccine candidates in the
works, few have made it to phase 3 testing, and none
have been market approved. The many approaches to
vaccine development from live attenuated to new nucle-
ic acid vaccines mean that there are many lessons to be
learned each day that may lead to a functional RSV
vaccine. Many vaccine candidates are focused on the
RSV F protein, and yet none have succeeded. New
therapy development for RSV treatment is limited,
and few pass the hurdle of positive results in human
trials. More research is needed into the regulatory
mechanisms and pathogenesis of RSV so that new tar-
gets can be identified.

RSV vaccine development has expanded in response
to the significant global disease burden. Although the
FI vaccine failure of 1966 hindered vaccine develop-
ment, progress has been made towards achieving a
viable human RSV vaccine. As the understanding of
the structure and pathogenicity of RSV proteins is
enhanced, vaccine developers can narrow their target
genetic material to more adequately stimulate a protec-
tive immune response balancing humoral and cellular
immunity. Once these targets are further developed, the
RSV vaccine field will need to continue to grow the
understanding of in vitro and in vivo models to ade-
quately test developing RSV vaccines. CoP can then be
established to act as a standard for future RSV vaccine
development. Current vaccine progress and failures
that result during clinical trials help broaden the scien-
tific understanding of immunity against RSV, and
many candidates currently in development have
shown promising results.

Although there is a significant amount of informa-
tion that evades vaccine/therapy developers today,
emerging knowledge and innovation will improve

Table 2. Overview of other therapies in development.

Therapy Target Purpose

MitoQ mtROS (mitochondria

reactive oxygen species)

Reduce disease severity from RSV induced mtROS

generation

siRNA Any RSV gene/mRNA Silence target gene/mRNA to inhibit virus replication

VEGF (Vascular Endothelial

Growth Factor)

Unknown Reduce disease severity, possibly through recruitment of

macrophages or modifications on epithelial cells

KI (Potassium Iodide) Generation of

hypoiodous acid

Reduction of disease severity and viral replication

through activation of the Duox/LPO system

Recombinant human CC10 Unknown Reduction of RSV M37 pneumonia

ALX-0171 F protein Inhibits RSV cell entry by binding to F

8 Antiviral Chemistry and Chemotherapy



current points of development and allow researchers to
maximize the effectiveness of their drug/vaccine candi-
dates. Moving forward, it appears based on the under-
standing of protein structure and pathogenicity that the
RSV vaccine development field is moving towards tar-
geting the F surface protein as opposed to the G sur-
face protein. While G protein may elicit a strong
antibody response, targeting F is supported by superior
F protein conservation between RSV strains.
Specificity for the F protein has also emerged with
the Pre-F conformation being targeted as opposed to
the widely used Post-F conformation. This shift should
elicit new information and has been supported through
the success of recent Pre-F conformation targeted can-
didates in the vaccine PATH Snapshot. However, some
pre-clinical vaccines are still targeting the G protein in
addition to F. Further defining CoP in the future will
help standardize the immune responses necessary for
generating complete immunity, especially in infants
and the elderly whose immune systems are limited com-
pared to adults. Development of a viable vaccine is
crucial to combatting worldwide RSV infection, but
better therapeutics would certainly help as we continue
to wait for an efficacious vaccine to be developed. A
more thorough understanding of RSV pathogenesis,
regulation, and lifecycle will lead to better model gen-
eration and foster the identification of additional viral
targets for next-generation therapies or vaccines. The
history of RSV vaccine development is full of disap-
pointments, but development continues onward, look-
ing to the future. With new techniques and
technologies arising every day, the lessons of the past
contribute to a future where a viable RSV vaccine may
appear on the horizon.
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