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Abstract

Background: In cancer cells, fusion genes can produce linear and chimeric fusion-circular RNAs (f-circRNAs), which are
functional in gene expression regulation and implicated in malignant transformation, cancer progression, and therapeutic
resistance. For specific cancers, proteins encoded by fusion transcripts have been identified as innovative therapeutic
targets (e.g., EML4-ALK). Even though RNA sequencing (RNA-Seq) technologies combined with existing bioinformatics
approaches have enabled researchers to systematically identify fusion transcripts, specifically detecting f-circRNAs in cells
remains challenging owing to their general sparsity and low abundance in cancer cells but also owing to imperfect
computational methods. Results: We developed the Python-based workflow “Fcirc” to identify fusion linear and f-circRNAs
from RNA-Seq data with high specificity. We applied Fcirc to 3 different types of RNA-Seq data scenarios: (i) actual synthetic
spike-in RNA-Seq data, (ii) simulated RNA-Seq data, and (iii) actual cancer cell–derived RNA-Seq data. Fcirc showed
significant advantages over existing methods regarding both detection accuracy (i.e., precision, recall, F-measure) and
computing performance (i.e., lower runtimes). Conclusion: Fcirc is a powerful and comprehensive Python-based pipeline to
identify linear and circular RNA transcripts from known fusion events in RNA-Seq datasets with higher accuracy and
shorter computing times compared with previously published algorithms. Fcirc empowers the research community to
study the biology of fusion RNAs in cancer more effectively.
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Background

Various events such as gene mutations, gene rearrangements,
and chromosomal fragile sites are able to induce the formation
of fusion genes in the genome of cancer cells [1–6]. These fusion
genes can generate linear or fusion circular RNAs (f-circRNAs)—
the latter via back-splicing of exons. F-circRNAs are functional
in gene expression regulation and are implicated in malignant
transformation, cancer cell survival, and therapeutic resistance

[7]. Apart from their relevance for cancer cell biology, f-circRNAs
also serve as promising biomarker candidates in liquid biopsies
owing to their increased stability relative to linear transcripts [8].
Furthermore, proteins encoded by fusion genes represent inno-
vative therapeutic targets in some cancers, thus indicating that
the still relatively young field of fusion RNA biology harbours a
great potential for drug development. Crizotinib, for example, a
tyrosine kinase inhibitor, was approved by the US Food and Drug
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Administration (FDA) in 2013 for the treatment of patients with
non–small cell lung cancer (NSCLC) harbouring EML4-ALK rear-
rangements [9]. Therefore, accurate profiling of fusion linear and
circular RNAs is of high scientific interest and provides the ba-
sis for functional studies in cancer. Although recent advances
in high-throughput RNA-Seq data acquisition have enabled re-
searchers to detect fusion transcripts [10–15] and circRNAs [16–
18], the currently available tools for fusion detection still yield a
high false discovery rate [19], and current bioinformatics meth-
ods cannot be used to identify the whole spectrum of f-circRNAs
arising from a specific fusion gene [20].

Therefore, in the present study, we developed “Fcirc,” a com-
prehensive, accurate, and free-of-charge pipeline to analyse
RNA-Seq data for linear and circular RNAs transcribed from fu-
sion genes.

Materials and Methods
Datasets used in this study

Synthetic spike-in actual RNA-Seq data
To evaluate the performance of different tools for fusion RNA
analysis, we took advantage of RNA-Seq data from a study per-
formed by Tembe et al. [21]. In this study, equimolar amounts of
9 synthetic poly-adenylated gene fusion RNA transcripts were
pooled and titrated into total RNA of COLO-829 melanoma cells
at 10 different concentrations with 2 replicates for each sample:
EWSR1-ATF1, TMPRSS2-ETV1, EWSR1-FLI1, NTRK3-ETV6, CD74-
ROS1, HOOK3-RET, EML4-ALK, AKAP9-BRAF, and BRD4-NUTM1.
The sequencing data (Illumina HiSeq 2500 system) were made
available in FASTQ format in the SRA under accession number
SRP043081 and allow researchers to validate novel algorithms
for gene fusion detection in a comparative manner.

Simulated RNA-Seq data
The simulator art illumina function in ART [22] was applied to
simulate RNA-Seq data. We used the RNA-Seq reads from nor-
mal pulmonary microvascular endothelial cells in the NCBI SRA
database SRR349695 [23] as background and plugged simulated
fusion reads into the background. Two types of fusion reads were
designed: (i) those derived from linear transcripts and (ii) those
derived from pooled linear and circular transcripts. A total of 47
fusions (Suppl. Table 1) with high, median, and low frequency in
cancers were randomly selected from the Catalogue of Somatic
Mutations in Cancer (COSMIC) database [24]. The linear fusion
reads were artificially generated on the basis of the breakpoint
information by joining the upstream and downstream transcript
fragments. Eight fusion circRNAs (Suppl. Fig. 1, Suppl. Table 2)
were generated in accordance with previous reports [7, 8]. To
simulate more linear than circular fusion transcripts at a gene
locus, we plugged 2.5 times as many linear fusion reads into the
background as circular fusion reads. Different sequencing cover-
ages (20, 50, and 100×) were simulated each with 2 read lengths
of 50 and 100 bp.

Actual cancer cell–derived RNA-Seq data
Actual cancer cell–derived RNA-Seq data for the identification
of f-circRNA were obtained from the BioProject database (acces-
sion IDs PRJNA350335 and PRJNA315254). Whereas PRJNA350335
includes sequencing information on 9 lung cancer samples of
H3122 cell line harbouring the EML4-ALK fusion gene [25], PR-
JNA315254 includes a total of 9 acute leukemia samples, among
them NB4 (n = 3), THP1 (n = 1), and primary patient-derived (n
= 5) cell lines harbouring the PML-RARα fusion gene [7].

The Fcirc pipeline workflow

The “Fcirc” analysis pipeline includes 5 major steps (Fig. 1), and
the baseline data input are single-end or paired-end RNA-Seq
datasets in FASTQ format. Both raw and cleaned data are ac-
ceptable, e.g., after adapter cutting or poor-quality trimming.

Step 1: Dropping aligned reads
Reads were aligned to a reference transcriptome with HISAT2
[26] using default parameters. After the first alignment, the
aligned reads were dropped by samtools [27] and unaligned
reads were kept for further analysis. The unaligned reads were
then selected according to FLAG values in SAM file and converted
into a file in FASTQ format.

Step 2: Building of a bipartite graph of gene pairs of known fusions
Gene pairs of known fusion genes were manually curated
from multiple databases, including COSMIC [24], ChimerDB [28],
TicDB [29], FARE-CAFE [30], and FusionCancer [31], and the gene
sequences of known gene fusions were downloaded from the
Ensembl Genome Browser [32]. With this information, we built a
“bipartite graph” (also called a “bigraph”) of known fusion gene-
pairs. In a bipartite graph vertices (representing individual genes
in our study) can be divided into 2 disjoint and independent sets
U and V in a way that every edge (representing fusion events be-
tween individual genes in our study) connects a vertex in U to
one in V. In our case it was possible to generate a bipartite graph
because the genes involved in the fusion events did not form
a ring of odd vertices. To reduce the computational complexity
and time required to search for multiple gene-spanning reads,
genes involved in the fusion event were divided into 2 indepen-
dent sets according to the bipartite graph theory. For example, in
the case of the fusion genes EML4-ALK and NPM1-ALK, EML4 and
NPM1 were included in the same set (U) while ALK was included
in the independent set (V).

Step 3: Selecting fusion-related reads
In the next step, the unaligned reads were independently re-
aligned to 2 sets of fusion gene sequences with low penalty.
We decreased the maximum and minimum penalty for soft-
clipping (–sp 1, 1) and minimum alignment score (–score-min L,
0, -0.8). Other scoring parameters were set as default. After this
re-alignment, reads with partial sequence alignment to fusion
genes were selected. For single-end RNA-Seq data, reads with-
out a FLAG value of 4 (-F 4) and for paired-end RNA-Seq data,
reads with a FLAG value of 4, not 8, or 8, not 4 or 12 in the SAM
file were selected (-f 4 -F 8 or -F 4 -f 8 or -f 12), respectively, ensur-
ing that ≥1 read segment was aligned. Reads with paired chias-
tic clipping (PCC) signal were defined as fusion-related reads. For
instance, if a segment of a read was simultaneously aligned to
EML4 with the same FLAG and CIGAR 40S60M values and to ALK
with FLAG 4 and CIGAR 40M60S, this suggested that 1 segment
of EML4 and the rest from ALK were on the same strand.

Step 4: Reconstructing and verifying the fusion genes
In the next step, the fusion breakpoint was determined. There-
fore, we assumed that fusion-related reads were more likely to
cover the respective fusion breakpoint and inferred the exact
location from the majority of junction-supported reads. Subse-
quently, the fusion gene sequence was reconstructed around
this predicted fusion breakpoint and the alignment of reads
was recalibrated by re-aligning reads to the reconstructed fu-
sion gene with low penalty. To evaluate our assumption, that
fusion-related reads uniformly covered the fusion breakpoint,
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Figure 1: Fcirc pipeline workflow for exploring linear and circular RNAs of known fusions. Schematic depiction of the 5 main steps of the Fcirc workflow, which includes
the dropping of aligned reads (step 1), the building of a bipartite graph of known fusion gene pairs (step 2), the selection of fusion-related reads (step 3), as well as the

reconstruction and verification of fusion genes for linear (step 4) and fusion circular RNAs (step 5 includes transformation of back-spliced reads).

they were split into 2 groups (left and right fragments) in rela-
tion to the respective breakpoint. Then, the Wilcoxon signed-
rank test was used to evaluate the read distribution by compar-
ing the length of the left and right fragments.

Step 5: Transforming back-spliced reads
Circular RNAs transcribed from fusion genes were detected by
searching for back-spliced reads. To improve the alignment
of back-spliced reads with the reconstructed fusion gene, we
changed the order of aligned and unaligned segments of some
back-spliced reads to transform back-spliced reads to forward-
spliced reads. The transformed reads were then re-aligned to the
reconstructed fusion gene to evaluate whether they were truly
back-spliced. Those reads covering a back-spliced junction indi-
cated that they were attributable to f-circRNA.

Fcirc data output format

The resulting output format of Fcirc consists of tables of fusion
linear transcripts and of f-circRNAs as well as SAM files for easier
visualization of read distribution on the respective fusions.

Performance benchmarking and evaluation criteria

Fcirc and 6 previously published fusion detection methods
(Suppl. Table 3), including Arriba v1.1.0 [33], ChimeraScan
v0.4.5 [14], FusionCatcher v1.00 [12], JAFFA v1.09 [15], STAR-
Fusion v1.8.1 [13], and STAR-SEQR v0.6.7 [34], were applied to
the synthetic spike-in actual RNA-Seq data, simulated data,
and actual cancer cell–derived data. To accurately evaluate
and compare these tools, we required (i) the number of
fusion-supporting reads to be ≥3 and (ii) read-through tran-

scripts to be removed, i.e., 2 genes located on the same
chromosome <100,000 bp apart. The computational efficiency
of each tool was evaluated by several benchmarking crite-
ria including precision, recall, and F-measure, which were
defined as follows: precision=TP/(TP+FP); recall=TP/(TP+FN);
F=2∗(precision∗recall)/(precision+recall). TP, FP, and FN repre-
sent the true-positive, false-positive, and false-negative results,
respectively. The F-measure simultaneously considers the effect
of precision and recall. We also evaluated the number of sup-
porting reads that were identified by the different methods and
which reflect the ability to robustly detect the gene fusion. The
final benchmark was the required computing time assuming a
computational environment based on Ubuntu Linux with Intel
Xeon E5-2620 v4 CPU at 2.10 GHz. Four CPU cores were used for
each tool, and the running parameters for each tool are shown
in Suppl. Table 4.

Results
Evaluation of gene fusions in actual and simulated
RNA-Seq datasets from synthetic spike-in experiments

To compare the performance parameters (i.e., precision, re-
call, and F-measure) of Fcirc with those of other methods, we
took advantage of RNA-Seq data from spike-in experiments,
which included 9 synthetic cancer-associated fusion genes
(EWSR1-ATF1, TMPRSS2-ETV1, EWSR1-FLI1, NTRK3-ETV6, CD74-
ROS1, HOOK3-RET, EML4-ALK, AKAP9-BRAF, and BRD4-NUTM1)
[21]. Fcirc achieved not only the highest but also more consistent
(small standard deviation [0.05]) precision (87.50%) compared to
STAR-SEQR (81.90%) and Arriba (78.00%) (Fig. 2A, Suppl. Table
5-1). ChimeraScan (6.10%) and FusionCatcher (13.4%) exhibited
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Figure 2: Performance comparison of different gene fusion detection tools in synthetic spike-in actual RNA-Seq data. Comparison of precision (A), recall (B), F-measure
(C), and computing time (D) across 7 fusion detection tools, including Arriba, ChimeraScan, FusionCatcher, JAFFA, STAR-Fusion, STAR-SEQR, and Fcirc. In Fig. 2A-C, the
black lines in the box (from top to bottom) represent upper quartile, median and lower quartile, respectively; the top and bottom black line represent upper extreme
and lower extreme, respectively; the black dots represent data points.

low precision values, thus indicating a high rate of FP results
for predictions with these methods. In addition, Fcirc achieved
higher recall values (86.68%) than all other methods (ChimeraS-
can = 80.57%, STAR-Fusion = 78.90%, Arriba = 76.68%, Fusion-
Catcher = 76.14%, JAFFA = 73.92%, and STAR-SEQR = 58.35%)
(Fig. 2B, Suppl. Table 5-2) and greater F-measures (0.86), indi-
cating a better performance for balancing precision and recall
(Fig. 2C, Suppl. Table 6). Finally, Fcirc required less computing
time than most of the other methods (Fig. 2D, Suppl. Table 7).

In the next step, we calculated the number of fusion-
supporting junctional reads for the different methods with re-
spect to 10 different spike-in concentrations of the pooled syn-
thetic gene fusion RNAs (n = 9, 2 replicates each). Fcirc (red
squares) not only identified the highest number of supporting
reads but also had a very high accuracy for different spike-in
concentrations, indicated by the increasing number of identified
supporting reads of a given gene fusion (Fig. 3). The NTRK3-ETV6
fusion RNA construct was basically undetectable by all applied
methods.

We also evaluated the performance of all 7 algorithms for the
simulated paired-end data including both linear and pooled lin-
ear/circular transcripts. Again, Fcirc achieved higher and more
consistent precision (98.02%) than the other methods, with a
high recall (85.64%) that was only second to Arriba (86.36%)
(Fig. 4A and B, Suppl. Table 8). Fcirc also generated the highest

and most consistent F-measures (0.91) in all of the simulated
data, followed by Arriba (0.86) (Fig. 4C, Suppl. Table 9), and both
Fcirc and Arriba required less computing time compared with
the other methods (Fig. 4D). For the single-end (Suppl. Fig. 2) and
paired-end data analysis (Suppl. Table 10), Fcirc required com-
puting times ∼5 minutes or less depending on the RNA-Seq data
settings.

Evaluation of Fcirc performance to detect f-circRNAs in
simulated RNA-Seq data

To evaluate the ability of Fcirc to identify f-circRNA, we designed
reads of 8 fusion circRNAs according to previous reports and
plugged them into RNA-Seq data from normal pulmonary mi-
crovascular endothelial cells. We designed 2 types of RNA-Seq
data: (i) a control dataset that contained only linear fusion tran-
scripts and (ii) a dataset that contained pooled linear/circular fu-
sion transcripts. Furthermore, single-end and paired-end RNA-
Seq data, as well as different sequencing coverages (20, 50,
100×) and read lengths (50 and 100 bp), were simulated. In
paired-end samples, Fcirc successfully detected all 8 types of
f-circRNAs from RNA plugged with pooled linear/circular fu-
sion transcripts, whereas—as expected—no f-circRNAs were de-
tected when only the linear fusion transcripts were present
(Fig. 5A). The Fcirc algorithm also showed high accuracy in sim-
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Figure 3: Identification of fusion-supporting reads with different gene fusion detection tools in synthetic spike-in actual RNA-Seq data. The abundance of fusion-
supporting reads of 9 spiked-in synthetic fusion RNAs was determined by Arriba, ChimeraScan, FusionCatcher, JAFFA, STAR-Fusion, STAR-SEQR, and Fcirc in total RNA
of the melanoma cell line COLO-829 (n = 2 replicates for each fusion gene).

ulated single-end samples (Fig. 5B). Overall, all f-circRNAs were
identified in paired-end and single-end samples with a read
length of 100 bp whereas more f-circRNAs were identified in
the paired-end versus single-end samples with a read length
of 50 bp and the same coverage. Eight f-circRNAs transcribed
from 4 fusion genes that were identified in the paired-end sam-
ple dataset (100× coverage, 100 bp read length) are visualized
in Fig. 6: (A) EWSR1-FLI1, (B) EML4-ALK, (C) PML-RARα, (D) KMT2A-
MLLT3.

Identification of f-circRNAs in actual RNA-Seq data

In the next step, we sought to identify f-circRNAs based on ac-
tual BioProject RNA-Seq data at the example of H3122 cells,
an NSCLC cell line harbouring the EML4-ALK fusion (BioPro-
ject ID PRJNA350335) and of various acute leukemia samples
with PML-RARα fusion gene (BioProject ID PRJNA315254). We
applied the Fcirc algorithm to the PRJNA350335 dataset in or-
der to detect linear and circular fusion transcripts. Fcirc suc-
cessfully identified EML4-ALK fusions in all 9 H3122 samples at
the specific previously reported fusion breakpoint (Suppl. Ta-
ble 11; the number of supporting reads per cell line sample is
indicated) [25]. We also successfully identified the previously
reported EML4-ALK fusion-derived f-circRNA (Suppl. Table 12)
[8, 35].

Next, we compared the performance of all 7 algorithms based
on the PRJNA350335 dataset, which does not provide any infor-
mation on the truly present fusion genes itself. Therefore, we
defined fusions as TP results if they were detected by ≥4 tools
with >10 supporting reads each, and then compared the perfor-
mance of each method in detecting the presumably TP fusions.
Comparable to the spike-in experiments, Fcirc (100%) achieved
the highest precision compared to other methods (Suppl. Fig.
3A, Suppl. Table 13-1), whereas it lagged behind ChimeraScan
(100%), STAR-Fusion (100%), and STAR-SEQR (100%) regarding
the recall rate (Suppl. Fig. 3B, Suppl. Table 13-2). Fcirc also had
higher F-measures (0.815) than most other tools, being second
only to the STAR-SEQR algorithm (0.889) (Suppl. Fig. 3C, Suppl.
Table 13-3). We detected the known KMT2A-MLLT3 (MLL-AF9)
and PML-RARα fusions in the BioProject dataset PRJNA315254
[7]. Supplemental Table 14 summarizes all fusion genes iden-
tified in datasets PRJNA350335 and PRJNA315254 and indicates
the number of supporting reads for each individual fusion gene.
Interestingly, different f-circRNA isoforms were detected for the
PML-RARα fusion (Suppl. Table 12), with the total numbers of
isoforms being dependent on the computational assumptions—
e.g., 18 and 8 isoforms were detected in NB4 cells when the cut-
off of read count numbers supporting f-circRNAs was changed
to 1 or 2 (RNA-Seq data sample ID SRR3239817), respectively.
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Figure 4: Performance comparison of different gene fusion detection tools in simulated RNA-Seq data. Comparison of precision (A), recall (B), F-measure (C), and
computing time (D) across 7 fusion detection tools, including Arriba, ChimeraScan, FusionCatcher, JAFFA, STAR-Fusion, STAR-SEQR, and Fcirc. In Fig. 4A-C, the black
lines in the box (from top to bottom) represent upper quartile, median and lower quartile, respectively; the top and bottom black line represent upper extreme and
lower extreme, respectively; the black dots represent data points.

Discussion

Fusion linear and circular transcripts (f-circRNA) are RNAs that
are derived from rearranged genome translocations [1–6]. Even
though the precise role of many of these RNAs remains elusive, it
becomes increasingly evident that some of them are functional
in gene expression regulation and therefore implicated in ma-
lignant transformation, cancer cell survival, and therapeutic re-
sistance [7]. The example of crizotinib, an FDA-approved tyro-
sine kinase inhibitor for the treatment of EML4-ALK–rearranged
NSCLC, shows that proteins encoded by fusion transcripts can
also be harnessed as innovative drug targets [9]. This empha-
sizes the need for methods to accurately determine linear and
f-circRNA profiles within cancer cells. Currently, numerous RNA-
Seq datasets are publicly available that can be used to predict lin-
ear and f-circRNAs. However, it remains a significant challenge
to detect specifically f-circRNA transcripts owing to their low fre-
quency and low expression abundance within cancer cells. Fur-
thermore, RNA-Seq data in general are hindered by heavy back-
ground noise, thus increasing the rate of FP results.

Therefore, we developed the Python-based pipeline “Fcirc” to
overcome these drawbacks and to enable researchers to accu-
rately identify and quantify linear and circular (f-circRNAs) fu-
sion transcripts from RNA-Seq data. Fcirc differs from other pub-
lished fusion detection tools such as Arriba [33], ChimeraScan

[14], JAFFA [15], FusionCatcher [12], STAR-Fusion [13], and STAR-
SEQR [34] by the fact that it requires information on already
known gene fusions as reference to build the bipartite graph of
gene pairs (Step 2 of the algorithm). Hence, the Fcirc algorithm—
despite coming at the cost of losing the ability to identify new fu-
sion genes—detects RNAs from known fusion events with higher
specificity and lower FP rate. Fcirc accounts for the limitation
of depending on known fusions by regularly updating informa-
tion on newly emerging fusion genes from multiple databases
(COSMIC, ChimerDB, TicDB, FARE-CAFÉ, FusionCancer). Users
furthermore have the option to add their own fusion gene pairs
of interest at their convenience.

In a benchmarking effort, we compared the performance of
Fcirc with the 6 above-mentioned fusion detection tools (tool
characteristics are summarized in Suppl. Table 3) on the basis
of 3 different RNA-Seq data scenarios: (i) actual RNA-Seq data
from synthetic spike-in experiments [21], (ii) simulated RNA-Seq
data, and (iii) actual cancer cell–derived RNA-Seq data. The anal-
yses in these 3 scenarios showed that Fcirc offers higher preci-
sion compared to all other algorithms (Figs 2A and 4A, Suppl.
Fig. 3A), very high recall qualities (Figs 2B and 4B, Suppl. Fig. 3B),
and F-measures (Figs 2C and 4C, Suppl. Fig. 3C), but also high
numbers of fusion-supporting reads (Fig. 3) as well as reduced
computing times (Figs 2D and 4D, Suppl. Fig. 2). Especially for
the actual RNA-Seq dataset with synthetic fusion RNA spike-in
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Figure 5: Identification of f-circRNAs in paired-end (A) and single-end (B) simulated RNA-Seq data. Fcirc was applied to detect f-circRNAs from 4 different fusion

genes (EML4-ALK, EWSR1-FLI1, KMT2A-MLLT3, and PML-RARα) in simulated RNA-Seq datasets. Whereas the control dataset contains only linear fusion transcripts,
the investigative dataset included pooled linear/circular fusion transcripts. Different sequencing coverages (20, 50, and 100×) and 2 read lengths (50 and 100 bp) were
simulated.

(RNA-Seq Scenario 1), the problem of high FP rates became evi-
dent for some of the other tools because only 6.1% and 13.4% of
fusion transcripts predicted by ChimeraScan and FusionCatcher
were TPs, respectively, whereas Fcirc achieved a TP rate of 87.5%
(Fig. 2A, Suppl. Table 5). Contrariwise, the recall rate was slightly
lower for Fcirc compared with the other tools for the actual can-
cer cell–derived RNA-Seq datasets (RNA-Seq Scenario 3), which
is likely due to presence of unknown fusions.

Fcirc furthermore detected f-circRNAs with high reliability
and accuracy in simulated datasets with paired-end (Fig. 5A)
and single-end samples (Fig. 5B) under different coverage and
read length conditions as well as in actual cancer cell–derived
RNA-Seq datasets (e.g., EML4-ALK and PML-RARα) (Suppl. Fig. 1).
These results confirm previous reports on gene fusion events in
multiple NSCLC and acute leukemia cell lines that were used for
our analysis [7, 8, 35]. Interestingly, Fcirc identified ∼10 differ-
ent f-circRNA transcripts for the PML-RARα fusion gene in NB4
leukemia cells (depending on the computational assumptions),
which warrants further investigation and biological characteri-
zation (Suppl. Table 12).

In conclusion, our study provides an insightful comparison
of different fusion detection tools and suggests Fcirc as a pow-
erful tool to detect linear and circular RNA transcripts of known
fusion genes with high specificity in RNA-Seq datasets. Fcirc’s
reduced computing time will expedite the analysis of very large
data sets and therefore improve our future understanding of the
impact of gene fusion–related transcripts on cancer biology.

Availability of Supporting Source Code and
Requirements

Project name: Fcirc: A Comprehensive Pipeline for the Explo-
ration of Fusion, Linear and Circular RNAs
Project home page: https://github.com/WangHYLab/fcirc
Operating system(s): Ubuntu 16.04/18.04, MacOS
Programming language: Python
Other program requirements: hisat2, samtools, numpy, scipy,
pysam
License: Massachusetts Institute of Technology (MIT, Cambridge,
MA, USA)
Bio.tools id: biotools: Fcirc (https://bio.tools/Fcirc)
RRID:SCR 018090

Availability of Supporting Data and Materials

Synthetic spike-in real RNA-Seq data were obtained from the
SRA under the accession number SRP043081 [21]. Actual RNA-
Seq data were obtained from the BioProject with accession IDs
PRJNA350335 and PRJNA315254. Simulated RNA-Seq data were
generated as described in the Methods section, and reference in-
formation of fusion transcripts and of f-circRNAs are presented
in Supplementary Tables 2 and 3. Other data further support-
ing this work are openly available in the GigaScience repository,
GigaDB [36].

https://github.com/WangHYLab/fcirc
https://scicrunch.org/resolver/RRID:SCR_018090
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Figure 6. Visualization of f-circRNAs. The structure of fusion circular RNAs (n = 2 for each fusion gene) that were identified in the paired-end sample analysis with 100×
coverage and a read length of 100 bp (Fig. 5A) is visualized for f-circEWSR1-FLI1 (A), f-circEML4-ALK (B), f-circPML-RARα (C), and f-circKMT2A-MLLT3 (D). The distribution

of fusion-supporting reads on the fusion region (middle graph) and of f-circRNA-supporting reads on the back-spliced region (lower graph) are depicted.
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12. Nicorici D, Şatalan M, Edgren H, et al. FusionCatcher – a
tool for finding somatic fusion genes in paired-end RNA-
sequencing data. bioRxiv 2014, doi:10.1101/011650.

13. Haas BJ, Dobin A, Stransky N, et al. STAR-Fusion: Fast and
accurate fusion transcript detection from RNA-Seq. bioRxiv
2017, doi:10.1101/120295.

14. Iyer MK, Chinnaiyan AM, Maher CA. ChimeraScan: A tool for
identifying chimeric transcription in sequencing data. Bioin-
formatics 2011;27(20):2903–4.

15. Davidson NM, Majewski IJ, Oshlack A. JAFFA: High sensitivity
transcriptome-focused fusion gene detection. Genome Med
2015;7(1):43.

16. Gao Y, Wang J, Zhao F. CIRI: An efficient and unbiased algo-
rithm for de novo circular RNA identification. Genome Biol
2015;16:4.

17. Szabo L, Morey R, Palpant NJ, et al. Statistically based splic-
ing detection reveals neural enrichment and tissue-specific
induction of circular RNA during human fetal development.
Genome Biol 2015;16:126.

18. Song X, Zhang N, Han P, et al. Circular RNA profile in gliomas
revealed by identification tool UROBORUS. Nucleic Acids Res
2016;44(9):e87.

19. Kumar S, Vo AD, Qin F, et al. Comparative assessment of
methods for the fusion transcripts detection from RNA-Seq
data. Sci Rep 2016;6:21597.

20. Zeng X, Lin W, Guo M, et al. A comprehensive overview and
evaluation of circular RNA detection tools. PLoS Comput Biol
2017;13(6):e1005420.

21. Tembe WD, Pond SJ, Legendre C, et al. Open-access synthetic
spike-in mRNA-seq data for cancer gene fusions. BMC Ge-
nomics 2014;15:824.

22. Huang W, Li L, Myers JR, et al. ART: a next-generation
sequencing read simulator. Bioinformatics 2012;28(4):
593–4.

23. Zhang LQ, Cheranova D, Gibson M, et al. RNA-seq reveals
novel transcriptome of genes and their isoforms in hu-
man pulmonary microvascular endothelial cells treated with
thrombin PLoS One 2012;7(2):e31229.

24. Forbes SA, Beare D, Boutselakis H, et al. COSMIC: So-
matic cancer genetics at high-resolution. Nucleic Acids Res
2017;45(D1):D777–D83.

25. Rusan M, Li K, Li Y, et al. Suppression of adaptive responses
to targeted cancer therapy by transcriptional repression.
Cancer Discov 2018;8(1):59–73.

26. Kim D, Langmead B, Salzberg SL. HISAT: A fast spliced
aligner with low memory requirements. Nat Methods 2015;
12:357.

27. Li H, Handsaker B, Wysoker A, et al. The Sequence
Alignment/Map format and SAMtools. Bioinformatics
2009;25(16):2078–9.

28. Lee M, Lee K, Yu N, et al. ChimerDB 3.0: An enhanced
database for fusion genes from cancer transcriptome and
literature data mining. Nucleic Acids Res 2017;45 Database
issue:D784–D9.

29. Novo FJ, Mendı́bil IOD, Vizmanos JL. TICdb: A collection of
gene-mapped translocation breakpoints in cancer. BMC Ge-
nomics 2007;8(1):33.

30. Korla PK, Cheng J, Huang CH, et al. FARE-CAFE: A
database of functional and regulatory elements of cancer-
associated fusion events. Database (Oxford) 2015;2015:
bav086.

31. Wang Y, Wu N, Liu J, et al. FusionCancer: A database of can-
cer fusion genes derived from RNA-seq data. Diagn Pathol
2015;10(1):131.

32. Zerbino DR, Achuthan P, Akanni W, et al. Ensembl 2018. Nu-
cleic Acids Res 2018;46(Database issue):D754.
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