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Determining the specificity of transcription factors (TFs) is an important step in 

understanding regulatory networks and the effects of genetic variations on those networks. 

In recent years several high-throughput approaches have been developed to rapidly and 

efficiently determine the specificity of TFs1. One important issue that arises in the analysis 

of binding data is the complexity of the specificity model needed. It has important 

implications for both the characterization of specificity and for the prediction of the 

consequences of mutations. If the recognition mechanism is simple, then the specificity of a 

TF can be modeled by a small number of parameters and the effects of mutations are easily 

predictable. If recognition is complex, then models of TF specificity will require a large 

number of parameters and the effects of mutations will be difficult to predict. In the worst 

case, recognition is so complex that no patterns exist and predictions cannot be made. 

Structurally, TF-DNA interactions are complex with a wide variety of interactions between 

the protein and DNA making a simple recognition code impossible2. But energetically the 

situation appears much simpler, with individual base pairs often contributing approximately 

independently to the total binding energy. Although deviations from strict independence are 

common, the non-independent contributions tend to be of smaller magnitude compared to 

the independent contributions. This allows for simple models of interactions, such as 

position weight matrices (PWM)3, to be good approximations to the true binding energies. 

The physical intuition is that TF-DNA recognition is primarily based on complementarity 

between the sequence dependent positioning of hydrogen bond donors and acceptors in the 

grooves of the double helix and those on surface to the amino acid side chains of the TF. 

Since most mutations change the shape of this network of hydrogen bond donors and 

acceptors locally, their effects are also mostly local.

Protein binding microarray (PBM) is a technique that measures the binding of TFs to 

double-stranded DNA arrays that currently contain all possible 10-long binding sites and so 

provides enormous information about the specificity of the TF4,5. In a recent PBM study of 
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mouse TFs, Badis et al.6 observed that the energetics of TF-DNA recognition appears to be 

highly complex: 41 out of the 104 TFs studied had clear secondary binding preferences not 

captured by the primary PWM and 89 out of 104 TFs were better represented by a linear 

combination of multiple PWMs than a single PWM. However, Badis et al.6 used three 

different methods to obtain PWMs and showed that each method was superior to the others 

on some datasets, indicating that none of the methods can be optimal at determining the 

PWM parameters. As noted by Badis et al.6 it is possible that the insufficiency of their 

PWMs is not due to the complexity of TF-DNA recognition, but rather the algorithms used 

for parameter estimation. Before abandoning the idea that specificity can be largely 

explained with simple models, it is critical to assess the fitness of optimal PWMs.

In a typical PBM experiment, a purified, epitope-tagged TF is applied to a double-strand 

DNA microarray. The degree of binding to each probe on the microarray is quantified by the 

application of a labeled antibody specific to the epitope tag. In theory, signal intensity of a 

probe should be directly proportional to the probability of TF binding to the sequence of that 

probe. In practice, however, the relationship is not so straightforward due to a number of 

factors such as background signal, position effect and influence of flanking sequences. We 

have found that these factors significantly confound current analysis methods, such as 8mer 

enrichment analysis5 used by Badis et al.6 (see supplemental figures S2 and associated text 

for details).

We have taken a different approach: estimate the position and background effects from the 

data first, then perform weighted regression to parameterize a model of binding energy, 

explicitly taking these biases into account (see supplemental materials for details). This 

offers several benefits. First, using a model drastically reduces the number of parameters 

required: a 10-long PWM only requires 30 parameters. This represents a 1000 fold reduction 

over 8mer analysis6, which attempts to estimate TF affinity for all 8-long sequences. 

Second, having a model of specificity allows us to test hypotheses about the binding 

mechanism. For example, if the performance of the palindromic model, where the 

parameters of the half-sites are constrained to equal to each other, is comparable to the full 

model where all parameters are allowed to vary then it is likely that the TF binds DNA as a 

homodimer with no interactions between half-sites. An example of this analysis for yeast TF 

Pho4 is shown in supplemental figure S3. Third, all of the data are used to estimate each 

parameter, improving accuracy. Finally, by using a model to calculate TF binding 

probability for the entire probe, the influence of flanking sequence that confound the current 

analysis is explicitly included. Our algorithm, BEEML-PBM (Binding Energy Estimation by 

Maximum Likelihood for Protein Binding Microarrays) extends the existing algorithm 

BEEML7 to estimate models of TF specificity by weighted regression on PBM data. PBM 

signal intensity is modeled as a convolution of background effect, position effect and 

equilibrium binding probability to the probe sequence. Using BEEML-PBM, we find that 

the simple PWM model of specificity performs very well for most transcription factors. This 

simplicity has important implications for our understanding of the molecular basis of TF 

specificity and demonstrates the importance of the analysis method in the interpretation of 

high-throughput data. Although only PWMs are fitted here, higher order interactions can be 

easily incorporated into the energy model and their significance can be assessed by standard 

statistical methods8.
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We evaluate PWM performance by its ability to predict TF binding preferences on a 

different PBM design. PBM experiments are performed using two arrays with different 

probe sequences, but both contain all possible 10-long binding sites. We use the PWM 

trained on array 1 to predict array 2 probe intensities, and vice versa (see supplemental 

materials for details). While this gives us confidence that the performance achieved by 

BEEML-PBM PWMs is not due to overfitting to the training data, the fact that the arrays do 

not have the same probe sequences means we do not have a direct measure of the 

reproducibility of variations in probe intensities. For this reason, we conduct our analysis at 

the level of 8mer median intensities (the median intensity of all probes containing each 8-

long sequence). 8mer median intensities can be calculated for measured probe intensities of 

both array designs as well as PWM predicted probe intensities, which allows us to not only 

compare PWM predictions with experimental measurements, but also determine what 

fraction of reproducible variance of TF binding can be explained by the PWM model. 

Although 8mer median intensities are problematic as measures of binding affinity, they 

serve as a useful measure of how much of the observed sequence-dependent binding 

variation is experimentally reproducible. In supplemental materials we provide several 

examples of the PWMs obtained by BEEML-PBM and their assessment by various criteria. 

Here we focus on the finding that a single BEEML-PBM PWM is usually sufficient to 

provide excellent quantitative descriptions of PBM data. An example of this is shown in Fig. 

1 for mouse factor Plagl1 (pleomorphic adenoma gene-like 1), where the PWM estimated 

from replicate 1 performs very well on replicate 2 data (Figure 1A). By contrast, the primary 

PWM found by Badis et al.6 is unable to capture Plagl1 binding specificity (Figure 1B), 

leading them to the conclusion that multiple PWMs are required. The BEEML-PBM PWM 

is qualitatively different from the primary PWM identified by Badis et al.6 (Figure 1C); 

given the high level of performance achieved by a single BEEML-PBM PWM it is likely 

that the need for multiple PWMs identified by Badis et al.6 is due to suboptimal 

parameterization rather than the complexity of Plagl1 DNA recognition.

This holds true for most of the 41 TFs identified by Badis et al.6 as having clear secondary 

binding preferences. Figure 2A shows that in all but 7 cases, a single PWM explains more 

than 90% of the experimental variability, defined as the reproducibility of 8mer median 

intensities (R2) between replicates. In some cases, PWM performances are better than 

experimental reproducibility, likely due to different TF concentrations used in replicate 

PBM experiments. Figure 2B demonstrates that for these 41 TFs, a single BEEML-PBM 

PWM usually performs as well as, and sometimes better than, a combination of primary and 

secondary PWMs in the UniPROBE database9. Figure 2C shows that in all of the 104 PBM 

datasets of Badis et al.6, the PWMs obtained by the BEEML-PBM method fit the replicate 

data better than the UniPROBE primary PWMs, in many cases very much better. Badis et 

al.6 validated binding to secondary motifs of six TFs by electrophoretic mobility shift assay 

(EMSA). We find that the BEEML-PBM PWMs are usually shorter than the PWMs found 

by Badis et al.6, and that those PWMs are often consistent with the EMSA results. For 

example, the consensus sequence of the BEEML PWM for TF Foxj3 is AAACA, which can 

be found on both primary (GTAAACAA) and secondary (CAAAACAA) probes. However, 

there are also a few cases, such as Hnf4a, where the single PWM model is clearly 

insufficient to capture TF binding specificity.
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PBMs are an important technological development, especially in the latest implementations 

that include all possible 10mer binding sites. They provide an inexpensive and high-

throughput method for determining binding specificities of TFs and are rapidly increasing 

the database of characterized TFs. To maximize the information obtained from this 

technique it is critical to employ optimized analysis methods. The success of the BEEML-

PBM method is mainly due to the power of regression analysis and demonstrates that 

quantitative PBM data can be analyzed in the traditional biochemical framework of 

equilibrium binding to obtain accurate binding energies.

With a few exceptions, the simple PWM model performs very well, supporting the 

hypothesis that the energetics of TF-DNA recognition is generally simple. This simplicity 

has considerable practical implications. The main difficulty in the study of TF specificity is 

one of scale. Unlike protein-protein interactions, a single affinity is not sufficient to 

parameterize TF specificity. For example, there are more than a million possible sequences 

for a 10-long binding site. Even with high-throughput techniques, direct measurement of 

affinity for all sites is not practical. However, if the bases contribute to the total binding free 

energy independently, then a model with only 31 parameters can give accurate predictions 

of the million binding energies. Even if neighboring di-nucleotide interactions are important, 

only 112 parameters are necessary10. Furthermore, this simplicity can be exploited in the 

design of promoters with tunable induction or TFs with custom specificity.

In this correspondence, we demonstrate that simple PWMs generally give good 

approximations of TF specificity, up to the level of reproducibility of PBM experiments. 

Previous methods to determine PWMs from PBM data did not utilize a biophysical model 

for the binding and were based on summary statistics, such as E-scores and Z-scores, rather 

than maximizing the fit to the intensity data directly, taking into account the specific 

characteristics of PBM data. We conclude that the widespread phenomenon of secondary 

binding preference identified by Badis et al.6 is not supported by the data and is likely due to 

suboptimal estimation of the PWMs. A support vector regression (SVR) method has also 

been applied to PBM data11 that provided improved predictions compared to the UniPROBE 

PWMs in most, but not every, case. In contrast, the PWMs obtained by BEEML-PBM 

improved the predictions compared to the UniPROBE PWMs in every case and the resulting 

model has many fewer parameters than the SVR model and each parameter has a specific 

biophysical interpretation, such as a binding energy contribution of a specific base-pair to 

the TF-DNA interaction.

BEEML-PBM is freely available at http://ural.wustl.edu/~zhaoy/beeml/

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Plag1 can be modeled well by a single PWM. (A) BEEML-PBM PWM trained on Plagl1 

replicate 1 predicts replicate 2 8mer median intensities well with R2=0.91. (B) Performance 

of Plagl1 primary PWM from UniPROBE database9 has only R2=0.47. (C) Comparison of 

Plagl1 BEEML-PBM PWM with primary PWM from UniPROBE database9.
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Fig. 2. 
A single BEEML-PBM PWM explains “secondary motif” phenomenon (A) In all but 7 

cases, BEEML-PBM PWM captured more than 90% of experimentally reproducible 

variability. Dashed line marks 90% variability. (B) A single BEEML-PBM PWM usually 

outperforms a combination of primary and secondary PWMs from Badis et al.8. (C) 

BEEML-PBM PWMs outperforms primary PWMs from UniPROBE database9 for all TFs 

studied by Badis et al.6. The BEEML-PBM PWM from the replicate that gives the best fit is 

used.
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