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Abstract: Skin cancer is the most frequent cancer throughout the world. Vismodegib (VSD) is a
hedgehog blocker approved for the prevention and treatment of skin cancer. VSD, however, is poorly
bioavailable and has been linked to side effects. This work focused on designing a nano-invasome
gel as a vehicle for enhancing the permeation, bioavailability, and efficacy of VSD. Additionally, the
combined effect of terpenes and ethanol was studied on the permeation of VSD compared with lipo-
somes. The prepared VSD-loaded invasomes (VLI) formulation included cineole (1%v/v), cholesterol
(0.15%w/w), phospholipid (2%w/w), and ethanol (3%v/v) and displayed an entrapment efficiency of
87.73 ± 3.82%, a vesicle size of 188.27 ± 3.25 nm, and a steady-state flux of 9.83 ± 0.11 µg/cm2/h.
The VLI formulation was vigorously stirred into a carbopol base before being characterized in vivo
to investigate the permeation, bioavailability, and efficacy of VSD. The VLI gel enhanced the dermal
permeation of VSD and, as a result, had 3.59 times higher bioavailability with excellent antitumor
action as compared to oral VSD. In summary, as an alternative to oral administration for skin cancer
treatment, invasomes are efficient carriers for delivering VSD and enhancing its transdermal flux into
deep skin layers.

Keywords: skin cancer; vismodegib; invasomes; terpenes; bioavailability

1. Introduction

Skin cancer is a malignancy that occurs when abnormal cells in the skin proliferate
uncontrollably [1,2]. It has now become the most frequent cancer, showing an increasing
incidence rate worldwide [3,4]. Vismodegib (VSD) is a hedgehog blocker that has been
approved for the prevention and treatment of skin cancer [1,4]. Although oral VSD is
effective, it is poorly bioavailable and has been linked to side effects [1,4]. The use of
transdermal drug delivery systems has great potential over oral VSD, including avoiding
the hepatic first-pass effect, regulating drug delivery, reducing dose frequency, and targeting
pathological sites with minimal systemic side effects [5,6]. The human skin’s stratum
corneum acts as a protective barrier, limiting the dermal permeation of many drugs. To
bypass the stratum corneum, several approaches to transdermal drug delivery systems have
been introduced [7]. One of these approaches is to use nanoparticle-based delivery systems.

The use of nanoparticle-based delivery systems has great potential in both clinical
and pharmacological research. Drug-loaded nanoparticles allow drugs to penetrate the
stratum corneum into the deeper layers of the skin [8]. Nanoparticle-based drug deliv-
ery systems improve bioavailability, target action on specific sites, and sustained drug
release [9,10]. They can enhance the pharmacokinetics, selectivity, and efficacy of drugs
while lowering their toxicity [4,11,12]. Liposomes were first described as nanoparticles
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for transdermal use [11,13]. Phospholipids and cholesterol are the main components of
liposomes. Liposomes can enhance the pharmacokinetics and the efficacy of drugs, but
they lack the ability to effectively penetrate the skin [11,13]. A new generation of liposomes
was designed to enhance the liposome’s physic-chemical properties. Invasomes were
introduced as nanoparticles by Alfred Fahr [14]. They were composed of phospholipids,
ethanol, and terpenes [14–16]. Ethanol and terpenes are dermal penetration enhancers.
Terpenes disturb the stratum corneum’s structure, making the vesicles more fluid [14–16].
Ethanol is a –ve charge provider, which makes the lipid membrane more fluidic [5,14–16].
The combined effect of ethanol and terpenes enhance drug permeation, bioavailability, and
efficacy [14–16]. Invasomes are a promising approach to improving transdermal delivery
and the permeability of drugs.

Incorporating the invasomes’ suspension into gel as a drug delivery system has great
potential for preventing the evaporation of ethanol and terpenes, prolonging the dermal
contact time, and improving the drug efficacy, stability, and shelf life [5]. This work focused
on designing a nano-invasome gel as a vehicle for enhancing the permeation, bioavailability,
and efficacy of VSD. Additionally, the combined effect of terpenes and ethanol was studied
on the permeation of VSD compared with liposomes. Formulations of liposomes and
invasomes were prepared and characterized in vitro to study their physical and chemical
properties. The formulations were then vigorously incorporated into a carbopol gel base as
vehicles, before being characterized in vivo to investigate VSD’s permeation, bioavailability,
and efficacy.

2. Results
2.1. HPLC Quantification of Vismodegib

The method developed by Pulusu et al. was used to estimate the calibration curve of
VSD. The peak of VSD was evaluated at a retention time of 2.9 min. Linearity was obtained
between 0.012 and 0.12 mg/mL with a coefficient of determination (R2) of 0.999.

2.2. Equilibrium Solubility Studies of Vismodegib

The saturated solubility of VSD was measured and found to be 0.25 mg/mL, and
so 50 mL of IPB + Tween 80 (0.1%v/v) was great enough to be selected as the dissolution
volume to meet the sink condition of the release and permeation experiments.

2.3. Preparation and Vitro Characterization of VLI and VLL Formulations

Successfully, the VLI formulation and VLL formulation were prepared as shown in Table 1.

Table 1. In vitro characterization of VLI and VLL formulations.

Formulation
Code

Phospholipid
%w/w

Cholesterol
%w/w

Cineole
%v/v

Ethanol
%v/v

%EE (%)
(Mean ± SD)

Particle Size
(nm)

(Mean ± SD)

Zeta Potential
(mV)

(Mean ± SD)
PDI

(Mean ± SD)

VLI 2 0.15 1 3 87.73 ± 3.82 188.27 ± 3.25 −20.5 ± 1.61 0.12 ± 0.02
VLL 2 0.15 0 0 72.52 ± 4.72 258.67 ± 9.00 −7.72 ± 1.53 0.26 ± 0.02

2.3.1. Entrapment Efficiency and DLS Characterization

As shown in Table 1, the %EE, particle size, zeta potential, and polydispersity index
(PDI) of the VLL and VLI formulations were measured. The %EE of the VLL formulation
was significantly (p < 0.05) lower than that of VLI, while the particle size and PDI of the
VLI formulation were significantly (p < 0.05) lower than those of VLL. The values of the
zeta potential of both VLI and VLL formulations indicated enough negative surface charge
for electrostatic stabilization.
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2.3.2. Thermal Analysis Examination

As shown in Figure 1, VSD, phospholipid, and cholesterol showed endothermic peaks
at 186 ◦C, 224 ◦C, and 144.46 ◦C, respectively. The DSC thermogram of plain liposome,
plain invasomes, VLI, and VLL shows the disappearance of the endothermic peaks.
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2.3.3. Transmission Electron Microscopy (TEM) Measurement

According to the TEM, Figure 2 displays the VLI and VLL formulations’ surface
morphology. Both formulations appear as spherical nano-vesicles with black dots.
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2.4. Preparation and In Vitro Characterization of Gel Formulations
2.4.1. Preparation and Characterization of VLI and VLL Gel Formulations

As shown in Table 2, the carbopol gel base was successfully blended with the VLI
and VLL formulations. The results showed that the prepared VLL, VLI, and free VSD
gel formulations showed viscosity coefficients of 154.08 ± 1.54, 136.34 ± 1.92 cP, and
166.82 ± 2.14 cP, respectively.



Pharmaceuticals 2022, 15, 126 4 of 14

Table 2. In vitro release and ex vivo permeation studies of free VSD, VLI, and VLL gel formulations.

Formulation
Code

Release (%)
(Mean ± SD)

Steady-State Flux
(µg/cm2/h)

(Mean ± SD)

Skin Disposition
(µg/cm2)

(Mean ± SD)

Free VSD suspension 99.60 ± 0.96 1.35 ± 0.03 147.23 ± 3.18
VLL 58.55 ± 1.04 2.73 ± 0.09 106.86 ± 2.98
VLI 71.96 ± 0.86 9.83 ± 0.11 31.09 ± 2.68

Free VSD gel 96.60 ± 1.24 1.17 ± 0.07 153.97 ± 3.95
VLL gel 49.76 ± 0.88 2.43 ± 0.06 119.56 ± 4.40
VLI gel 62.12 ± 1.27 9.14 ± 0.09 51.27 ± 4.84

2.4.2. Ex Vivo Permeability and Disposition Studies

As shown in Table 2, the steady-state (Fss) and skin disposition of free VSD suspension,
VLI formulation, VLL formulation, free VSD gel, VLL gel, and VLI gel were measured. The
permeation and Fss of the VLL formulation were significantly (p < 0.05) lower than those
of the VLI formulation, while the skin disposition of the VLI formulation was significantly
(p < 0.05) lower than that of the VLL formulation. Figure 3 shows that the permeation of
VLI and VLL formulations was significantly (p < 0.05) retarded upon their incorporation
into the gel formulation.
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2.4.3. In Vitro Drug Release Kinetic Studies

As shown in Table 2, the release of free VSD suspension, VLI formulation, VLL
formulation, free VSD gel, VLL gel, and VLI gel was measured. The release of the VLL
formulation was significantly (p < 0.05) lower than that of the VLI formulation. Figure 4
shows that the release of VLI and VLL formulations was significantly (p < 0.05) retarded
upon their incorporation into the gel formulation.

DDSolver software was used to evaluate the in vitro release kinetics and mechanism
of VSD from the VLI gel formulation. The Higuchi model was selected to fit the release
data due to its maximum R2 (0.9974), MSC (5.2340), and minimum AIC (23.3039). As the
calculated “n” was 0.421 ± 0.02, the Fickian diffusion was the release mechanism of VSD
from the VLI gel formulation. Additionally, f2 was calculated and found to be 24.38 ± 1.73,
indicating a significant (p < 0.05) difference in dissolution profiles.

2.5. In Vivo Anti-Tumor Characterization of VLI Gel Formulation
2.5.1. Anti-Tumor Activity of VLI Gel Formulation

Compared to the group treated with oral VSD, the number and diameter of papillomas
of the group treated with the VLI gel were significantly (p < 0.05) decreased. To confirm
these results, the histopathology of each treatment was studied. The presence of neoplastic
proliferative epithelial cells was seen histopathologically in the positive control group
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(Figure 5B) with dermal edema, hyperkeratosis, and inflammatory cell infiltrations. In the
group treated with the free VSD gel, there was no improvement in the symptoms of skin
toxicity in the dermis or epidermal layers (Figure 5C). The presence of hyperkeratosis in the
epidermis was seen histopathologically in the group treated with oral VSD (Figure 5D) with
dermal edema and diffused inflammatory reaction. A marked reduction in the hyperplasia
and keratosis was seen histopathologically in the group treated with the VLL gel (Figure 5E),
with a marked improvement in the size and number of papillomas. The group treated
with the VLI gel (Figure 5F) showed excellent effects on the different skin layers, with the
absence of all signs of skin toxicity. Skin papillomas were revealed, and hyperplasia and
hyperkeratosis were absent.
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2.5.2. Toxicity of VLI Gel

The histopathology of the group treated with the VLI gel (Figure 6B) was studied
and compared with that of the negative control group (Figure 6A). There was not any
inflammatory cell infiltration observed in the dermal layers of the group treated with the
VLI gel, showing nearly normal skin similar to that of the negative control group.
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2.5.3. In Vivo Permeation and Bioavailability Studies

PK-SOLVER was used to draw the relation between plasma concentration and time
(Figure 7A). As shown in Table 3, the AUC for the VLI gel was significantly (p < 0.05)
greater than the AUC of the VLL gel by 1.56 fold and the AUC of oral VSD by 3.59 fold.
The relative bioavailability of the VLI gel formulation relative to oral VSD and VLL gel
formulation was 3.59 and 1.56, respectively. Compared to the oral VSD suspension, the
VLL gel showed lower Cmax and longer Tmax. In addition, the t0.5 and MRT for the VLL
gel were significantly (p < 0.05) higher than those of the oral VSD suspension.
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Table 3. Pharmacokinetic parameters after administration of oral VSD, VLI gel, and VLL gel. * VLI
gel was significant with VLL gel at p < 0.05 by one-way ANOVA–Bonferroni post hoc test; # VLI gel
was significant with oral VSD at p < 0.05 by one-way ANOVA–Bonferroni post hoc test.

Pharmacokinetic Parameters VLI Gel VLL Gel Oral Free VSD Suspension

Cpmax (µg/mL) 7.11 ± 0.82 # 8.02 ± 0.66 10.76 ± 0.57
Tmax (h) 8 8 4

AUC(0–24) (µg.h/mL) 102.70 ± 5.69 *,# 80.82 ± 5.03 58.18 ± 4.03
AUC(0–inf) (µg.h/mL) 211.34 ± 9.70 *,# 91.83 ± 7.13 58.86 ± 3.83

AUMC(0–inf) (µg.h/mL) 7002.80 ± 135.41 *,# 1119.99 ± 112.32 361.34 ± 30.19
MRT (h) 33.13 ± 2.13 *,# 12.19 ± 2.33 6.13 ± 2.17
t0.5 (h) 19.98 ± 1.85 *,# 6.43 ± 1.05 3.83 ± 0.85

2.5.4. In Vivo Skin Disposition Studies

Compared with the VLL gel, the concentration of VSD deposited in the skin after
VLI gel was measured to confirm the enhancement effect of terpenes and ethanol on the
liposome’s permeation. Figure 7B shows a significantly (p < 0.05) higher skin concentration
for the VLL gel compared with that of the VLI gel.

3. Discussion

New transdermal techniques have been explored to improve the drug’s permeation
and bioavailability [17]. Invasomes are a promising approach to improving the transdermal
delivery, permeability, and efficacy of drugs [14,18–21]. In this study, the combined effect
of ethanol and terpenes was investigated to enhance the permeation of VSD, bioavailability,
and efficacy. Invasomes are made of phospholipids, cholesterol, ethanol, and terpenes.
Preliminary trials were conducted to identify the concentration ranges of independent
variables. Phospholipids are the building blocks of lipid bilayers [5,21]. Preliminary
trials revealed that phospholipid has a synergistic effect on the %EE and particle size up
until a certain concentration was reached, at which point further phospholipid increment
produced larger vesicles with no effect on the %EE [14]. Cholesterol provides rigidity
and stability to the lipid bilayer [22,23]. In addition, preliminary trials revealed that
cholesterol has a synergistic effect on the %EE and stability until a certain concentration
is reached, at which point cholesterol competes with the drug and decreases the %EE [5].
Ethanol is a penetration enhancer and negative charge provider, but increasing the ethanol
concentration produced a leaky and more fluidic lipid membrane, conveying the entrapped
drug out of the vesicles [7]. According to literature reviews, invasomes including cineole
(1%v/v) are efficient carriers for delivering drugs and enhancing their transdermal flux
into deep skin layers [14,19]. Successfully, a VLI formulation including cineole (1%v/v),
cholesterol (0.15%w/w), phospholipid (2%w/w), and ethanol (3%v/v) was prepared.

The amount of entrapped VSD in the vesicular systems was calculated, and the %EE
of the VLL formulation was significantly (p < 0.05) lower than that of the VLI formula-
tion. The presence of ethanol and terpene in the invasomal lipid bilayer disrupted the
hydrogen bonds between the ceramides in the skin, increasing the space available for
drug incorporation [15,24]. As vesicles must penetrate the skin, vesicle size is a crucial
factor to consider when evaluating the formulation [15,16]. The particle size of the VLI
formulation was significantly (p < 0.05) lower than that of the VLL formulation due to the
steric repulsion among terpene molecules [25]. Additionally, ethanol reduces vesicle aggre-
gation by increasing the negative charges of vesicles and electrostatic repulsion [1,11]. The
polydispersity index analysis of the prepared formulations revealed a low polydispersity
index, which supported the presence of homogeneity and a narrow distribution of particle
size. The prepared formulations possessed a negative surface charge, indicating good
physical and chemical stability, enough for electrostatic stabilization [20]. The DSC analysis
was performed to determine the melting point, compatibility of vesicles’ components, and
how much a material’s enthalpy had changed over time as a result of changes in its physical
and chemical properties [11,26]. The crystallinity of cholesterol and phospholipon 90 G
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was diminished upon mixing together due to the lipid bilayer formation. The crystallinity
of VSD was diminished upon mixing because VSD is a highly hydrophobic drug, which
appeared in an amorphous form.

Carbopol® is an anionic polymer that has an extremely high buffering capacity and
does not irritate the skin [27,28]. The carbopol® polymer has the required viscosity and
bio-adhesive properties [5,28]. Compared with the free VSD gel formulation, ethanol and
cineole were responsible for the VLI gel formulations’ lower viscosity coefficients. The
dissolution volume was selected to suit the VSD’s sink condition. The permeation of VSD
from the VLI formulation was significantly higher due to the synergistic effect of ethanol
and terpenes [29,30]. When invasomes are applied to the skin, one part of the vesicle
disintegrates and releases its components, such as terpenes, phospholipid, and ethanol,
which enhance the penetration and fluidize the stratum corneum [15,31]. Furthermore,
the small size of invasomes increases the surface area, the interaction with the stratum
corneum, and, consequently, the drug permeation [29]. Due to the cross-linking of carbopol
gel, incorporating VLI into it considerably slowed the release and permeation of VSD [5,28].
DDSolver software revealed a significant difference in dissolution profiles, indicating that
invasomes delayed VSD release [16].

VLI gel had improved bioavailability and anti-tumor activity when compared to oral
VSD and VLL gel at the same dose due to the enhancement effect of terpenes on the VSD’s
permeation. Additionally, histopathological examination revealed that the VLI gel had no
toxicity at the dose regimen used. The bioavailability of the VLI gel was greater than that
of oral VSD due to avoiding hepatic first-pass metabolism and the enhancement effect of
terpenes on the VSD’s permeation. When compared to oral VSD, the VLI gel’s Tmax and
Cmax revealed a regulated drug release and lowered the undesired VSD concentration.
Furthermore, the longer blood circulation time was reflected by a significant increase in
MRT and t0.5 for the VLI gel. Invasomes improved the specificity of VSD in delivery and
targeting, lowering the toxicity of VSD because invasomes act as a reservoir of the drug at
the site of application, providing a controlled and sustained delivery of the drug. When
compared to the VLL gel, the VLI gel’s AUC, MRT, and t0.5 revealed the enhancement
effect of terpenes on the VSD’s permeation. Due to the synergistic action of both ethanol
and terpenes, the VLI gel had a much lower skin disposition concentration. As alcoholic
–OH is more electronegative than amide NH, terpenes break hydrogen bridges that bind
ceramides in the skin [24,31,32].

Previous preclinical and clinical studies employed different oral doses of VSD, ranging
from 1 to 10 mg/kg [1,4,33,34]. These studies showed that VSD has low bioavailability,
which was also reported by the current study using 10 mg/kg. Application of the VLI gel
formulation resulted in enhanced bioavailability by 3.59 fold and, consequently, resulted in
significant anti-tumor activity compared to oral VSD. Previously, various topical formula-
tions of VSD have been developed to improve skin localization and efficacy in comparison
to oral vismodegib [1,4,35]. Calienni et al. developed vismodegib-ultradeformable lipo-
somes as a topical preparation. The results showed that the cytotoxicity and performance
of vismodegib were enhanced [35]. Other researchers found that the Fss of vismodegib
from ethosomal gel was higher than that of binary ethosomes and positively charged
ethosomes [1,4]. Our work focused on designing a VSD-loaded nano-invasome system to
study the effect of terpenes on enhancing VSD’s permeation, bioavailability, and efficacy.
The higher Fss of VLI gel is attributed to the higher relative bioavailability and excellent
effects of the vismodegib-loaded invasomes gel formulation.

4. Materials and Methods
4.1. Materials

Vismodegib standard was attained by the National Research Center (Egypt) as a gift.
Cineole, ethanol, phospholipid (phospholipon 90 G), and 7,12-dimethylbenz(a)anthracene
(a tumor initiator, DMBA) were supplied by Agitech Pharmaceutical Company (Cairo,
Egypt). Methanol, carbopol®, and acetonitrile were supplied by Cornell Lab in Egypt.
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4.2. HPLC Quantification of Vismodegib

VSD quantification was carried out using the HPLC method (Waters 2690 Alliance
HPLC system), as described by Pulusu et al. [36]. The assay of VSD was carried out using a
C-18 column ZORBAX with 150 × 4.6 mm dimensions. A solution of acetonitrile and 0.1%
orthophosphoric acid at a ratio of 50:50 v/v was prepared as a mobile phase. The detection
of VSD was processed in triplicates at a maximum wavelength of 264 nm, with a flow rate
of 1 mL/min and an injection volume of 10 µL.

4.3. Equilibrium Solubility Study

The equilibrium solubility study was conducted to estimate the VSD’s saturation
solubility and the dissolution volume required to meet the sink conditions of the prepared
formulations’ permeation and release studies [4]. VSD was vigorously stirred for 3 days
at 37 ◦C. The solution was filtered and the VSD content was calculated using HPLC
in triplicates.

4.4. Preparation of Vismodegib-Loaded Invasomes and Vismodegib-Loaded Liposomes

A vismodegib-loaded invasomes (VLI) formulation was prepared, as described by
Shah et al., by a method of thin hydration [18]. A chloroformic solution of VSD (10 mg),
cineole (1%v/v), cholesterol (0.15%w/w), and phospholipid (2%w/w) was obtained and
evaporated under vacuum conditions (100 rpm, 40 ◦C). A solution of isotonic phosphate
buffer (IPB, pH 5.5) and ethanol (3%v/v) was obtained to hydrate the produced lipid film at
40 ◦C for 1 h. The prepared VLI formulation was sonicated and stored at 4 ◦C.

The thin hydration method was used to prepare a vismodegib-loaded liposomes (VLL)
formulation [11]. A chloroformic solution of VSD (10 mg), cholesterol (0.15%w/w), and
phospholipid (2%w/w) was obtained and evaporated under vacuum conditions (100 rpm,
40 ◦C). A solution of isotonic phosphate buffer (IPB, pH 5.5) was obtained to hydrate the
produced lipid film at 40 ◦C for 1 h. The prepared VLL formulation was sonicated and
stored at 4 ◦C.

4.5. In Vitro Evaluation of VLI and VLL Formulations
4.5.1. Entrapment Efficiency Measurement

VSD content was determined by centrifuging (SIGMA, Steinheim, Germany) a sample
of the prepared VLI and VLE formulations at 20,000 rpm for 1 h [37]. The VLI and VLE
pellets were collected and lysed in methanol. The collected supernatant and methanolic
solution were diluted with the mobile phase and the %EE was calculated using HPLC in
triplicates as follows [26]:

%EE = [(At − S)/At] × 100 (1)

where At is the total amount of VSD in the supernatant and pellets, S is the amount of VSD
in the supernatant. The calculated %EE of the VLL and VLI formulations was subjected to
a Student’s t-test at p < 0.05.

4.5.2. Vesicle Size and Zeta Potential Measurement

Dynamic Light Scattering (DLS) of a sample of the VLI and VLL formulations was
obtained using a Zetasizer (Malvern, Herrenberg, Germany) to characterize their size
and polydispersity index (PDI) in triplicates [38]. Zeta potential was also characterized
using a Malvern Zetasizer. The estimated parameters of the Zetasizer of the VLL and VLI
formulations were subjected to a Student’s t-test at p < 0.05.

4.5.3. Thermal Analysis Examination

Differential Scanning Calorimetry (DSC) of a sample of cholesterol and phospholipid,
VSD, plain invasomes, plain lipomes, and VLI and VLL formulations was obtained using a
calorimeter (NETZSCH-Geratebau GmbH, Maia, Germany) to characterize their thermal
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analysis [1]. With a nitrogen flow rate of 25 mL/min, DSC thermograms were carried out at a
rate of 5 ◦C/min. The samples were promptly cooled to 25 ◦C after being heated to 250 ◦C.

4.5.4. Transmission Electron Microscopy (TEM) Measurement

A sample of the VLI and VLL formulations was deposited onto a carbon-coated copper
grid and visualized by Transmission Electron Microscopy (TEM, Carl Zeiss, Oberkochen,
Germany) at suitable magnifications [13].

4.6. Preparation and In Vitro Characterization of Gel Formulations
4.6.1. Incorporation of VLI and VLL Formulations into Carbopol Gel Base

VLI, VLL, and free VSD gel formulations were created by incorporating the VLI, VLL,
and free VSD into 2%w/w carbopol 974 gel base [5]. Carbopol 974 was vigorously stirred in
water, and triethanolamine was added to alter the pH of the gel base. VLI, VLL, and free
VSD were vigorously stirred into the carbopol gel base.

4.6.2. Viscosity Coefficient Determination

The Brookfield viscometer (Brookfield DV-III ULTRA, Middleborough, MA, USA)
was used to measure the viscosity coefficient in triplicates of VLI, VLL, and free VSD
gel formulations [4]. The calculated viscosity coefficient of VLI, VLL, and free VSD gel
formulations was subjected to one-way ANOVA test with a Bonferroni post hoc test
at p < 0.05.

4.6.3. Ex Vivo Permeability and Skin Disposition Studies

The studied samples were free VSD suspension, VLI formulation, VLL formulation,
free VSD gel formulation, VLL gel formulation, and VLI gel formulation. Samples (equiva-
lent to 1 mg VSD) were loaded onto guinea pig skin (5 cm2) as a diffusion membrane [4].
At 100 rpm and 37 ± 0.5 ◦C, 50 mL of IPB and Tween 80 (0.1%v/v) was used as the dissolu-
tion medium. At predefined time points, samples of 3 mL were taken and replaced with
an equal volume. Samples were diluted with a mobile phase and the VSD content was
calculated using HPLC to measure the cumulative amount permeated (µg/cm2) and the
steady-state flux (Fss) (µg/cm2/h) in triplicates. The estimated parameters of permeability
studies were subjected to an ANOVA test with a Bonferroni post hoc test at p < 0.05.

At the end of the experiment, guinea pig skin from the studied samples was collected
and dipped in water at 60 ◦C for 45 s. The skin was homogenized at 8000 rpm for 10 min
and the resulting product was filtered [39]. The amount of VSD disposed of in the skin
from the studied samples was calculated using HPLC in triplicates. The calculated VSD
disposed of was subjected to an ANOVA test with a Bonferroni post hoc test at p < 0.05.

4.6.4. In Vitro Release Studies

The studied samples were free VSD suspension, VLI formulation, VLL formulation,
free VSD gel formulation, VLL gel formulation, and VLI gel formulation. Samples (equiva-
lent to 1 mg VSD) were loaded on a dialysis bag as a diffusion membrane [40]. At 100 rpm
and 37 ± 0.5 ◦C, 50 mL of IPB and Tween 80 (0.1%v/v) was used as the dissolution medium.
At predefined time points, samples of 3 mL were taken and replaced with an equal volume.
Samples were diluted with a mobile phase and the VSD content was calculated using
HPLC to measure the %VSD released in triplicate. The %VSD released was subjected to an
ANOVA test with a Bonferroni post hoc test at p < 0.05.

4.6.5. Kinetic Analysis of Release Data

DDSolver program software was used to determine the kinetics of VSD’s release from
the VLI gel formulation [41,42]. The DDSolver selects the model that fits the VSD’s release
data according to the criteria of achieving the minimum Akaike information criterion
(AIC) and the highest coefficient of determination (R2) and model selection criterion (MSC)
criteria. In addition, DDSolver determines the mechanism of VLI’s release using the
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Korsmeyer–Peppas equation [43]. The mechanism is Fickian diffusion if n = 0.5 and is
non-Fickian diffusion if 0.5 < n < 1. Furthermore, the DDSolver calculates the similarity
factor “f2” to determine the significance (p < 0.05) of the difference in dissolution profiles
between the VLI formulation and free VSD suspension using the Student’s t-test at p < 0.05.
The difference is insignificant if f2 > 50 and is significant if f2 < 50.

4.7. In Vivo Anti-Tumor Characterization of VLI Gel Formulation
4.7.1. Animal Study

Fifty adult male rats (200–300 g) were placed in accordance with the guidelines of
ethical approval of the Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt (BSU-
IACUC 021). Before beginning the experiment, the skin of each rat was trimmed within a
3 cm × 3 cm area. To initiate the tumor, each rat was subcutaneously injected with 1 mg of
DMBA [44]. Malignant tumors known as papillomas were observed. Rats were divided
into 6 groups at random and the treatment was administered as follows:

Group 1 Negative control group
Group 2 Positive control group
Group 3 Free VSD suspension
Group 4 Free VSD gel
Group 5 VLL gel formulation
Group 6 VLI gel formulation

The gel formulations were topically set on the backs of the rats three times per week
at a dose of 10 mg/kg body weight. A stomach tube gavage was used to administer the
oral free VSD suspension.

4.7.2. Anti-Tumor Activity and Toxicity of VLI Gel Formulation

The papilloma number and diameter of each rat were recorded weekly to measure the
efficacy of each treatment [44]. At the end of the experiment, each rat was anesthetized by
inhaled sevoflurane and sacrificed. The tumor samples were taken and fixed in formalin
for histopathological examination. A histopathology investigation was used to examine
the anti-tumor activity and toxicity of each treatment [45].

4.7.3. In Vivo Permeation and Bioavailability Studies

These studies were obtained to investigate the combined effect of terpenes and ethanol
on the permeation and bioavailability of VSD compared with those of oral VSD suspension
and VLL gel. Eighteen adult male rats weighing 200–300 g were divided into three groups
(n = 6). The first group was provided a free VSD suspension to take orally. The VLL
gel formulation was topically applied to the second group. The VLI gel formulation was
topically applied to the third group. At predefined time points over 24 h, blood samples
(200 µL) were taken from the retro-orbital sinus and centrifuged [7]. The supernatant was
vaporized and dissolved in the mobile phase before being analyzed by HPLC [46]. The
non-compartmental analysis using PK-SOLVER was used to calculate the pharmacokinetic
parameters such as Cmax and Tmax from the graph curve. The trapezoid rule was used to
determine the areas under the curves (AUC0-t and AUC0-inf). The slope of the log plasma
concentration vs. time plot was used to calculate the elimination rate constant (K). Using
the formula t0.5 = 0.693/K, the elimination half-life (t0.5) was computed. The estimated
parameters of three groups were subjected to the one-way ANOVA test with a Bonferroni
post hoc test at p < 0.05.

4.7.4. In Vivo Skin Disposition Studies

At the end of the in vivo permeation experiment after 24 h, skin sections from the
second and third groups were taken and the stratum corneum was removed by the tape
stripping technique [47]. The skin was collected and dipped in water at 60 ◦C for 45 s.
The skin was homogenized at 8000 rpm for 10 min and the resulting product was filtered.
The supernatant was vaporized and dissolved in the mobile phase before being analyzed
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by HPLC. The VSD content was calculated to measure the skin deposition of the VLI gel
and the VLL gel in triplicates. The estimated parameters were subjected to a Student’s
t-test at p < 0.05.

5. Conclusions

The vismodegib-loaded invasomes formulation that included cineole (1%v/v), choles-
terol (0.15%w/w), phospholipid (2%w/w), and ethanol (3%v/v) was prepared and displayed
an entrapment efficiency of 87.73 ± 3.82%, a vesicle size of 188.27 ± 3.25 nm, and a
steady-state flux of 9.83 ± 0.11 µg/cm2/h. The VLI formulation was vigorously stirred
into the carbopol base before being characterized in vivo to investigate the permeation,
bioavailability, and efficacy of VSD. The VLI gel enhanced the dermal permeation of VSD
and, as a result, had 3.59 times higher bioavailability alongside excellent antitumor action
as compared to oral VSD. In summary, as an alternative to oral administration for skin
cancer treatment, invasomes are efficient carriers for delivering VSD and enhancing its
transdermal flux into deep skin layers.
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