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Abstract: Background: Bovine mastitis is a growing health problem, affecting both welfare of dairy
cattle and milk production. It often leads to chronic infections, disturbing the quality of milk
and resulting in cow death. Thus, it has a great economic impact for breeders. Methods: In this
study, we evaluated the protective effect of hydroxytyrosol—a natural molecule which is the major
constituent of many phyto-complexes—in an in vitro model of mastitis induced by LPS (1µg/mL).
Results: Our results showed that hydroxytyrosol (10 and 25 µM) was able to prevent the oxidative
stress induced by LPS (intracellular ROS, GSH and NOX-1) and the consequently inflammatory
response (TNF-α, IL-1β and IL-6). The protective effect of hydroxytyrosol is also related to the
enhancement of endogenous antioxidant systems (Nrf2, HO-1, NQO-1 and Txnrd1). Moreover,
hydroxytyrosol showed an important protective effect on cell functionality (α-casein S1, α-casein
S2 and β-casein). Conclusions: Taken together, our results showed a significant protective effect of
hydroxytyrosol on oxidative stress and inflammatory response in MAC-T cells. Thus, we indicated
a possible important therapeutic role for hydroxytyrosol in the prevention or management of
bovine mastitis.
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1. Introduction

Bovine Mastitis is characterized by the inflammation of the mammary gland that occurs in
response to several different stimuli, such as microorganism infection [1]. The udders of infected cows
are one of the major reservoir of contagious pathogens. During milking they spread from cow to
cow, inducing chronic subclinical infections. Contagious pathogens include: Streptococcus agalactiae,
Staphylococcus aureus, Corynebacterium bovis and Mycoplasma spp. [2]. Differently, environmental
mastitis is defined as intramammary infections caused by pathogens of the environment in which the
cow lives [3]. Environmental pathogens include Klebsiella spp., Escherichia coli, Streptococcus uberis and
Streptococcus dysgalactiae. Most those infections are characterized by a short duration [4].

Moreover, mastitis influences yield, composition and quality of the milk produced by the affected
cow and represents a serious economic issue for the farmer [5]. In particular, it often leads to
culling of chronically infected cows and occasional deaths [6]. The use of antibiotics is a consolidate
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pharmacological approach for mastitis treatment that results in several side effects [7]. New studies
into pharmacological approaches for the treatment of this pathology is required for reducing the use of
antibiotics that are dangerous for health of consumers and antibiotic resistance spread [7,8]. Nowadays,
several natural molecules or derivates has been tested for the treatment of bovine mastitis [9]. Natural
molecules are preferred thanks to their safer use for both the animal and its derivatives [10–12].
Interesting results have been obtained from antioxidant natural compounds such as baicalein [13],
moringa extract [14] and curcumin [15].

There is a well consolidated crosstalk between inflammation and oxidative stress. Recent evidences
have shown the beneficial effects of the antioxidant therapy in several pathologies [8,16–22]. A key role
for oxidative stress in bovine mastitis is widely recognized: dietary supplementation with antioxidant
nutrients has shown protective action and improvement of immune resistance against infections [23,24].
Oxidative stress in early lactation cows plays a central role in dysfunctional inflammatory response [25].
Additionally, during the periparturient period there is an increase in the production of the reactive
oxygen species. The free radicals produced induce a positive feedback which can further aggravate
the pathologic condition [26]. Hydroxytyrosol (3,4-dihydroxyphenylethanol, HT) is a polyphenol
mainly present in the fruit and in the leaf of Olea europaea L., a plant belonging to the Oleaceae family.
This plant family comprises numerous different species distributed throughout the Mediterranean
basin. HT is also the main component of extra virgin olive oil: it is present in esterified or free
form and it represents the 70–80% of the total phenolic fractions [27]. High HT contents have been
found in the olive leaf extract and in olive mill waste water, making it a potentially useful waste
product [28]. Several works describe the antioxidant properties of HT [29]: its antioxidant power is
two times higher than coenzyme Q10 and ten times higher than green tea [30]. Additionally, numerous
biologic activities have been ascribed to HT, although in some cases its mechanism of action has not
been clarified. Of particular interest are the anti-inflammatory and antimicrobial properties of HT,
which have been described in many diseases [28,31–36]. In particular, it has been reported that HT was
able to inactivate the staphylococcal enterotoxin A, a key factor in the patho-physiology of animal
mastitis [37]. Therefore, the application of HT in the treatment or prevention of bovine mastitis would
be an interesting therapeutic strategy.

Bovine mammary epithelial cell lines, like mammary alveolar (MAC-T) cells, are one of the most
used cell lines to study inflammation, lipid metabolism and apoptosis [38–41]. In particular, MAC-T
cells represent a convenient validation system for investigating lactation and bioactive substances
with the mammary tissue-specific casein promoter [42]. For this process to happen, the mammary
gland grows and differentiates through extensive tissue remodeling. When treated with prolactin,
insulin and retinoic acid this cell line differentiates into β-casein–secreting cells [43]. In this study,
we investigated the effect of HT on lipopolysaccharide-induced inflammation and oxidative stress in
bovine mammary epithelial (MAC-T) cells.

2. Materials and Methods

2.1. Cell Culture

Bovine mammary epithelial cell line (MAC-T cells) [44], were cultured in DMEM medium
containing 10% fetal bovine serum (FBS) and 200 U/mL streptomycin/penicillin (Sigma-Aldrich, Milano,
Italy) and incubated at 37 ◦C in a humidified atmosphere containing 5% CO2. The medium was
changed every 48 h. The cells were split at 80–90% confluency using 0.25% trypsin solution.

2.2. Cell Differentiation

MAC-T cell were detached with 0.25% of trypsin-ethyl-enediaminetetraacetic acid (Sigma-Aldrich,
Milano, Italy). The initial number of cells in each group was 5 × 104 cells/well in a 6-well plate and
cultured for 4 days, and then the cells in each group were split on additional 6-well plates on 4 and
5 days. MAC-T cells were differentiated as already described [45,46]. Briefly, cells were cultured
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(5 × 104 cells/well in 6-well plate) in serum-free DMEM for 16 h and then cultured in high-glucose
DMEM addition of 5% FBS, 5-µg/mL insulin (Sigma, USA), 1-µg/mL hydrocortisone (Sigma, USA),
5-µg/mL prolactin (PRL) (Sigma, USA) and 1-µM retinoic acid (RA) (Sigma, USA). During this period,
the medium was changed every 24 h. To determine casein mRNA expression, 10-µM and 25-µM
HT was added to cells 1 h before LPS-stimulation.

2.3. Cell Treatment

Cell were pretreated with HT (10 µM and 25 µM) (Sigma-Aldrich, Milano, Italy). One hour after
HT pretreatment, cells were stimulated with LPS 1 µg/mL (Escherichia coli O111:B4, Sigma-Aldrich,
Milano, Italy) for 1 or 6 h as previously described [47]. LPS concentrations were chosen based on
previous studies by others using mammary epithelial cells [48,49].

2.4. Cell Viability Assay

The possible toxic effect of HT on MAC-T cells was determined by methyl thiazolyl tetrazolium
(MTT) assay as previously described [50]. Briefly, cells seeded in a 96-well plate and incubated with
HT at 10, 25, 50, 100, 250 µM, for 24 h in a 96-well plate, followed by the MTT treatment (10 µL of
0.5 mg/mL) for 4 h. Acidic isopropanol was added to dissolve any deposited formazan. The optical
density at 550 nm was measured using a microplate reader and used to calculate the cell viability.

2.5. Western Blot Analysis

Cells were lysed with a hypotonic buffer solution containing 20 mM Tris (pH 7.4), 10 mM NaCl,
3 mM MgCl2 and a protease inhibitor mixture. After addition of 10% Triton-X 100, cell lysates
were centrifuged at 650× g for 10 min at 4 ◦C and supernatants were collected as cytosolic fractions.
Remaining pellets were resuspended in cell extraction buffer [100 mM Tris (pH 7.4), 1% Triton X-100,
10% glycerol and 0.1% SDS] containing protease inhibitor mixture. Homogenates were then centrifuged
at 14,000× g for 20 min at 4 ◦C and supernatants were collected as nuclear fractions. The levels of
nuclear factor erythroid 2-related factor 2 (Nrf2) quantified in nuclear fraction. The filters were blocked
with 1 × PBS, 5% (w/v) nonfat dried milk (PM) for 40 min at room temperature and subsequently probed
with specific Nrf2 antibody (Novus biologicals, Centennial, CO, USA) in 1 × PBS, 5% w/v nonfat dried
milk, 0.1% Tween-20 (PMT) at 4 ◦C, overnight. Membranes were incubated with peroxidase-conjugated
goat anti-rabbit IgG (1:2000, Jackson Immuno Research, West Grove, PA, USA) at room temperature
for 1 h. Laminin protein were used as internal standard for nuclear extracts. Signals were detected
with enhanced chemiluminescence detection system reagent according to manufacturer’s instructions
(Super-Signal West Pico Chemiluminescent Substrate, Pierce). The relative expression of the protein
bands was quantified by densitometry with Bio-Rad (Bio-Rad, Milan, Italy) ChemiDoc XRS software
and standardized to lamin levels. A preparation of commercially, molecular weight markers made
of proteins of molecular weight 10–250 kDa was used to define molecular weight positions and as
reference concentrations for each molecular weight.

2.6. Oxidative Stress Markers

In order to evaluate total cellular reactive oxygen species (ROS) we employed the
2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA) dye. MAC-T cells were grown to confluence in
6-well plates, trypsinized and then washed twice with 1x-washing buffer. Subsequently, cells were
incubated with 1-µM H2DCFDA dye at 37 ◦C. The fluorescence microplate reader detected the
light emission. The levels of increased ROS production were expressed as percentage of the control
(nmol/mL). Reduced GSH was measured by a commercially available kit (EIAGSHC, Thermo Fisher
Scientific, Milan, Italy).
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2.7. ELISA

Secretion of TNF-α, IL-6 and IL-1β were measured using commercial ELISA kits from R&D
Systems, Minneapolis, MN, USA. Briefly, after the already described treatment, 100 µL of samples or
standards were added in each well and incubated for 2 h at room temperature. After 2 washes, 100 µL
of the diluted detection antibody was added to each well and incubated for 2 h at room temperature.
After 2 washes, 100 µL of the working dilution of streptavidin–HRP A was added to each well and
incubated for 2 h at room temperature. After washes, 100 µL of substrate solution was added to each
well and incubated for 20 min at room temperature in the dark. The reaction was then stopped by
adding 50 µL of stop solution. Absorbance at 450 nm was recorded to calculate protein concentration.

2.8. Real-Time PCR

To evaluate the mRNA expression of target genes, RNA was extracted from MAC-T cells using
RNeasy kit (Qiagen, Milan, Italy), for real-time polymerase chain reaction (PCR) analysis. Briefly,
samples were first lysed and then ethanol was added to provide ideal binding conditions. The lysates
were then loaded into the RNeasy silica membrane. RNA binds and all contaminants were efficiently
washed away. The residual amounts of DNA remaining were removed using a convenient on-column
DNase treatment. Pure, concentrated RNA was eluted in 50 µL water. iScript RT-PCR kit (Bio-Rad) was
used to synthesize first-strand cDNA. Briefly, the reverse transcription master mix was prepared adding
to 1 µg of RNA template the iScript RT Supermix (5x RT supermix with RNase H+ Moloney (gray cap,
25 or 100 reactions) murine leukemia virus (MMLV) reverse transcriptase, RNase inhibitor, dNTPs,
oligo(dT), random primers, buffer, MgCl2 and stabilizers) and the nuclease-free water. The complete
reaction mix was incubated in a thermal cycler (Priming 5 min at 25 ◦C, Reverse transcription 20 min
at 46 ◦C, RT inactivation for one minute at 95 ◦C). Real-time PCR analysis was performed by SYBR
Green method on a StepOnePlus real-time PCR system (Applied Biosystems, Waltham, MA, USA).
PCR conditions were as follows: initial denaturation at 95 ◦C for 15 min, followed by 45 cycles of
amplification at 95 ◦C for 20 s and 60 ◦C for 40 s. Final extension at 60 ◦C for 60 s and a hold at 4 ◦C were
then performed. Data analysis was performed using the 2−∆∆Ct method, in which relative mRNA
expression of target mRNAs [NADPH oxidase-1 (NOX-1), heme oxygenase-1 (HO-1), NAD(P)H:
quinone oxidoreductase-1 (NQO-1) and thioredoxin reductase 1 (Txnrd1) and casein isoforms] was
compared to that of a constitutively expressed gene (i.e., GAPDH). Primer sequences used in this study
were: NADPH oxidase-1 (NOX-1): (Bio-Rad, Italy), HO-1: (forward) AGG ATT TGT CAG AGG CCC
TGA A (reverse) CAA AGA CGC CAT CAC CAG CTT A, NQO-1: (forward) GGT GCT CAT AGG
GGA GTT CG (reverse) GGG AGT GTG CCC AAT GCT AT, Txnrd1: (forward) CGG TAT TGC TGG
CAA TAG GAA GAG (reverse) GGC ATA GAT GTA AGG CAC GTT GGT, α-casein S1: (forward)
GGG AAT CCAT GCC CAA CAG AAA GA (reverse) GGA ACG TAA TAC CAG GCA CCA GAT,
α-casein S2: (forward) GGA CGA TAA GCA CTA CCA GAA AGC (reverse) AGA GTG GGA GTA
ATG GGA ACA GCA, β casein: (forward) CCT AAC AGC CTC CCA CAA AA (reverse) AGA CTG
GAG CAG AGG CAG AG, GAPDH (forward) ATG ATT CCA CCC ACG GCA AGT T (reverse) ACC
ACA TAC TCA GCA CCA GCA T. The results are expressed as fold-changes [51].

2.9. Statistical Analysis

For each experiment, three or more independent experiments were performed and for each
experiment five repeat samples were used. The data resulting from all experiments are expressed
as means ± SEM. Statistical differences between groups were compared using ANOVA, followed by
Tukey’s test. A p-value of less than 0.05 was considered statistically significant.
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3. Results

3.1. HT Effect on MAC-T Cell Viability

First, we investigated any toxic effect of HT on the MAC-T cells by the MTT cell viability
assay. The concentrations of HT evaluated were 10, 25, 50, 100 and 250 µM. Cells were incubated
with HT for 24 h and then treated with MTT (10 µL of 0.5 mg/mL) for 4 h. As show in Figure 1,
no statistical differences were detected at 10-, 25- and 50-µM HT (respectively 99.2% ± 0.37; 99% ± 0.44;
96.8% ± 1.77) than the control. We found a significant reduction in cell viability at the concentration of
100 (94.6% ± 1.2) and 250 µM (93.3% ± 1.56) (Figure 1B and Table S1 in Supplemental Material).
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Figure 1. (A) Chemical structure of hydroxytyrosol and (B) effect on cell viability MTT assay.
Data representative of at least three experiments, means ± SEM; ** p < 0.01 vs. control.

3.2. Protective Effect of HT in LPS Induced Oxidative Stress in MAC-T Cell

To test whether the protective effect of HT in LPS induced oxidative stress, we pretreated the
MAC-T cell with HT (10-µM and 25 µM) for 1 h and then stimulated them with LPS 1-µg/mL for 1 h and
6 h. One hours after LPS-stimulation increased oxidative stress was detected, as shown by the increased
levels of intracellular ROS (Figure 2A), reduction in GSH levels (Figure 2B), than control (282 ± 8.6 vs.
100 ± 0.37 for ROS and 0.5 ± 0.05 vs. 0.95 ± 0.02 for GSH, respectively). This trend was confirmed by
the upregulation of the NADPH oxidase-1 (NOX-1) mRNA level (Figure 2C), than control (2.76 ± 0.11).
HT treatment (10 µM and 25 µM) reduced in a dose dependent manner the cellular oxidative stress by
reducing NOX-1 mRNA expression (HT 10 µM: 2.28± 0.08) (HT 25 µM: 1.98± 0.12) (Figure 2C) and ROS
intracellular levels (HT 10 µM: 227.4 ± 19.02 and HT 25 µM: 211. ± 8.87) (Figure 2A) and increasing GSH
levels (HT 10 µM: 0.7 ± 0.04 and HT 25 µM: 0.78 ± 0.05) (Figure 2B) (Table S2 in Supplemental Material).
Additionally, we evaluated the same parameters six hours after LPS-stimulation. LPS increased ROS
and GSH levels than control (321 ± 14.18 vs. 100 ± 0 for ROS and 0.4 ± 0.05 vs. 0.96 ± 0.02 for GDH,
respectively) (Figure 2D,E, respectively). HT treatment was able to reduce intracellular ROS levels
(HT 10 µM: 245 ± 14.49 and HT 25 µM: 200.2 ± 6) and increase GSH levels (HT 10 µM: 0.74 ± 0.06 and
HT 25 µM: 0.84 ± 0.06). RT-PCR analysis for NOX-1 mRNA expression showed increased levels in
LPS treated cells than control (2.74 ± 0.10) (Figure 2F). HT treatment at 10 µM and 25 µM reduced
NOX-1 mRNA expression (HT 10 µM: 2.18 ± 0.08 and HT 25 µM: 1.78 ± 0.10) (Figure 2F and Table S3
in Supplemental Material).
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LPS; ** p < 0.01 vs. LPS; *** p < 0.001 vs. LPS.

3.3. Protective Effect of HT in LPS Induced Inflammatory Response in MAC-T Cell

Increased in oxidative stress is closely related with the inflammatory response. One hour after
LPS-stimulation (1 µg/mL) we found a significant increased levels of the main inflammatory cytokines
TNF-α (3060 ± 163.1 vs. 450 ± 97.47), IL-1β (2214 ± 154.9 vs. 118 ± 34.26) and IL-6 (3840 ± 120.8
vs. 170 ± 30) (Figure 3A). The treatment with HT at the concentration of 10 and 25 µM significant
prevent the increase of TNF-α (HT 10 µM: 2160 ± 271.3 and HT 25 µM: 1880 ± 276.4), IL-1β (HT 10 µM:
1650 ± 120.4 and HT 25 µM: 1400 ± 138.7) and IL-6 levels (HT 10 µM: 2760 ± 317.2 and HT 25 µM:
2720 ± 171.5) (Figure S3A and Table S2 in Supplemental Material). The levels of TNF-α, IL-1β and IL-6
were still significantly higher than the control group, six hours after LPS-stimulation (3876 ± 85.88
vs. 270 ± 86.02 for TNF-α, 2988 ± 63.98 vs. 118 ± 34.26 for IL-1β, 3074 ± 119.6 vs. 170 ± 30 for IL-6)
(Figure 3B). Where compared to LPS (1 µg/mL) the treatment with HT at 10 µM and 25 µM significant
inhibited the increase in TNF-α (HT 10 µM: 2092 ± 92.27 and HT 25 µM: 1608 ± 174.3), IL-1β (HT 10 µM:
1842 ± 105.4 and HT 25 µM: 1288 ± 151) and IL-6 expression (HT 10 µM: 2179 ± 104.9 and HT 25 µM:
1572 ± 192.8) (Figure 3B and Table S3 in Supplemental Material).
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hours after LPS-stimulation 1 µg/mL. Data representative of at least three experiments, means ± SEM;
◦◦◦ p < 0.001 vs. control; * p < 0.05 vs. LPS; ** p < 0.01 vs. LPS; *** p < 0.001 vs. LPS.

3.4. Protective Effect of HT in LPS Induced Oxidative Stress in MAC-T Cell

The inflammation and oxidative stress induced by LPS-stimulation is closely associated with the
activation of the Nrf2/Keap1 system and the antioxidant genes that it regulates. In order to evaluate the
effect of the HT treatment on the activation of the Nrf2 pathway western blot analysis were conducted.
Basal Nrf2 expression was detected in the control group (1,322,619 ± 250) (Figure 4A). Already after
1 h from LPS-stimulation Nrf2 expression were increased (3,375,711 ± 500) and HT treatment at
both concentrations (10 µM and 25 µM) upregulated its expression (HT 10 µM: 9,191,217 ± 1000 and
HT 25 µM: 9,849,095 ± 500) (Figure 4A). After six hours from LPS induction the Nrf2 expression
was found upregulated than the control (9,703,125 ± 200 vs. 2,898,569 ± 200) and HT (10 µM and
25 µM) augmented its expression (HT 10 µM: 32,167,176 ± 166,666 and HT 25 µM: 35,553,255 ± 233,333)
(Figure 4B).
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Figure 4. (A) Effect of HT on NRF2 expression: western blot analysis of NRF2 1 h after LPS 1 µg/mL
stimulation and 10-µM and 25-µM HT treatment; (B) western blot analysis of NRF2 6 h after LPS 1µg/mL
stimulation and 10-µM and 25-µM HT treatment. Data representative of at least three experiments,
means ± SEM; *** p < 0.001 vs. LPS.

3.5. Antioxidant Effects of HT in LPS Induced Oxidative Stress in MAC-T Cell

To further confirm the protective effects of HT on oxidative stress, we evaluated the expression of
some of the endogenous antioxidant systems. In particular, we investigated by RT-PCR the mRNA
expression of heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase-1 (NQO-1) and thioredoxin
reductase 1 (Txnrd1). Already after 1 h from LPS-stimulation HO-1, NQO-1 and Txnrd1 mRNA
expression were reduced (0.82 ± 0.05, 0.78 ± 0.06, 0.61 ± 0.04, respectively) and HT treatment at both
concentrations was able to increase them expressions (HT 10 µM: 1.18 ± 0.08, 1.17 ± 0.07 and 0.99 ± 0.09,
respectively; HT 25 µM: 1.22 ± 0.07, 1.38 ± 0.13 and 1.06 ± 0.14, respectively) (Figure 5A and Table S2 in
Supplemental Material). Six hours after LPS-stimulation, the HO-1, NQO-1 and Txnrd1 mRNA levels
were significantly reduced (0.7 ± 0.08, 0.59 ± 0.08 and 0.53 ± 0.06, respectively) (Figure 5B). The 10-µM
and 25-µM HT treatment significantly improve the endogenous antioxidant capacity MAC-T cells
by increasing in a dose dependent manner HO-1, NQO-1 and Txnrd1 mRNA expression (HT 10 µM:
1.2 ± 0.04, 1.19 ± 0.13 and 1.09 ± 0.09; HT 25 µM: 1.56 ± 0.07, 1.48 ± 0.08 and 1.2 ± 0.13, respectively)
(Figure 5B and Table S3 Supplemental Material).

3.6. Protective Effect of HT on Casein Stimulation in LPS Stimulated MAC-T Differentiated Cell

Synthesis of milk is one of major complication in bovine mastitis. In order to evaluate the
protective effect of HT on this parameter we evaluate the mRNA expressions of casein, including αS1,
αS2 and β genes in MAC-T differentiated cell. The levels of α-casein S1, α-casein S2 and β casein 12 h
after LPS-stimulation were significantly reduced (0.37 ± 0.07, 0.34 ± 0.06 and 0.40 ± 0.08, respectively)
(Figure 6A–C, respectively). While HT pre-treatment 10 µM and 25 µM significantly antagonized this
reduction in a dose dependent manner (HT 10 µM: 0.75 ± 0.08, 0.71 ± 0.12 and 0.90 ± 0.09; HT 25 µM:
1.01 ± 0.06, 1.07 ± 0.08 and 1.18 ± 0.09) (Figure 6A–C and Table S4 in Supplemental Material).
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Figure 5. (A) Protective effect of HT in LPS induced oxidative stress in MAC-T cell: mRNA levels of
HO-1, NQO-1 and Txnrd1 one hour post LPS 1 µg/mL stimulation and 10-µM and 25-µM HT treatment;
(B) mRNA levels of HO-1, NQO-1 and Txnrd1 six hours post LPS 1-µg/mL stimulation and 10-µM and
25-µM HT treatment. Data representative of at least three experiments, means ± SEM; ◦ p < 0.05 vs.
control; * p < 0.05 vs. LPS; ** p < 0.01 vs. LPS; *** p < 0.001 vs. LPS.

Antioxidants 2020, 9, x FOR PEER REVIEW 9 of 15 

 

Figure 5. (A) Protective effect of HT in LPS induced oxidative stress in MAC-T cell: mRNA levels of 

HO-1, NQO-1 and Txnrd1 one hour post LPS 1 μg/mL stimulation and 10-μM and 25-μM HT 

treatment; (B) mRNA levels of HO-1, NQO-1 and Txnrd1 six hours post LPS 1-μg/mL stimulation and 

10-μM and 25-μM HT treatment. Data representative of at least three experiments, means ± SEM; ° p 

< 0.05 vs. control; * p < 0.05 vs. LPS; ** p < 0.01 vs. LPS; *** p < 0.001 vs. LPS. 

3.6. Protective Effect of HT on Casein Stimulation in LPS Stimulated MAC-T Differentiated Cell 

Synthesis of milk is one of major complication in bovine mastitis. In order to evaluate the 

protective effect of HT on this parameter we evaluate the mRNA expressions of casein, including 

αS1, αS2 and β genes in MAC-T differentiated cell. The levels of α-casein S1, α-casein S2 and β casein 

12 h after LPS-stimulation were significantly reduced (0.37 ± 0.07, 0.34 ± 0.06 and 0.40 ± 0.08, 

respectively) (Figure 6A,B,C, respectively). While HT pre-treatment 10 μM and 25 μM significantly 

antagonized this reduction in a dose dependent manner (HT 10 μM: 0.75 ± 0.08, 0.71 ± 0.12 and 0.90 

± 0.09; HT 25 μM: 1.01 ± 0.06, 1.07 ± 0.08 and 1.18 ± 0.09) (Figure 6A–C and Table S4 in Supplemental 

material). 

 

Figure 6. (A) Protective effect of HT on casein stimulation in LPS stimulated MAC-T differentiated 

cell: mRNA levels of α-casein S1; (B) α-casein S2 and (C) β-casein. Data representative of at least three 

Figure 6. (A) Protective effect of HT on casein stimulation in LPS stimulated MAC-T differentiated
cell: mRNA levels of α-casein S1; (B) α-casein S2 and (C) β-casein. Data representative of at least three
experiments, means ± SEM; ◦◦◦ p < 0.001 vs. control differentiated; * p < 0.05 vs. LPS; ** p < 0.01 vs.
LPS; *** p < 0.001 vs. LPS.
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4. Discussion

Mastitis is widespread clinical disease in livestock and humans induced by microbial infection.
The most used therapy to treat this pathology are the antibiotics, but they are related with significant
side effects [52]. Investigating new therapeutic tools with fewer side effects is an important goal
for the research. In this study, we showed for the first time the that HT, a well-known antioxidant
natural compound, significantly reduced the LPS-induced inflammatory response in MAC-T cells.
Additionally, we showed that HT treatment was able to increase the expression of α-casein S1, α-casein
S2 and β casein in MAC-T differentiated cells after LPS-stimulation.

Recently, it has been demonstrated HT attenuate oxidative stress (glutathione (GSH/GSSH),
γ-glutamylcysteine ligase activity, reactive oxygen species and malondialdehyde (MDA) production)
and inflammatory response (TNF-α, IL-1β, IL-6 and IL-10) in bovine mammary epithelial cell line
(BME-UV1) [53]. First of all, we tested the any toxic effect of HT on MAC-T cells by the MTT assay,
based on the metabolic activity of the cells. A significant reduction in cell viability was observed at the
concentration of 100 and 250 µM. Recent papers also described the HT toxicity at these concentrations
and ascribed it to the HT pro-apoptotic action [29,54]. Once tested the good safety of HT, we moved to
investigate its effect on the oxidative stress induced by LPS-stimulation. Previous studies shown the
key role of the oxidative stress in mastitis. Overproduction of free oxygen radicals is an early event in
answer to bacterial infection or LPS in MAC-T cells. Our results displayed increased oxidative stress as
shown by the upregulated intracellular ROS expression and the reduced GSH level. HT pretreatment
at 10 µM and 25 µM was able to prevent the increase in oxidative stress in a dose dependent manner.
Additionally, we showed that HT reduced NOX-1 mRNA expression. The upregulation of this
mitochondrial protein has been linked with the ROS overproduction [55]. Thus, HT pretreatment
mitigated LPS-induced NOX-1 expression and ROS generation in MAC-T cells, hinting that HT has
important effect against LPS-induced oxidative stress. Several lines of evidence have described
that ROS overexpression LPS-induced in turn produces cytokines release [56]. Well in line with
literature our study showed increased expression of TNF-α, IL-1β and IL-6 one and six hours after
LPS-stimulation. The 10-µM and 25-µM HT treatment significantly prevent the increase of TNF-α, IL-1β
and IL-6 LPS-induced. Several evidence suggest that HT is significantly able to improve endogenous
antioxidant defense mechanisms by modulating transcription factors such as the Nrf2 [56,57]. Nrf2 is
an important regulator of antioxidant signaling. It binds the epoxy chloropropane Kelch sample related
protein-1 (Keap1) under homeostatic conditions. When the oxidative stress occurs, in cytoplasm the
complex of Nrf2 and Keap1 is dissociated, and Nrf2 enters the nucleus [58]. Once translocated in the
nucleus, Nrf2 binds to antioxidant response elements (ARE), promoting the transcriptional activation
of metabolizing enzymes/antioxidant proteins enzymes (superoxide dismutase (SOD), Catalase (CAT),
glutathione peroxidase (GSH-Px)) in phase II [59,60]. ROS produced by redox reactions can activate
Nrf2 by promoting disulfide formation with Keap1 [61]. Therefore, the Nrf2–ARE signaling pathway
is the main mechanism for defense against oxidative stress in cells by activating phase II metabolic
enzymes/antioxidant protein enzymes [62].Our results showed upregulated the Nrf2 expression after
one six hours from LPS-stimulation and HT treatment at bot concentrations (10 µM and 25 µM)
increased its expression, confirming that HT antioxidant mechanism is mediated by the Nrf2 pathway.
To further confirm the mechanism of the protective effect of HT we evaluated the mRNA expression of
several antioxidant enzymes. In particular, our study displayed reduced heme oxygenase-1 (HO-1),
NAD(P)H: quinone oxidoreductase (NQO-1), thioredoxin reductase 1 (Txnrd1) mRNA expression after
LPS-stimulation. These antioxidant enzymes are phase II detoxifying proteins that provide intracellular
defensive mechanism [14]. Our data displayed that the mRNA expressions of these antioxidant genes
were upregulated in MAC-T cells treated with HT, suggesting that HO-1, NQO-1 and Txnrd1 are
involved in the antioxidant mechanism of HT. These findings are well in line with precedent papers
showing that HT reduces antioxidant enzymes [29].

One of the main functions of the bovine mammary epithelial cells is lactation. It involves prolactin,
a hormone secreted by the anterior pituitary gland [63]. During lactogenesis and pregnancy prolactin
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has a crucial role in the mammary gland [64,65]. MAC-T cells stimulated by prolactin together with
hydrocortisone, retinoic acid and insulin secret more β-casein [45,46,66]. Mammary epithelial cell
differentiation is identified by the activation of genes coding for milk proteins [67]. Bovine mastitis
causing cellular damage leads to disruption in lactation. We evaluated the protective effect of HT on
this peculiar cell function evaluating the α-casein S1, α-casein S2 and β-casein mRNA levels [68,69].
LPS-stimulation induced the downregulation on the casein genes (α-casein S1, α-casein S2 andβ-casein).
HT increased the expression levels of three casein isoforms, indicating that protective effect of HT also
preserves an important cell functionality.

5. Conclusions

Our results demonstrate that LPS challenge in MAC-T cell leads to an important increase
in oxidative stress and inflammatory response, process that in differentiated MAC-T cells cause
a significative impairment in cell functionality such as lactation. Our results showed also that the
treatment with the well-known natural molecule HT, has a significantly protective effects. Together with
the decrease of oxidative stress the inhibition of proinflammatory cytokines increase is a fundamental
step in antagonizing the pathologic process and therefore in preventing or blocking the progression
of bovine mastitis. Furthermore, HT treatment was able to significantly improve the cell antioxidant
defense. Finally, this protective action of HT is traduced in an important cell functionality such as
milk production. These results open a natural good prospective for the use of HT in treatment and
prevention of bovine mastitis.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3921/9/8/693/s1,
Table S1: Effects of HT on cell viability MTT assay, Table S2: Effects of HT on inflammation and oxidative stress in
MAC-T cells stimulated with LPS for 1 h, Table S3: Effects of HT on inflammation and oxidative stress in MAC-T
cells stimulated with LPS for 6 h, Table S4: Effects of HT on casein isoforms in differentiated MAC-T cells.
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