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Abstract. Parkinson’s disease is a debilitating neurodegenerative disorder whose etiology is still unclear, hampering the
development of effective treatments. There is an urgent need to identify the etiology and provide further effective treatments.
Recently, accumulating evidence has indicated that infection may play a role in the etiology of Parkinson’s disease. The
infective pathogens may act as a trigger for Parkinson’s disease, the most common of which are hepatitis C virus, influenza
virus, and Helicobacter pylori. In addition, gut microbiota is increasingly recognized to influence brain function through the
gut-brain axis, showing an important role in the pathogenesis of Parkinson’s disease. Furthermore, a series of anti-infective
agents exhibit surprising neuroprotective effects via various mechanisms, such as interfering with �-synuclein aggregation,
inhibiting neuroinflammation, attenuating oxidative stress, and preventing from cell death, independent of their antimicrobial
effects. The pleiotropic agents affect important events in the pathogenesis of Parkinson’s disease. Moreover, most of them
are less toxic, clinically safe and have good blood-brain penetrability, making them hopeful candidates for the treatment of
Parkinson’s disease. However, the use of antibiotics and subsequent gut dysbiosis may also play a role in Parkinson’s disease,
making the long-term effects of anti-infective drugs worthy of further consideration and exploration. This review summarizes
the current evidence for the association between infective pathogens and Parkinson’s disease and subsequently explores the
application prospects of anti-infective drugs in Parkinson’s disease treatment, providing novel insights into the pathogenesis
and treatment of Parkinson’s disease.
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INTRODUCTION

Parkinson’s disease (PD) is the second most com-
mon neurodegenerative disease worldwide, ranking
only after Alzheimer’s disease [1]. The incidence of
PD in people aged 65 years and older reaches 2% and
increases rapidly with age [2]. Pathologically, PD is
characterized by the loss of nigrostriatal dopamine
neurons and the formation of Lewy bodies [3].
However, the etiology and underlying pathogenesis
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Fig. 1. Schematic diagram of the relationship between infective pathogens and Parkinson’s disease. Infective pathogens enter the central
nervous system through the bloodstream or nerves, causing inflammatory response and blood-brain barrier disruption through the release
of pro-inflammatory cytokines. This subsequently leads to a series of glial activation, neuroinflammation, �-synuclein accumulation and
neuronal death, which trigger or accelerate the onset of PD. SCFA, short chain fatty acids; LPS, lipopolysaccharide; BBB, blood-brain
barrier.

remain unknown. A range of genetic and environmen-
tal factors appear to play a role in the pathogenesis of
PD [4]. It is generally believed that oxidative stress, �-
synuclein (�-syn) aggregation, neuroinflammation,
and mitochondrial dysfunction are implicated in the
pathogenesis [5–7]. However, to date, there is no cure
or disease-modifying agent available for PD. The cur-
rent drugs for the treatment of PD mainly alleviate
motor symptoms, but they cannot slow the progres-
sion of the disease [8]. Therefore, it is imperative to
determine the actual etiology and develop drugs that
can cure the disease at its source.

Accumulating evidence has revealed that infec-
tion may play a critical role in neurological diseases,
such as herpes simplex virus in Alzheimer’s disease
[9], Enterovirus [10] and human herpesvirus [11]
in amyotrophic lateral sclerosis, and Zika virus in
microcephaly [12]. Since the outbreak of encephalitic
lethargica (EL) and post-encephalitic Parkinsonism
(PEP) after the 1918 H1N1 influenza pandemic [13,
14], the possibility of an infective etiology for PD
has been intensely discussed [15] (Fig. 1). Apart
from this, many recent studies have reported that
traditional anti-infective drugs exhibit novel neu-
roprotective effects, which are separate from their
antimicrobial effects, showing a promising potential
in treating PD [16, 17].

This review aims to summarize the current evi-
dence for the association between infective pathogens

and PD (Table 1), highlight recent studies with anti-
infective agents in PD (Table 2), and provide new
insights into the pathogenesis and treatment of PD.

INFECTIVE PATHOGENS ASSOCIATED
WITH PARKINSON’S DISEASE

Viral infection and Parkinson’s disease

Hepatitis C virus (HCV)
HCV is an enveloped, single-stranded RNA virus

that causes a major public health problem worldwide.
In addition to liver injury, chronic HCV infection
also causes a series of extrahepatic manifestations,
including fatigue, depression, cognitive dysfunction,
diabetes, atherosclerosis, and stroke [18, 19].

Recently, emerging data from epidemiological
studies has indicated that HCV infection is associated
with PD as a risk factor. The HCV-infected patients
in most of these studies usually had a significantly
increased risk of developing PD [20–25], except a
study using the U.S. Medicare database [26]. Fur-
thermore, an extensive meta-analysis involving five
studies with 323, 974 participants found a higher risk
of PD among HCV-infected patients [27]. Remark-
ably, interferon-based antiviral therapy has recently
been shown to reduce the risk of developing PD in
patients with HCV infection [28, 29].
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Table 1
Association of infective pathogens in the development of Parkinson’s disease and possible pathogenesis

Infective pathogens The association between infective pathogens and PD Indicated role in PD pathogenesis

HCV • Patients with HCV infection have a significantly
increased risk of developing PD [20–25]

• Essential HCV receptors were expressed on the brain
microvascular endothelial cells, resulting in the viral
entry and disruption in CNS [30]• Interferon-based antiviral treatment against HCV is

associated with a reduced risk of PD [28, 29] • The neurotoxic effects of HCV on dopaminergic
neurons [20]• The detection of HCV RNA sequence in postmortem

brain tissue samples [31] • The release of substantial inflammatory cytokines
caused by HCV infection [20]• The alteration of dopaminergic neurotransmission in

HCV-infected patients [32]
Influenza virus • The outbreak of EL and PEP following the 1918

H1N1 influenza pandemic [13]
• The risk of developing parkinsonism is associated

with recent influenza, influenza episodes number, and
preceding influenza infections severity [34]

• The synergistic effect of influenza and MPTP in the
dopaminergic neuron loss could be eliminated by
influenza vaccination or treatment with oseltamivir
carboxylate [35]

• Activating the innate immune response [39]
• Permanent glial activation [40]
• The release of elevated inflammatory cytokines [38]
• Degeneration of dopaminergic neurons [39]
• Promoting phosphorylation and aggregation of

�-synuclein [41]

VZV • A higher incidence of PD in VZV-infected patients by
2 recent epidemiological studies [42, 43]

• Neuroinflammation and immunological changes

• Chickenpox infection in childhood was found to be
inversely correlated with PD [33]

JEV • JEV infection could lead to a transient form of
parkinsonism [45]

• Noticeable bradykinesia, decreased dopamine levels
and neuropathologic features were observed in
JEV-induced rat model [47]

• Neuronal loss with gliosis [46]
• Severe structural damage to the thalamus, basal

ganglia, and brainstem [48]
• Catecholamine levels alteration [47, 48]

WNV • WNV could cause transient Parkinsonian
manifestations [49]

• Stimulating �-synuclein production and inducing
dopaminergic neuronal death [52]

• Increased �-syn expression in WNV-infected primary
neurons [52]

WEEV • Parkinsonism cases following encephalitis with
WEEV infection [54]

• Persistent activation of microglia and astrocytes,
selective dopaminergic neurons loss, and �-synuclein
aggregation [55, 56]• WEEV infection could induce persistent microgliosis

and astrogliosis, selective dopaminergic neurons loss,
and �-synuclein aggregation in vivo [55, 56]

HIV • People infected with HIV often exhibit motor
disorders such as bradykinesia, postural instability,
gait abnormalities [57]

• Chronic inflammatory infiltrates, glial activation in
basal ganglia [58, 60, 61]

• Decreased levels of dopamine and its metabolites in
AIDS group [59]

• An effect of HIV on PD-related proteins, like DJ-1
and LRRK2 [63, 64]

• A higher frequency of �-synuclein in the brain of
HIV-infected patients [62]

SARS-CoV-2 • Conjecture, need further evidence • Uncertain
• SARS-CoV-2 could cause neurological symptoms and

neuropathological damage [67, 68]
• Maybe invading CNS through nasal cavity and

causing neuroinflammation, triggering or accelerating
the early pathogenesis of PD [70]• Anosmia, an early sign of PD, is a common early

symptom of COVID-19 [69]
• Motor and nonmotor symptoms significantly

worsened in the COVID-19 group [74]
• Parkinsonism cases after SARS-CoV2 infection

[71-73]
H. pylori • PD patients have a higher prevalence of H. pylori

infection [79, 80]
• H. pylori-infected PD patients display worse motor

functions [81]
• Eradication of H. pylori ameliorates motor symptoms

in PD patients [82, 84]
• Eradication of H. pylori improves levodopa absorption

in PD patients [82, 83]

• Toxins produced by H. pylori
• Disruption of gut microbiota [85]
• Substantial proinflammatory cytokines release,

microglial activation, BBB dysfunction, resulting in
neuroinflammation [86, 87]

• The pharmacokinetic effects of H. pylori on levodopa
[90–92]

• Molecular mimicry between H. pylori and proteins
essential for normal neurological functions [88, 89]

VZV, varicella zoster virus; JEV, Japanese encephalitis virus; WNV, West Nile virus; BBB, blood-brain barrier; CNS, central nervous system;
EL, encephalitic lethargica; PEP, post encephalitic Parkinsonism.
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Table 2
Neuroprotective effects and possible mechanisms of anti-infective agents in Parkinson’s disease

Anti-infective agents Neuroprotective effects The possible mechanisms/pathways Derivatives

Anti-microbial agents
Ceftriaxone Attenuating oxidative stress and neuroinflammation [123,

124]
Suppressing
NF-κB/JNK/c-Jun signaling [126]

–

upregulating GLT-1 expression and glutamate uptake,
reducing striatal tyrosine hydroxylase loss [125]

restoring BDNF levels [124]
inhibiting dopaminergic degeneration [128]
improving motor and memory deficits [127]
binding to �-synuclein with good affinity and blocking its

polymerization [129]
Doxycycline Protection against nigral dopaminergic degeneration [132] Downregulation of MMP-3; –

inhibiting microglial and astrocyte expression [130, 131] inhibiting p38 MAPK and NF-κB
signaling pathways [131]anti-apoptotic and anti-inflammatory effects [132]

inhibiting �-synuclein aggregation and seeding of new
oligomers [133]

Minocycline Preventing nigrostriatal dopaminergic neurodegeneration
[135]

Inhibiting the activation of p38
MAPK [138]

–

inhibiting glial activation [136, 138]
inhibiting IL-1�, NADPH-oxidase and iNOS [136]
reducing tyrosine hydroxylase-positive cell loss, increasing

nigral cell size and fiber density [137]
reducing NMDA toxicity [138]

Rifampicin Inhibiting �-synuclein fibrillation and disaggregating
existing fibrils [144, 145]

scavenging free radical [146]
suppressing apoptosis, ameliorating mitochondrial

oxidative stress [147]
inhibiting glial activation and the pro-inflammatory

mediator production [148]
increasing the surviving dopaminergic neuron numbers

[142]

Suppressing NF-κB pathway;
decreasing the phosphorylation of
MAPKs;

Rifampicin
quinone
(RifQ) [151]

improving autophagy flux and
lysosomal function [149, 150]

inhibition of both PI3K- and
non-PI3K-dependent signaling
events [151]

Geldanamycin Reducing �-synuclein induced neurotoxicity [152, 155] Inhibiting Hsp90, inducing Hsp70
[155]

17-AAG, 17-
DMAG; SNX-
9114 [156]

Anti-fungal agents
Rapamycin Decreasing dopaminergic neurons loss [159] Blocking translation of RTP801

[157];
–

reducing �-synuclein accumulation [158]
Via the mTOR-Akt-NF-κB cascade,

partially the JAK2/STAT3 pathway
[160]

protecting mitochondria against oxidative stress and
apoptosis [159]

Glial and anti-inflammatory effects: upregulating glutamate
transporter and IL-6 expression [160]

Anti-viral agents
Interferon Interferon treatment can reduce the risk of PD in patients

with HCV infection [28, 29]
Unknown –

Amantadine Clinical discovery: a female patient with PD improved
motor symptoms after taking amantadine for flu [112,
113]

Enhancing dopamine release from
presynaptic terminals [116],
blocking NMDA receptors [117]
and the mild anticholinergic effect
[118]

ADS-5102
[119, 120]

improving dyskinesia effectively, especially in the early
stage [115]

Anti-parasitic agents
Niclosamide Activating PINK1 in cells through the reversible

impairment of mitochondrial membrane potential [163]
Activating PINK1 [163] AM85 [163]

It was demonstrated that essential HCV receptors
were expressed on brain microvascular endothelial
cells, a major component of the blood-brain barrier
(BBB), which could provide a gateway for HCV to
invade the central nervous system (CNS) and cause
neuroinflammation [30]. This notion was supported

by the detection of HCV RNA sequences in post-
mortem brain tissue from infected patients [31]. In
a previous study, it was found that both serotonergic
and dopaminergic neurotransmissions were altered in
HCV-infected patients with chronic fatigue and cog-
nitive impairment [32]. In addition, it was HCV, not
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HBV, that was found to induce 60% dopaminergic
neuron death in the midbrain neuron-glia coculture
system in rats, suggesting that HCV had neurotoxic
effects on dopaminergic neurons [20]. Furthermore,
HCV infection could induce the release of substantial
inflammatory cytokines, indicating that neuroinflam-
mation may play a role in PD pathogenesis [20].

Influenza virus
According to clinical discovery, influenza virus

may be related to PD, but this relationship is still
controversial. The causal link between influenza
virus and PD stems from the outbreak of EL and
PEP following the 1918 H1N1 influenza pandemic
[13]. It was also reported that there was a posi-
tive relationship between severe influenza and PD,
as well as an inverse relationship between influenza
vaccination and PD (although the latter was not
statistically significant) [33]. In a large observa-
tional study, influenza infection was shown to have
a link with PD-like symptoms, such as tremor or
gait disturbances, especially in the first few weeks
after the diagnosis or documentation of influenza
infection [34]. In addition, the risk of develop-
ing parkinsonism symptoms was associated with
recent influenza, number of influenza episodes, and
severity of preceding influenza infections, which
indicated that influenza-related neuronal damage
may be a cumulative process [34]. What’s more,
a synergistic effect of influenza and 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced
the loss of dopaminergic neurons in mice, which
could be eliminated by influenza vaccination or treat-
ment with oseltamivir carboxylate [35]. This further
supports the link between influenza virus and PD.

However, the pathology and manifestations of PEP
differ from those of idiopathic PD [36], and influenza
genes were not detected in the brains of EL patients
from 1916 to 1920 [37], which did not support the
role of influenza virus as a causative agent of PD.

On the other hand, an array of proinflammatory
mediators were elevated in patients with influenza
virus-associated encephalopathy, indicating the role
of inflammation in the pathogenesis of PEP [38].
An animal study found that the highly pathogenic
H5N1 influenza virus could enter the CNS from the
peripheral nervous system and activate the innate
immune response in the brain, leading to a signif-
icant increase in phosphorylation and aggregation
of �-synuclein and dopaminergic neuron degener-
ation [39]. Although the transient loss of tyrosine
hydroxylase-positive (TH+) dopaminergic neurons

was found to have largely recovered by 90 days
post-infection, a long-lasting inflammatory response,
especially permanent microglia activation, remained
in H5N1-infected mouse models [40]. Moreover, a
recent study demonstrated that H1N1 influenza A
viral infection and replication could lead to the for-
mation of �-synuclein aggregates [41].

Varicella zoster virus (VZV)
The initial infection of VZV causes varicella,

which then lies dormant in the body and causes herpes
zoster when reactivated. Early studies have suggested
that there was no link between herpes zoster and
PD. However, small sample sizes and bias due to
self-reported infection history may limit the results.
Recently, two cohort studies found a positive cor-
relation between herpes zoster and the risk of PD,
whether in elderly or midlife patients [42, 43]. Neu-
roinflammation and immunological changes involved
in both conditions may explain the association. On
the other hand, chickenpox infection was reported
to have no association with PD [44]. However, in
one study, chickenpox infection in childhood was
found to be negatively correlated with PD, showing
a possible protective effect [33]. The reverse rela-
tionship between childhood chickenpox infection and
PD is difficult to explain, likely because the immune
response activated at a younger age is important in
reducing the possibility of viral infection that may
damage dopaminergic neurons.

Japanese encephalitis virus (JEV)
Encephalitis caused by JEV is endemic throughout

Asia each year, which could cause a high fre-
quency of movement disorders. Japanese encephalitis
(JE) can lead to a transient form of parkinsonism,
which is characterized by varying severity of rigidity,
hypokinesia, masking face, prominent hypophonia
and a lower frequency of tremor [45]. Neuronal
loss with gliosis in the substantia nigra pars com-
pacta was observed in Fischer rats infected with JEV,
which was similar to the pathological changes in
PD [46]. Additionally, these rats showed noticeable
bradykinesia and improved behavior after L-dopa
administration. In addition, decreased dopamine lev-
els and neuropathological characteristics with aging
were also observed in JEV-induced PD rat models
[47]. A significant decrease in the concentrations
of norepinephrine, dopamine, and homovanillic acid
in the cerebrospinal fluid was also noticed in JE
patients [48], which may be caused by severe struc-
tural damage to the thalamus, basal ganglia, and
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brainstem, as detected on magnetic resonance imag-
ing (MRI).

West Nile virus (WNV)
Movement disorders, especially tremor, myoclo-

nus, and parkinsonism, may be unrecognized mani-
festations of acute WNV disease [49]. Parkinsonian
features associated with acute WNV disease were
transient in most cases and diminished over time, with
a generally good prognosis [50]. On rare occasions,
WNV infection can spread to the CNS in humans,
which mechanisms are not yet completely under-
stood. WNV encephalitis could result in immune
responses in the brain and neuronal apoptosis. MRI
showed abnormalities in the bilateral basal gan-
glia, thalamus, and pons in patients with severe
persistent parkinsonism symptoms [51]. In addi-
tion, an increased expression of �-syn was observed
in WNV-infected primary neurons. �-syn knockout
mice also showed increased viral titers, increased
neuronal damage, and accelerated mortality follow-
ing the introduction of WNV [52]. Moreover, it was
demonstrated that �-synuclein expression in intesti-
nal neurons increased with gastrointestinal infection
and induced leukocyte migration and dendritic cell
maturation, suggesting the role of �-synuclein in
gastrointestinal immunity [53]. The aforementioned
aspects unveil the novel and significant role of �-
synuclein in suppressing viral infection. It also further
indicates that the acute onset of parkinsonism dur-
ing WNV encephalitis may be due to WNV-induced
dopaminergic neuronal death.

Western equine encephalitis virus (WEEV)
WEEV is a mosquito-borne arbovirus that can

cause fatal encephalitis in humans and horses. Early
studies have reported that WEEV infection could
cause parkinsonian sequelae following encephalitis
in humans [54]. The intranasal inoculation of recom-
binant WEEV in outbred CD-1 mice could cause
significant neural invasion, resulting in the dissemi-
nation of the virus from the olfactory bulb to the basal
midbrain [55]. The non-lethal encephalitic infection
with WEEV led to sustained loss of dopaminergic
neurons, persistent glial cell activation, formation
of proteinase k-resistant �-synuclein aggregates, and
gene expression profiles consistent with a neurode-
generative phenotype in mice. A subsequent study
built on this result found that astrocytes played a
key role in the initiation of PD-like pathology via
the innate immune inflammatory pathway following
WEEV infection [56].

Human immunodeficiency virus (HIV)
HIV, also known as acquired immunodeficiency

syndrome (AIDS) virus, mainly attacks CD4 + T lym-
phocytes and macrophages in the human body. People
infected with HIV often develop CNS disorders, com-
monly referred to as AIDS dementia complex (ADC).
Psychomotor slowing, apathy, and motor disorders,
such as bradykinesia, postural instability, gait abnor-
malities, and hypomimetic facies, were common
manifestations of ADC [57]. It was found that HIV
was preferentially present in inflammatory infiltrates
and glial cells of the basal ganglia, including the sub-
stantia nigra [58]. Additionally, both dopamine and
its major metabolite homovanillic acid were signifi-
cantly reduced in the AIDS group [59]. This finding
was consistent with the loss of dopaminergic neu-
rons in the substantia nigra, which may be the basis of
motor dysfunction in AIDS patients [60, 61]. Besides,
an autopsy study found that the frequency of �-
synuclein in the brains of HIV-infected patients was
significantly higher than that of the healthy group,
indicating that HIV patients may be more prone to
develop PD [62]. In addition, HIV had an effect on
PD-related proteins, such as DJ1 [63] and LRRK2
[64]. Moreover, a decrease in AIDS-related parkin-
sonism was observed after highly active antiretroviral
therapy [65].

SARS-CoV-2
A serious threat to global health has been posed

with the emergence of the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infection,
coronavirus disease (COVID-19). Although respira-
tory symptoms are a prominent feature of COVID-19,
SARS-CoV-2 can also invade other organs and affect
multiple systems in the body. According to recent
studies, SARS-CoV-2 could invade and attack the
nervous system [66], causing neurological symptoms
[67] and neuropathological damage [68]. Anosmia is
a common early symptom of COVID-19 [69], and is
also considered an early sign of PD. It is still unknown
if this reflects an effect of SARS-CoV-2 on the periph-
eral nervous system, such as the olfactory nerve, or
SARS-CoV-2 could further infect the CNS through
the nasal cavity, a potential pathway into the CNS
[70].

Compared with the 1918 influenza pandemic
and avian influenza, reports of SARS-CoV-2-related
encephalopathy have been slow to emerge. Until
now, there have been relatively few reports of
parkinsonism following SARS-CoV-2 infection. A
45-year-old man [71] and a 35-year-old woman
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[72] developed new asymmetric parkinsonism symp-
toms after SARS-CoV-2 infection. Both patients also
showed radiographic abnormalities of dopamine dys-
function in the presynaptic striatum and responded
well to levodopa. Interestingly, a 58-year-old man
developed acute hypokinetic-rigid syndrome after
SARS-CoV-2 infection and showed spontaneous
improvement after 14 days [73]. According to an Ital-
ian community-based PD cohort study, motor and
non-motor symptoms of the COVID-19 group sig-
nificantly worsened [74]. However, unlike WNV,
SARS-CoV-2 infection did not cause upregulation
of serum and cerebrospinal fluid �-synuclein levels,
regardless of the presence or absence of neurological
symptoms in these COVID-19 patients [75].

Considering the far-reaching impact of SARS-
CoV-2, further longitudinal studies are urgently
needed.

Bacterial infection and Parkinson’s disease

Helicobacter pylori (H. pylori)
H. pylori is a helically-shaped, microaerophilic,

gram-negative bacterium affecting approximately
half of the world’s population. It is well-known
that gastrointestinal symptoms precede motor symp-
toms in PD patients [76]. Besides, a follow-up study
demonstrated that PD patients had a higher incidence
of ulcers, which preceded parkinsonian symptoms by
approximately 10 years [77]. Therefore, the relation-
ship between H. pylori infection and PD has recently
been extensively explored [78].

Increasing evidence demonstrated that PD patients
had a higher prevalence of H. pylori infection. In
one study, PD patients had a three-fold elevated risk
of H. pylori seropositivity, compared with the con-
trol group [79]. Interestingly, their siblings were also
more likely to suffer from parkinsonism symptoms
and H. pylori positivity. An extensive meta-analysis
involving 33, 125 participants revealed that a 1.5–2
fold increased risk of developing PD in H. pylori-
infected persons [80]. Besides, it has been repeatedly
reported that there existed a positive correlation
between H. pylori infection and worse motor func-
tion in PD patients [81]. What’s more, eradication
of H. pylori could ameliorate motor symptoms in
PD patients, which was recommended in PD patients
treated with levodopa because it may improve drug
bioavailability and reduce motor fluctuations [82].
With the clearance of H. pylori, the levodopa onset
time, ON duration, motor severity, and life quality
all got improved [83]. A subsequent comprehensive

meta-analysis found significant associations between
H. pylori infection and higher Unified Parkinson’s
Disease Rating Scale (UPDRS) scores, as well as
a significantly lower UPDRS score in H. pylori-
eradicated PD patients [84].

Overall, these results further confirm the view that
H. pylori infection may play a key role in the course
or even in the pathogenesis of PD [78]. However,
the exact mechanism remains unclear. It is gener-
ally believed that possible pathogenic mechanisms
include toxins produced by H. pylori, the disrupted
gut microbiota [85], substantial proinflammatory
cytokines [86, 87], the molecular mimicry between H.
pylori and proteins essential for normal neurological
functions [88, 89], in addition to the pharmacokinetic
effects of H. pylori on levodopa [90–92].

Microbiota and Parkinson’s disease

Gut microbiota
Gut microbiota is composed of complex micro-

bial communities. Recently, it has been increasingly
recognized that gut microbiota affects brain function
through the gut-brain axis. Emerging evidence sug-
gests that there is a link between gut microbiota and
PD. Gut microbiota was necessary for motor deficits,
microglial activation, and �-synuclein pathology
using �-synuclein overexpression mouse model [93].
Orally taken specific microbial metabolites promoted
neuroinflammation and motor dysfunction in germ-
free mice. The transplantation of gut microbiota
from PD patients into germ-free �-syn overexpres-
sion mouse models exacerbated the motor deficits
in mice, while antibiotic treatment reversed these
effects, suggesting the critical role of gut microbiota
in the pathogenesis of PD.

A number of studies have reported differences in
the composition of the gut microbiota between PD
patients and healthy controls [94]. It has also been
shown that not only the concentration of benefi-
cial fecal short chain fatty acids (SCFA), but also
the abundance of SCFA-producing bacteria were
lower in the PD group than in the control group
[95, 96]. Bacteria that produce SCFA, particularly
butyrate, may be an important factor in the pathogen-
esis and progression of PD. A link was found between
PD clinical characteristics and the gut microbiota
[97]. In this study, the genera Escherichia/Shigella
were negatively associated with disease duration. The
genera Butyricicoccus and Clostridium XlVb were
associated with cognitive impairment. The genera
Dorea and Phascolarcto bacterium were negatively
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associated with levodopa equivalent doses. In a two-
year follow-up study, a more common Firmicutes-
dominant enterotype and a lower abundance of
Prevotella genus were observed in faster-progressing
PD patients, compared with slower-progressing pa-
tients and controls, indicating a connection between
gut microbiota and disease progression [98]. Altered
gut microbiota was also found to be associated with
the plasma cytokine response, in addition to clinical
phenotype and severity [99]. Intriguingly, gut micro-
biota not only affects the health status of the host, but
also the effectiveness of drug treatment [100, 101].

Oral microbiota
Comparing the oral microbiota of 72 PD patients

and 76 healthy controls using 16S rRNA gene
amplicon sequencing, significant differences were
observed in the beta diversity and abundance of indi-
vidual bacterial taxa [102]. Additionally, it was found
that patients with periodontal inflammatory disease
(PID) had a significantly higher risk of developing
PD [103], while dental scaling over five consecu-
tive years could reduce the risk of developing PD
in individuals without PID, which emphasized the
value of early and consecutive dental scaling in pre-
venting the development of PD [104]. Moreover, PD
patients tended to have poorer oral health, lower fre-
quency of daily tooth-brushing, longer gaps between
dental visits, and reduced salivary flow [105]. Even
if confounding factors were controlled, PD patients
still had more missing teeth, caries, dental plaque,
cariogenic bacteria in saliva, and poorer periodontal
health [106]. Individuals with poor oral health also
tended to have higher Hoehn and Yahr scores and
lower MMSE scores [107].

Nasal microbiota
The olfactory bulb was affected by the pathology of

�-synuclein in the early stage, presenting as hypos-
mia. As assumed in the “dual-hit” hypothesis, the
nasal cavity acts as an important portal for pathogens
to spread to the CNS, which may be involved in the
pathogenesis of PD [108].

After comparing the nasal microbiota using the
16S rRNA gene amplicon sequencing approach, no
significant difference in alpha or beta diversity was
observed between 69 PD patients and 67 healthy con-
trols in one study [102]. Similar results were found in
another study [109]. However, owing to the limited
number of studies and patients, we cannot provide a
definitive answer on whether the nasal microbiota is
related to PD.

ANTI-INFECTIVE AGENTS AND
PARKINSON’S DISEASE

Antiviral agents and Parkinson’s disease

Interferon
Wangensteen et al. identified that two patients

developed PD in the short term during treatment of
hepatitis C with interferon alpha [110]. Intriguingly,
two recent epidemiological studies have shown that
interferon treatment could reduce the risk of PD in
patients with HCV infection [28, 29]. One study
demonstrated that the reduced PD risk appeared to
be obvious at five years after antiviral therapy and
became more statistically significant at the end of
follow-up [28]. Another study found that after treat-
ment with PegIFN/RBV antiviral therapy, the risk
of developing parkinsonism decreased by 38% [29].
One possible explanation for this discrepancy is that
the two patients with hepatitis C in the case reports
were already in the premotor stage, and antiviral treat-
ment could not prevent their eventual progression
to PD.

Amantadine
From 1966 to the present, amantadine experi-

enced a transition from an anti-flu drug to an anti-
parkinsonian agent [111]. In 1969, it was accidentally
discovered that a female patient with PD improved
motor symptoms after taking amantadine for flu,
while her symptoms worsened after stopping the
medication [112, 113]. Amantadine seemed to be
most effective in the early stages of PD and had
the greatest impact on tremors [114]. The effect of
amantadine on dyskinesia has also been confirmed
in multiple studies [115]. The mechanism of amanta-
dine in treating PD may involve enhancing dopamine
release from presynaptic terminals [116] and block-
ing N-methyl-D-aspartate (NMDA) receptors [117].
In addition, its mild anticholinergic effect has been
reported [118].

ADS-5102, the amantadine extended-release cap-
sule, has been demonstrated in several pivotal trials
as an effective treatment for reducing OFF-time and
dyskinesia [119]. Thus, it has recently been approved
for the treatment of dyskinesia in PD patients by FDA
[120].

Antimicrobial agents and Parkinson’s disease

Ceftriaxone
Ceftriaxone, a third-generation cephalosporin in

the �-lactam antibiotic group, is a well-tested and safe
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drug that has been used for the treatment of a number
of bacterial infections for several decades. Recently,
the neuroprotective effects of ceftriaxone were
observed in a wide range of neurological disorders,
including Alzheimer’s disease, PD, amyotrophic
lateral sclerosis, Huntington’s disease, cerebral
ischemia, seizure, pain, and spinal cord injury [121].

It was proved that ceftriaxone could reduce L-
dopa-induced dyskinesia severity in a 6-hydro-
xydopamine (6-OHDA) PD model [122]. In MPTP
rat models, post-treatment with ceftriaxone signifi-
cantly improved motor deficits and attenuated oxi-
dative damage, as well as pro-inflammatory cytokines
[123]. Additionally, ceftriaxone was shown to signif-
icantly restore the decreased activity of brain-derived
neurotrophic factor (BDNF) in the striatum of
MPTP-treated rats [124]. In a 6-OHDA PD rat
model, ceftriaxone was reported to increase gluta-
mate uptake, upregulate GLT-1 expression and reduce
striatal tyrosine hydroxylase loss [125]. And it has
been shown that ceftriaxone protected astrocytes
from 1-methyl-4-phenylpyridinium (MPP+)-induced
neurotoxicity by suppressing the NF-κB/JNK/c-Jun
pathway [126]. In an MPTP-induced rat model of PD
dementia, ceftriaxone not only reversed behavioral
deficits but also prevented the loss of neurogenesis
[127]. Another study concluded that ceftriaxone had
an effect on behavioral and neuronal changes, which
could prevent hippocampal cell loss and improve
cognitive function in a PD rat model [128]. Fur-
thermore, ceftriaxone could bind to �-synuclein with
good affinity and block its polymerization in vitro
[129].

Doxycycline
As a member of the tetracycline antibiotic fam-

ily, doxycycline is used to treat a variety of bacterial
infections, such as acne and intestinal infections. In
clinical practice, it is widely used for its protective
property with clinical safety records, increased lipid
solubility, and excellent penetration of the BBB.

It has been demonstrated that doxycycline exhibits
neuroprotective effects on PD both in vivo and
in vitro, with MPTP and 6-OHDA animal mod-
els. In a 6-OHDA PD model, doxycycline blocked
6-OHDA neurotoxicity and conferred neuropro-
tection by inhibiting glial activation [130], the
mechanism of which may be mediated by sup-
pressing the p38 MAPK and NF-κB signaling
pathways [131]. Doxycycline was neuroprotective
against nigral dopaminergic degeneration by a dual
mechanism, anti-apoptotic and anti-inflammatory

mechanisms involving the downregulation of matrix
metalloproteinase-3 (MMP-3) [132]. In addition,
doxycycline not only inhibited the fibril forma-
tion of amyloidogenic proteins such as A� peptide,
PrP peptide, and �-microglobulin, but also affected
the aggregation of �-synuclein and the seeding of
new oligomers. It was determined that doxycycline
reshaped �-synuclein oligomers into off-pathway
species, with parallel �-sheet content and a less
hydrophobic surface, which did not evolve into fib-
ril formation [133]. Furthermore, it is suggested
that doxycycline at sub-antibiotic doses would be
sufficient to exert anti-inflammatory activity and
neuroprotective effects without changing bacterial
susceptibility to antibiotics [134].

Minocycline
Minocycline, a semisynthetic second-generation

tetracycline, exerts anti-inflammatory properties that
are independent of its antimicrobial effects. Minocy-
cline was shown to prevent nigrostriatal dopa-
minergic neurodegeneration. In the MPTP mouse
model of PD, minocycline treatment blocked the
MPTP-induced loss of striatal dopamine and its
metabolites by inhibiting MPTP-induced glial iNOS,
caspase 1 expression in vivo and NO-induced neuro-
toxicity in vitro [135]. In another study, minocycline
inhibited MPTP-induced microglia activation and
prevented the production of microglial-derived dele-
terious mediators, thereby reducing the loss of
nigrostriatal dopaminergic neurons and the forma-
tion of nitrotyrosine produced by MPTP [136]. The
behavioral and morphological effects of minocycline
on PD have also been reported in the 6-OHDA rat
model. Rats receiving minocycline displayed lower
rotations, reduced tyrosine hydroxylase-positive cell
loss, and increased nigral cell size and fiber den-
sity [137]. Minocycline conferred neuroprotection
against NMDA neurotoxicity by inhibiting microglia.
And the neuroprotective effect was associated with
the inhibition of p38 MAPK in microglial cells [138].

However, beyond these promising results, the dele-
terious effects of minocycline on PD have also
been reported [139–141]. Minocycline significantly
exacerbated MPTP-induced damage to dopaminergic
neurons, although it inhibited microglial activation
[139]. This differs from previous studies in which
minocycline inhibited microglial activation to exert
neuroprotective effects [136]. The discrepancy may
be attributed to the fact that minocycline may have
variable or even deleterious effects depending on
the route of administration, drug concentration or
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dosing interval. In addition, inhibiting microglia is
not always beneficial since this may compromise its
protective and reparative functions at the same time.

Rifampicin
Rifampicin, a semi-synthetic derivative of

rifamycins, is widely used for the treatment of tuber-
culosis and leprosy. Rifampicin was able to prevent
neuronal degeneration and significantly increase
the surviving dopaminergic neuron numbers after
MPP+intoxication in vitro [142]. Moreover, it was
proved to attenuate the MPTP-induced neurotoxicity
in the mouse brain [143]. Rifampicin has also been
shown to inhibit �-synuclein fibrillation and disag-
gregate existing fibrils in a concentration-dependent
manner [144]. This is consistent with a subsequent
study in which rifampicin pretreatment caused a
concentration-dependent increase in cell viability
and a reduction in �-synuclein expression [145]. In
addition, rifampicin-induced neuroprotection was
suggested to be associated with its free radical scav-
enging activity [146]. It was found that rifampicin
pretreatment could protect PC12 cells against cell
death by suppressing rotenone-induced apoptosis
and ameliorating mitochondrial oxidative stress
[147]. It was also found that rifampicin could signif-
icantly inhibit the production of pro-inflammatory
mediators in lipopolysaccharide-stimulated BV2
cells [148]. Moreover, the anti-inflammatory effects
of rifampicin were mediated by the inhibition of
NF-κB via the regulation of the IκB pathways as
well as the suppression of MAPKs phosphory-
lation. Additionally, a recent study using human
microglia cells demonstrated that rifampicin attenu-
ated rotenone-induced microglial inflammation by
improving autophagy flux and lysosomal function
[149, 150].

Furthermore, rifampicin quinone, the oxidized
form of rifampicin, is proved more potent than
the parent compound itself, especially in reducing
microglial inflammatory responses [151]. And the
anti-inflammatory effects of these two drugs were
related to the inhibition of PI3K-dependent and inde-
pendent signaling events.

Geldanamycin (GA)
GA, a benzoquinone antibiotic isolated from the

bacterium Streptomyces hygroscopicus, specifically
binds to and inhibits the function of the molec-
ular chaperone heat shock protein 90 (Hsp90),
which promotes proteasomal degradation. GA has
been shown to protect against �-synuclein-induced

dopaminergic neuronal loss in the Drosophila model
of PD [152]. Interestingly, previous studies have
also shown that the molecular chaperones could
suppress protein misfolding and aggregation, thus
exerting protective effects against neurodegenerative
diseases, including Huntington’s disease and spinal-
cerebellar ataxia [153, 154]. It has been demonstrated
that GA could induce Hsp70, prevent �-synuclein
aggregation, and protect against �-synuclein-induced
toxicity in vitro [155]. Although GA could selec-
tively inhibit Hsp90, upregulate Hsp70, and reduce
�-synuclein-induced neurotoxicity, its application is
limited due to its hepatotoxicity and poor brain
permeability. However, its structural analogs, such
as 17-(allylamino)-17-demethoxygeldanamycin (17-
AAG) and 17-dimethylaminoethylamino-17-deme-
thoxy-geldanamycin (17-DMAG) exhibited greater
potency, reduced toxicity, and improved brain per-
meability. Additionally, SNX-9114, a novel Hsp90
inhibitor, was reported to significantly rescue dopa-
mine levels in the striatum after chronic treatment
in a rat model of parkinsonism, although it failed
to protect against �-synuclein-induced nigrostriatal
toxicity [156].

Anti-fungal agents and Parkinson’s disease

Rapamycin
As an inhibitor of mTOR, rapamycin can effec-

tively initiate the autophagy process and remove
the accumulated denaturing proteins and damaged
organelles of cells, which play a crucial role in the
pathogenesis of neurodegenerative diseases.

Rapamycin has been verified to confer neuropro-
tection against PD toxins both in vitro and in vivo
[157]. It could protect against neuronal death by
blocking mTORC1–dependent translation of the pro-
cell death protein RTP801. Rapamycin was reported
to reduce �-synuclein accumulation and promote
oligomer clearance via enhanced autophagy [158]. In
addition, pretreatment with rapamycin could improve
animal behaviors and decrease dopaminergic neu-
ron loss in the 6-OHDA-induced rat model, which
might be due to the property of rapamycin on
protecting mitochondria from oxidative stress and
apoptosis [159]. The effects of rapamycin on glia
and anti-inflammation have been further verified in
a study [160], wherein the astrocytic upregulation
of glutamate transporters and improvement in IL-6
expression were observed in the MPTP models. Fur-
thermore, the activation of the mTOR-Akt-NF-κB
cascade, in part the JAK2/STAT3 pathway, appeared
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Fig. 2. Neuroprotective property of anti-infective agents on the pathogenesis of Parkinson’s disease. (Ceftriaxone-red pill, doxycycline-orange
pill, minocycline-yellow pill, rifampicin-green pill, rapamycin-dark blue pill, geldanamycin-purple pill).

to be crucial in mediating the biological effects of
rapamycin.

These findings suggest that rapamycin could be an
effective and promising neuroprotective candidate for
the treatment of PD (Fig. 2). However, the adverse
effects of rapamycin as an immunosuppressive agent
for long-term treatment should not be ignored. Long-
term use of rapamycin could lead to lung toxicity
[161] and increase the risk of type 2 diabetes [162].

Anti-parasitic agents and Parkinson’s disease

Niclosamide
A recent study has shown that the anthelminthic

drug, niclosamide, and its analog, AM85 can acti-
vate PINK1 in cells through the reversible impairment
of mitochondrial membrane potential, which are
expected to be a strategy for the treatment of PD
[163]. In addition, niclosamide has been used safely
to treat parasitic infections for a long time with no
obvious serious adverse reactions.

CONCLUSIONS AND FUTURE
PERSPECTIVES

In this review, we present the current evidence
for the possibility of infective pathogens in the eti-
ology of PD and the potential use of antibiotics as
neuroprotective agents in PD. In the past few years,
people’s attention on PD has mainly focused on
�-synuclein. However, the etiology of PD remains
elusive, hampering the development of effective treat-
ments. Obviously, it is of great importance to identify

the etiology and provide further corresponding treat-
ments. Infection provides a fascinating hypothesis
for the etiology of PD. As early as the 1920s, PD
was suspected to be an infectious disease because it
often appeared after EL [13]. In a recent study, it was
discovered that the bacterial endotoxin lipopolysac-
charide could transform asymptomatic Pink1–/–mice
into a fully penetrant PD model, suggesting that
intestinal infection may act as a triggering event in PD
[164]. These studies highlight that chronic infection
with bacterial and viral pathogens may be a trigger
for PD. As an initiating factor, infection may cause
a range of gut microbiota dysbiosis, glial activation,
neuroinflammation, and �-synuclein accumulation,
which may elicit or accelerate the pathogenesis of
PD and lead to its occurrence. The underlying cause
for PD with infection is unknown. Controversy still
exists as to the potential pathogenesis of infection
with PD. In addition, whether PD patients become ill
as a result of infecting pathogens or simply because
they are more susceptible to infective factors requires
further research.

Currently, there are no cure or disease-modifying
drugs that can stop or slow the progression of PD.
However, a growing body of research suggests that
anti-infective agents appear to be promising candi-
dates for the treatment of PD. These agents affect
crucial events in the pathogenesis of PD, such as
interfering with �-synuclein aggregation, inhibiting
neuroinflammation, attenuating oxidative stress, and
preventing from cell death, thereby effectively hin-
dering disease progression at multiple levels and
showing promising application prospects. Although
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the potential for antibiotics in the treatment of PD
is encouraging, few clinical trials have been con-
ducted so far. As is known to all, several important
idiopathic diseases have been found to be associated
with previously unsuspected infections, such as H.
pylori in gastric ulcer and gastric cancer [165], human
papillomavirus in cervical cancer [166], Epstein-Barr
virus in nasopharyngeal cancer [167], and hepatitis
B virus in liver cancer [168]. These discoveries have
led to new and effective treatments for the disease.
If the role of infection in PD can be confirmed, it
will provide a new direction and target for the treat-
ment of PD. Besides, drug repurposing can quickly
introduce drugs with well-documented safety to new
patient populations, significantly speeding up the
drug development process [169]. Recently, a nation-
wide case-control study was carried out, suggesting
that early overexposure to antibiotics, particularly
antianaerobics and broad-spectrum antibiotics, is
associated with subsequent PD, with a delay of 10
to 15 years, which is consistent with the proposed
duration of a prodromal period [170]. And this cor-
relation is largely due to alteration in gut microbiota
[171, 172]. Further research is needed to clarify the
relationship between anti-infective agents and PD.
In addition, if further research supports the infective
etiology hypothesis for PD, a balance between effi-
cacy and adverse effects should be taken into account.
The choice of antibiotics, when and how to use them,
the possible antibiotic resistance problem, and the
potential impact of antimicrobial prescription on gut
microbiota also need further consideration.

Taken together, results from recent studies suggest
that infection may play a novel role in the patho-
genesis of PD and highlight anti-infective agents as
potential therapeutic targets for the treatment of PD.
Further epidemiological and experimental studies are
needed to confirm this hypothesis.
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