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Abstract: Previous studies have shown that particulate matter with an aerodynamic diameter
of less than 2.5 micrometers (PM2.5) is tightly associated with adverse effects on human health,
i.e., morbidity and mortality. Based on long-term satellite-derived PM2.5 datasets, this study analyzed
the spatial patterns and temporal trends of PM2.5 concentrations in China from 1998 to 2016 using
standard deviational ellipse and statistical analyses. A long-term assessment of exposure and
health impacts due to PM2.5 was undertaken by the Environmental Benefits Mapping and Analysis
Program-Community Edition (BenMAP-CE) model. The results show that concentrations of PM2.5

increased nonlinearly in most areas of China from 1998 to 2016. Higher concentrations were found in
eastern China and western Tarim Basin, and most areas exceeded the World Health Organization’s
(WHO) annual PM2.5 standards. The median center of average PM2.5 concentration of the country
shifted to the southeast and then returned during the examined time period. The proportion of the
population exposed to equal PM2.5 concentrations increased at first, then trended downward. The
proportion of the population exposed to PM2.5 over WHO Interim Target-1 (35 µg/m3) increased
20.6%, which was the largest growth compared with other WHO standard levels. The extent of
health risk in China increased and expanded from 1998 to 2016, especially in the Beijing-Tianjin-Hebei
region, the Yangtze River Delta, and the Pearl River Delta, which are China’s top three urban areas.
The implementation of the Air Pollution Prevention and Control Action Plan has gradually paid off.
If the government can achieve long-term adherence to its plan, great economic and health benefits
will be gotten through the BenMAP-CE model analysis.
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1. Introduction

The relationship between air pollution and human health is a topic of lively debate among policy
makers and researchers. Long-term exposure to particulate matter with an aerodynamic diameter of
less than 2.5 micrometers (PM2.5) can affect human health [1–3]. The World Health Organization (WHO)
estimates that around 4.2 million people died in 2016 due to outdoor air pollution [4]. PM2.5 penetrates
deep into the lungs and cardiovascular system, causing diseases such as stroke, heart disease, lung
cancer, chronic obstructive pulmonary disease, and respiratory infections, including pneumonia [4].
Under the WHO Global Burden of Disease (GBD) project, air pollution is considered a high-priority
area and PM2.5 is considered to be one of the leading risk factors for premature mortality [5]. The GBD
estimates that PM2.5 was responsible for 4.24 million deaths and 103.1 million disability-adjusted life
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years globally in 2015 [6]. Therefore, understanding the spatial patterns and long-term trends of PM2.5

concentrations is essential for risk assessment.
Mapping (by, e.g., a local regression, interpolation approach) and remote sensing can overcome the

issue of heterogeneous spatial distribution of monitoring stations to evaluate/quantify the population’s
exposure to PM [7–9]. With satellite launches and continuous improvements in data retrieval
technologies, remote sensing of PM2.5 can supplement traditional observations. The remote sensing
inversion method has the advantage of quickly obtaining broad spatial coverage data compared
with ground-based monitoring. Scientists have developed methods for inferring ground-level
PM2.5 concentrations from satellite-derived aerosol optical depth (AOD) measurements [10,11].
Currently, AOD retrieval products from Moderate-Resolution Imaging Spectroradiometer (MODIS),
Multi-angle Imaging Spectroradiometer (MISR), and Sea-Viewing Wide Field-of-View Sensor (SeaWiFS)
instruments are widely used for inversion of PM2.5 [12]. Van Donkelaar et al. combined multivariate
AOD products to estimate global concentrations of PM2.5 [13].

Previous studies have characterized spatiotemporal patterns of PM2.5 on different temporal and
spatial scales. On a regional scale, Yang et al. characterized PM2.5 in southern Jiangsu Province in
eastern China, and Du et al. investigated the direct and spillover effect of urbanization on PM2.5

concentrations in three urban agglomerations of China [14,15]. On a national scale, Peng et al. reported
spatiotemporal patterns of PM2.5 over China from 1999 to 2011 [16]. On a continent scale, Shi et al.
found rising levels of PM2.5 in South and Southeast Asia between 1999 and 2014 [17]. On a global scale,
van Donkelaar et al. demonstrated that satellite observations provide insight into global long-term
changes in ambient PM2.5 concentrations [13]. However, studies related to PM2.5 on a large scale and at
finer spatial resolution over longer time periods are still lacking. New publicly available global remote
sensing data with high resolution (0.01◦ × 0.01◦ approach to 1 km) and a long-term period (1998–2016)
developed by van Donkelaar et al. provides an opportunity for the research conducted here [18].

Numerous studies have estimated the impacts of ambient PM2.5 on human health
worldwide [19–23]. Previous GBD estimates adopted log models, which were proposed by Cohan et al.
and are currently recommended by the WHO [24,25]. Daryanoosh et al. (2017) calculated morbidity
attributed to ambient PM10 in Iran using the AirQ model, implemented by WHO and based on
incidence and relative risk values for given health endpoints [26]. Burnett et al. (2014) fitted an
integrated exposure–response model by integrating available relative risk information from studies of
ambient air pollution [27]. However, previous estimates of mortality attributed to particulate matter
based on exposure reaction functions required that researchers had a high level of experience in
epidemiology. In several studies, health impacts and their monetary value were estimated by the US
Environmental Protection Agency’s (EPA) health and environmental assessment model, known as
the Environmental Benefits Mapping and Analysis Program (BenMAP) [28–30]. BenMAP provides
flexibility to perform a broad array of analyses at the local, regional, national, and global scale.
It is mostly used by international researchers to assess the human health impacts and conduct
benefits analyses of air pollution [31–33]. In addition, based on Geographic Information System (GIS)
assessment, BenMAP tools can easily obtain continuous surface values compared with single-point
health evaluations. Most studies assessing human health impact due to PM2.5 were conducted with
coarse resolution based on ground station data. The simulation results of an air quality model can
improve imaging spatial resolution of BenMAP assessment outputs relative to observations. However,
it is limited by uncertainties of a high-resolution and large-scale emissions inventory. Therefore, in
this study we apply high-spatial-resolution satellite-retrieved PM2.5 instead of simulation data and
ground-based data to the BenMAP model to improve health assessment results.

This study investigates the spatiotemporal patterns and variations of PM2.5 concentrations in
China with a high spatial resolution of 0.01◦ × 0.01◦ and estimates the associated health impacts.
The specific research objectives were to (1) reveal the dynamic characteristics of PM2.5 concentrations
in China from 1998 to 2016 by standard deviational ellipse (SDE) analysis, (2) examine the proportion
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of the population exposed to PM2.5 levels exceeding WHO standards, and (3) calculate health and
monetary impacts based on BenMAP.

2. Materials and Methods

2.1. Study Area

China is located in Southeast Asia along the coastline of the Pacific Ocean with an area of
9.6 million square kilometers and a coastline of 18,000 kilometers. It has the largest population in
the world today and approximately 1.4 billion people. The Tarim Basin is an endorheic basin in the
northwest of China which is dominated by Taklamakan Desert. The top three urban agglomerations
Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), and Pearl River Delta (PRD) are situated
in eastern coastal areas of China (Figure 1). BTH, YRD, PRD and densely populated Sichuan Basin
occupy the majority of the urban population of China.
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Pearl River Delta.

2.2. Data

2.2.1. Satellite-Retrieved PM2.5

Annual mean satellite-retrieved PM2.5 concentrations with a spatial resolution of 1 km from 1998
to 2016 are freely available from the Dalhousie University Atmospheric Composition Analysis Group
website (http://fizz.phys.dal.ca/~{}atmos/martin/?page_id=140). The PM2.5 concentrations were
estimated by combining aerosol optical depth (AOD) retrievals from the NASA MODIS, MISR, and
SeaWiFS instruments with the GEOS-Chem chemical transport model and subsequently calibrated
to global ground-based observations of PM2.5 using geographically weighted regression (GWR) [18].
The PM2.5 remote-sensing dataset was inversed by van Donkelaar et al. with the largest coverage and
longest time span available, which has been validated and can be effectively applied on a national
scale [13].

2.2.2. Population Data

Gridded population count estimates at 1 × 1 km resolution were derived from the Socioeconomic
Data and Applications Center (SEDAC; http://sedac.ciesin.columbia.edu/data/collection/gpw-v4).
The Gridded Population of the World collection, now in its fourth version (GPWv4), models the

http://fizz.phys.dal.ca/~{}atmos/martin/?page_id=140
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distribution of human population (counts and densities) on a continuous global raster surface. GPWv4
is gridded with an output resolution of 30 arc-seconds (approximately 1 km at the equator) for the
years 2000, 2005, 2010, 2015, and 2020. We estimated and resampled the population data onto a 1 km
grid for other study years using linear interpolation.

2.3. Methods

2.3.1. Standard Deviational Ellipse Analysis

The standard deviational ellipse (SDE) was developed by Lefever (1926) to analyze distribution
characteristics of discrete point data [34]. With the development of its application, the SDE method has
long served as a versatile GIS tool for delineating the geographic distribution of concerned features [35].
When drawing the features on a map, calculating the standard deviational ellipse makes the directional
trend clear. Specifically, the SDE features include median center, major axis, minor axis, and azimuth.
Among these features, the median center is the center of spatial data, which indicates the gravity of
the distribution; the major and minor axes of the ellipses indicate the directions and ranges of the data
distribution; and the azimuth reflects the main trend directions [16,17]. Thus, the SDE method was
used to trace the changes in spatial patterns of PM2.5 concentrations across a time series.

The standard deviational ellipse is given as:

SDEx =

√
∑n

i = 1 (x i − x)2

n
(1)

SDEy =

√
∑n

i = 1(yi − y)2

n
(2)

where xi and yi are the coordinates for feature i, {x, y} represents the median center for the features,
and n is equal to the total number of features.

The angle of rotation is calculated as:

tan θ =

(
∑n

i=1 x̃2
i − ∑n

i=1 ỹ2
i
)
+
√(

∑n
i=1 x̃2

i − ∑n
i=1 ỹ2

i
)2

+ 4(∑n
i=1 x̃i ỹi)

2

2 ∑n
i=1 x̃i ỹi

(3)

where x̃i and ỹi are the deviations of the x and y coordinates from the median center.
The standard deviations for the x-axis and y-axis are:

σx =

√
∑n

i=1(x̃i cos θ − ỹi sin θ)2

n
(4)

σy =

√
∑n

i=1(x̃i sin θ − ỹi cos θ)2

n
(5)

2.3.2. Exposure Assessment

We calculated the number of people exposed to PM2.5 levels exceeding the WHO target values [36].
WHO sets the air quality guideline (AQG) and interim targets of annual PM2.5 concentration, as shown
in Table 1. The PM2.5 concentrations and population grids were overlaid to calculate the portion of the
population exposed to PM2.5 pollution at different levels on a national scale. Furthermore, twofold
Interim Target-1 (2IT-1, 70 µg/m3) and fourfold IT-2 (4IT-2, 100 µg/m3) were introduced as additional
thresholds to quantify PM2.5 pollution levels because the Chinese PM2.5 concentration has a range of
more than 100 µg/m3, which is far beyond the AQG of WHO.
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Table 1. World Health Organization (WHO) air quality guidelines and interim targets for particulate
matter with an aerodynamic diameter of less than 2.5 micrometers (PM2.5): annual mean concentrations.

Level PM2.5 (µg/m3) Basis for Selected Level

Interim Target-1
(IT-1) 35 These levels are associated with about a 15% higher

long-term mortality risk relative to the AQG level.

Interim Target-2
(IT-2) 25

In addition to other health benefits, these levels
lower the risk of premature mortality by
approximately 6% (2%–11%) relative to the IT-1 level.

Interim Target-3
(IT-3) 15

In addition to other health benefits, these levels
reduce mortality risk by approximately 6% (2%–11%)
relative to the IT-2 level.

Air quality guideline
(AQG) 10

These are the lowest levels at which total,
cardiopulmonary, and lung cancer mortality have
been shown to increase with more than 95%
confidence in response to long-term exposure
to PM2.5.

2.3.3. Health Risks and Economic Benefits Evaluation

The BenMAP Community Edition (BenMAP-CE) program was used to estimate the human
health impacts. BenMAP-CE is an open source, Windows-based computer program created by the US
Environmental Protection Agency (EPA) that estimates the health benefits from improvements in air
quality. The estimated results can provide scientific support for air quality management and decision
making. BenMAP-CE applies Equation (6) to calculate health impacts:

∆Y = Y0

(
1 − e−β∆PM

)
× Pop (6)

where ∆Y is the estimated health impact attributed to air pollution, Y0 is the baseline incidence, and β

is the parameter (empirical value) associated with the type of pollutant used to calculate the health
impact. ∆PM refers to air quality change, and Pop is the exposed population number.

The economic value of avoided premature mortality is generally calculated using the value of
statistical life (VSL). The VSL is the monetary value that a group of people are willing to pay to slightly
reduce the risk of premature death in the population. Moreover, the BenMAP-CE database includes
several functions for VSL and valuation functions for other health effects, and we selected the function
that utilizes the EPA’s mean VSL values.

3. Results

3.1. Spatioemporal Patterns and Variations in PM2.5

Figure 2 shows annual mean satellite-derived PM2.5 concentrations over China from 1998 to 2016.
In general, the annual mean PM2.5 concentrations showed obvious spatial and temporal variation
during study periods. Higher PM2.5 concentrations are visible in eastern China and western Tarim
Basin, which covers northwest China with its largest, driest, and highest desert. Lower concentrations
are distributed in forested regions of the northeast and southwest.

The temporal variations reflect three stages during the study period. In phase 1 (~1998 to 2008),
there was a rapid increase in high PM2.5 concentrations, with peaks during 2008 over the heavily
polluted region of Beijing-Tianjin-Hebei (BTH). Phase 2 followed with a fluctuation change in PM2.5

concentration from 2009 to 2013. After that, the PM2.5 concentration had a decreasing trend in the third
phase since 2014 due to the Air Pollution Prevention and Control Action Plan (APPCAP) implemented
by the Chinese government.
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Figure 2. Spatial distribution of annual mean PM2.5 concentrations in China from 1998 to 2016.

The overall spatial pattern changes in PM2.5 concentration across China from 1998 to 2016 were
determined through standard deviational ellipse analysis (Figure 3). The median centers shifted
from north central China toward the southeast and then returned during the examined time period.
Longitude fluctuated from 102.91◦ to 106.49◦ and then to 103.31◦, and latitude fluctuated from 37.88◦

to 36.16◦ and then to 37.60◦ (Table 2). Rapid increases in PM2.5 in the BTH metropolitan area led to
the movement of the median center to the southeast from 1998 to 2013. After that, improved PM2.5 in
eastern China contributed to the center moving northwest.

The major and minor axes of the ellipses indicate the directions and ranges of the data distribution.
In this study, the major axis of the ellipse increased from 1746.5 km in 1998 to 1837.9 km in 2016,
and the minor axis slightly increased from 955.3 km in1998 to 988.9 km in 2016. The increase of the
two axes illustrates a spatial diffusion tendency and even spatial changes in PM2.5 concentration
during the study period. The increase of the major axis and lengthening of the minor axis show
that the range of influence of PM2.5 concentration increased in both the south-north and east-west
directions. The azimuth of SDE can reflect the change tendency in spatial direction. During the study
period, the azimuth changed from 98.7◦ to 102.7◦ and then back to 95.3◦, which means that the major
axis rotated clockwise and then anticlockwise. This indicates that the distribution and orientation of



Int. J. Environ. Res. Public Health 2018, 15, 2785 7 of 13

growing PM2.5 concentration changes in China were influenced from southeast to northeast during
1998 to 2016, which is partly consistent with the change of time series.
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Table 2. Standard deviational ellipse features on median center, major axis, minor axis, and azimuth in
China from 1998–2016.

Year
Median Center (◦) Major Axis (km) Minor Axis (km) Azimuth (◦)

Longitude Latitude

1998 102.91 37.88 1746.5 955.3 98.7
1999 102.31 37.25 1750.1 941.4 102.7
2000 104.66 37.14 1758.5 962.9 99.6
2001 103.64 36.99 1763.0 928.7 100.9
2002 103.90 37.04 1784.5 951.9 99.9
2003 105.70 37.07 1785.0 1019.4 95.5
2004 104.58 36.54 1764.6 979.2 101.4
2005 106.14 36.02 1766.3 1005.3 100.9
2006 105.97 36.43 1745.6 971.1 100.1
2007 106.49 36.16 1747.5 979.1 100.9
2008 105.70 36.36 1775.8 1016.9 99.4
2009 106.30 36.40 1742.6 1010.5 98.7
2010 105.21 36.61 1785.9 976.7 99.3
2011 105.97 36.27 1756.6 996.7 99.2
2012 105.59 36.31 1768.6 1008.7 100.1
2013 105.46 36.79 1763.2 983.2 98.6
2014 106.10 36.48 1748.0 1028.9 98.2
2015 105.63 37.48 1824.2 1011.3 94.1
2016 103.31 37.60 1837.9 988.9 95.3

3.2. PM2.5 Exposure Assessment

Figure 4 shows the cumulative distribution of the proportion of the population exposed to annual
mean PM2.5 concentrations, and annual population distribution averaged from 1998 to 2016 based
on population raster data statistics (Figure 4). Generally, the proportion of the population exposed
to the same PM2.5 concentrations increased at first, then there was a downward trend. Horizontally,
the background PM2.5 levels of the same proportion of the exposed population increased. Specifically,
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the proportion of the total population exposed to PM2.5 > 100 µg/m3 increased from 0 in 1998 to 2.1%
in 2006 and to 0.8% in 2016, whereas the proportion exposed to >70 µg/m3 increased from 0.7% in 1998
to 21.2% in 2007 and to 10.4% in 2016. Likewise, the proportion of the population exposed to PM2.5

concentrations greater than the WHO IT-1 (35 µg/m3) increased from 37.2% in 1998 to 78.5% in 2007
and to 57.8% in 2016, while the proportion exposed to PM2.5 concentrations greater than the WHO
IT-2 (25 µg/m3) increased from 66.5% in 1998 to 91% in 2008 and to 83.2% in 2016, and the proportion
exposed to PM2.5 concentrations greater than the WHO IT-3 (15 µg/m3) increased from 91.1% in 1998
to 96.5% in 2016. In addition, the proportion of the population exposed to PM2.5 concentrations greater
than the WHO AQG value of 10 µg/m3 increased from 97.6% in 1998 to 99% in 2016.
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1998–2016.

3.3. Health Impact Due to PM2.5 Pollution

The higher the baseline health risks of a particular location, the more premature deaths can
be avoided. We calculated health incidence in the scenario of concentration of PM2.5 reduced to
the WHO AQG value (10 µg/m3) based on BenMAP-CE. Because of the vast numbers of people
congregating in the areas, PM2.5 concentrations are greater than the WHO AQG value of 10 µg/m3 in
China (Figures 1 and 4). In the result (Figure 5), the health incidences (number of incidents averted per
year per 1 km × 1 km grid cell if PM2.5 is rolled back to 10 µg/m3) were categorized into low, medium,
high, and extremely high incidence, corresponding to <15, 15–64, 64–182, and >182 persons/km2,
respectively. No data means there was no population data in that area.

Figure 5 shows the spatial distributions of health incidence when PM2.5 is rolled back to 10 µg/m3

in 1998 and 2016 in China. It shows that if we reduce the PM2.5 concentrations in 1998 and 2016
to 10 µg/m3, the number of avoided premature deaths ranges from single digits to hundreds. It
presents an obvious expansion in high (64–182 persons/km2) and extremely high (>182 persons/km2)
incidence areas from 1998 to 2016. Moreover, the average number of avoided premature deaths
increased from 8.4 persons/km2 in 1998 to 12.1 persons/km2 in 2016 if PM2.5 concentrations were
reduced to 10 µg/m3. It is easy to see that the spatial distributions of incidence were consistent
with the distributions of the population. So although the concentrations of PM2.5 were high in Tarim
Basin in the northwest of China, the health incidence related to PM2.5 exposure was not high due
to the sparse population. In 1998, the high and extremely high incidence areas were distributed in
eastern Sichuan Basin and eastern China, which mainly includes the BTH, YRD, and PRD metropolitan
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agglomerations. The expansion of high and extremely high incidence areas also rose in China’s top
three urban agglomerations by 2016.Int. J. Environ. Res. Public Health 2018, 15, 9 of 13 
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(b) 2016.

4. Discussion

4.1. Correlation between Exposed Population and PM2.5

As previously mentioned, Figure 4 gives the cumulative distribution of the proportion of the
population exposed to annual mean PM2.5 concentrations on a national scale. However, the correlation
between exposed population and PM2.5 is complex. In order to reveal the correlation, we chose China’s
top three urban agglomerations, BTH, YRD, and PRD, which have both large populations and high
PM2.5 concentrations, to do further statistical analysis (Figure 6).
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Figure 6. Scatter plot of population and PM2.5 concentrations of Beijing-Tianjin-Hebei (BTH), Yangtze
River Delta (YRD), and Pearl River Delta (PRD) from 1998 to 2016.

The increasing population and PM2.5 concentrations in BTH, YRD, and PRD from 1998 to 2016 are
shown in Figure 6. In general, both increased in 2016 compared with 1998. The PM2.5 concentrations of
the three regions have the same change trend with the change of population; that is, increasing first and
then fluctuating down in the time series. However, due to differences in population base and PM2.5
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concentration, the range of variation varies from place to place. Specifically, the PM2.5 concentration in
PRD is relatively lower than in YRD and BTH. YRD had the highest population, followed by BTH and
PRD. Similarly, YRD had higher increased population than BTH and PRD.

Due to regional differences, the influx of the Chinese population into the eastern coastal areas has
increased the level of poverty and regional imbalances. This was also the main reason why the PM2.5

concentrations in BTH, YRD, and PRD had the largest increases, with the population increasing at the
level of millions between 1998 and 2016. However, we were delighted to find that at the end of the
study period, YRD, PRD, and BTH had declines in PM2.5 concentrations monitored and controlled by
government regulations in spite of the increasing population.

4.2. Estimating Health Benefits on Air Pollution Prevention and Control Action Plan

Since the end of 2013, the Chinese government has been implementing a targeted air pollution
control action plan (APPCAP) that has improved air pollution and reduced PM2.5 concentrations.
A strategic target of APPCAP was that from 2015, the Pearl River Delta, the Yangtze River Delta, and
the Beijing-Tianjin-Hebei Region would meet an annual PM2.5 standard of 35 µg/m3 in three sequential
five-year plans and achieve the WHO IT-1 (35 µg/m3) standard nationwide by 2030. We estimate that
potential PM2.5-related premature deaths and the economic value of reductions in mortality would be
avoided by meeting an annual PM2.5 standard of 35 µg/m3 using BenMap-CE (Figure 7).
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when PM2.5 is rolled back to WHO’s IT-1 in 2014.

High incidence and economic value of reductions in mortality were still distributed in eastern
China and Sichuan Basin (Figure 7), which have similar characteristics with PM2.5 concentrations
and population in space distribution. Coincidentally, economic value and incidence have similar
distribution characteristics when the two illustrations in Figure 7 are compared. In particular, the
estimated monetary value of avoided cases of all-cause mortality range from 10,000 up to 26.6 billion
CNY (at a 10 km grid level), which accounts for 1.2% of 2014 gross domestic product (GDP) [37] of
Beijing assuming APPCAP was completed.

Although improvements to these estimates are needed to reduce uncertainties, exposure to PM2.5

has already threatened human health, which cannot be ignored, due to China’s rapid urbanization.
At the same time as controlling air pollution emissions, the government should take effective measures
to limit the scale of more densely populated megacities and turn to developing less dense small- and
medium-sized cities. In general, this also reflects that the regional inequality in China is an urgent
problem to solve.
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5. Conclusions

In this work, we analyzed the spatial patterns and temporal trends of PM2.5 concentrations in
China based on long-term satellite-derived PM2.5 datasets. We also examined long-term exposure and
changes in annual concentrations from 1998 through 2016. Moreover, the health impact due to PM2.5

pollution was estimated. We got the following conclusions.
(1) Throughout the study period, the concentrations of PM2.5 increased nonlinearly in most areas

of China from 1998 to 2016. The center of the average PM2.5 concentration on the national scale shifted
from north central to southeast, then returned to north central during the study years.

(2) The proportion of the population exposed to high PM2.5 concentrations increased annually at
first, and the condition has improved since APPCAP was carried out at the end of 2013. In addition,
the growth in the proportion of the population exposed between the WHO IT-2 (25 µg/m3) and 2IT-1
(70 µg/m3) was significantly faster than with exposure to other PM2.5 concentrations.

(3) Health risk in China increased from 1998 to 2016, and expanded in high and extremely high
risk areas. Air pollution control plans are urgently needed in China’s top three urban agglomerations,
which share the health risk from high to extremely high levels.

(4) Since the implementation of APPCAP, both the proportion of the population exposed to high
PM2.5 concentrations and the annual average concentration have decreased. If a long-term approach is
taken, the economic value of reductions in mortality will range up to 26.6 billion CNY (2014 CNY) per
100 square kilometers.

Author Contributions: Conceptualization, M.L. and T.C.; Methodology, S.D.; Software, S.D.; Validation, M.L.,
T.C. and S.D.; Formal Analysis, T.C.; Investigation, T.C.; Resources, M.L.; Data Curation, T.C.; Writing—Original
Draft Preparation, T.C.; Writing—Review & Editing, M.L., T.C. and S.D.; Visualization, T.C. and S.D.; Supervision,
M.L.; Project Administration, M.L.; Funding Acquisition, M.L.

Funding: This work was supported by the National Key Research and Development Program of China (grant no.
2017YFB0504205). The support provided by the China Scholarship Council (CSC) during a visit by Tan Chen to
Rice University is acknowledged.

Acknowledgments: The authors thank Daniel Cohan from Rice University for his suggestions on language and
content modification.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dockery, D.W.; Pope, C.A.; Xu, X.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; Ferris, B.G., Jr.; Speizer, F.E. An
association between air pollution and mortality in six US cities. N. Engl. J. Med. 1993, 329, 1753–1759.
[CrossRef]

2. Pope III, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer,
cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287,
1132–1141. [CrossRef]

3. Krewski, D.; Jerrett, M.; Burnett, R.T.; Ma, R.; Hughes, E.; Shi, Y.; Turner, M.C.; Pope, C.A., III; Thurston, G.;
Calle, E.E.; et al. Extended Follow-Up and Spatial Analysis of the American Cancer Society Study Linking Particulate
Air Pollution and Mortality (No. 140); Health Effects Institute: Boston, MA, USA, 2009.

4. World Health Organization. World Health Statistics 2018: Monitoring Health for the SDGs, Sustainable
Development Goals; World Health Organization: Geneva, Switzerland, 2018.

5. Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; AlMazroa, M.A.; Amann, M.;
Anderson, H.R.; Andrews, K.G.; et al. A comparative risk assessment of burden of disease and injury
attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the
Global Burden of Disease Study 2010. Lancet 2012, 380, 2224–2260. [CrossRef]

6. Forouzanfar, M.H.; Afshin, A.; Alexander, L.T.; Anderson, H.R.; Bhutta, Z.A.; Biryukov, S.; Brauer, M.;
Burnett, R.; Cercy, K.; Charlson, F.J.; et al. Global, regional, and national comparative risk assessment of
79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A
systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. [CrossRef]

http://dx.doi.org/10.1056/NEJM199312093292401
http://dx.doi.org/10.1001/jama.287.9.1132
http://dx.doi.org/10.1016/S0140-6736(12)61766-8
http://dx.doi.org/10.1016/S0140-6736(16)31679-8


Int. J. Environ. Res. Public Health 2018, 15, 2785 12 of 13

7. Saucy, A.; Röösli, M.; Künzli, N.; Tsai, M.-Y.; Sieber, C.; Olaniyan, T.; Baatjies, R.; Jeebhay, M.; Davey, M.;
Flückiger, B.; et al. Land Use Regression Modelling of Outdoor NO2 and PM2.5 Concentrations in three Low
Income Areas in the Western Cape Province, South Africa. Int. J. Environ. Res. Public Health 2018, 15, 1452.
[CrossRef] [PubMed]

8. Lee, S.J.; Serre, M.L.; van Donkelaar, A.; Martin, R.V.; Burnett, R.T.; Jerrett, M. Comparison of geostatistical
interpolation and remote sensing techniques for estimating long-term exposure to ambient PM2.5

concentrations across the continental United States. Environ. Health Perspect. 2012, 120, 1727. [CrossRef]
[PubMed]

9. Zhuang, Y.; Chen, D.; Li, R.; Chen, Z.; Cai, J.; He, B.; Gao, B.; Cheng, N.; Huang, Y. Understanding the
Influence of Crop Residue Burning on PM2.5 and PM10 Concentrations in China from 2013 to 2017 Using
MODIS Data. Int. J. Environ. Res. Public Health 2018, 15, 1504. [CrossRef]

10. Engel-Cox, J.A.; Holloman, C.H.; Coutant, B.W.; Hoff, R.M. Qualitative and quantitative evaluation of
MODIS satellite sensor data for regional and urban scale air quality. Atmos. Environ. 2004, 38, 2495–2509.
[CrossRef]

11. Wang, J.; Christopher, S.A. Intercomparison between satellite-derived aerosol optical thickness and PM2.5

mass: Implications for air quality studies. Geophys. Res. Lett. 2003, 30. [CrossRef]
12. Hoff, R.M.; Christopher, S.A. Remote Sensing of Particulate Pollution from Space: Have We Reached the

Promised Land? J. Air Waste Manag. Assoc. 2009, 59, 645–675. [CrossRef]
13. Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Boys, B.L. Use of satellite observations for long-term exposure

assessment of global concentrations of fine particulate matter. Environ. Health Perspect. 2015, 123, 135–143.
[CrossRef] [PubMed]

14. Yang, Y.; Christakos, G.; Yang, X.; He, J. Spatiotemporal characterization and mapping of PM2.5

concentrations in southern Jiangsu Province, China. Environ. Pollut. 2018, 234, 794–803. [CrossRef]
15. Du, Y.; Sun, T.; Peng, J.; Fang, K.; Liu, Y.; Yang, Y.; Wang, Y. Direct and spillover effects of urbanization on

PM2.5 concentrations in China’s top three urban agglomerations. J. Clean Prod. 2018, 190, 72–83. [CrossRef]
16. Peng, J.; Chen, S.; Lü, H.; Liu, Y.; Wu, J. Spatiotemporal patterns of remotely sensed PM2.5 concentration in

China from 1999 to 2011. Remote Sens. Environ. 2016, 174, 109–121. [CrossRef]
17. Shi, Y.; Matsunaga, T.; Yamaguchi, Y.; Li, Z.; Gu, X.; Chen, X. Long-term trends and spatial patterns of

satellite-retrieved PM2.5 concentrations in South and Southeast Asia from 1999 to 2014. Sci. Total Environ.
2018, 615, 177–186. [CrossRef]

18. Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Hsu, N.C.; Kahn, R.A.; Levy, R.C.; Lyapustin, A.; Sayer, A.M.;
Winker, D.M. Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method
with Information from Satellites, Models, and Monitors. Environ. Sci. Technol. 2016, 50, 3762–3772. [CrossRef]
[PubMed]

19. Kim, O.J.; Kim, S.Y.; Kim, H. Association between Long-Term Exposure to Particulate Matter Air Pollution
and Mortality in a South Korean National Cohort: Comparison across Different Exposure Assessment
Approaches. Int. J. Environ. Res. Public Health 2017, 14, 1103. [CrossRef]

20. Pascal, M.; Falq, G.; Wagner, V.; Chatignoux, E.; Corso, M.; Blanchard, M.; Host, S.; Pascal, L.; Larrieu, S.
Short-term impacts of particulate matter (PM10, PM10–2.5, PM2.5) on mortality in nine French cities. Atmos.
Environ. 2014, 95, 175–184. [CrossRef]

21. Li, M.; Wu, Y.; Tian, Y.-H.; Cao, Y.-Y.; Song, J.; Huang, Z.; Wang, X.-W.; Hu, Y.-H. Association Between PM2.5

and Daily Hospital Admissions for Heart Failure: A Time-Series Analysis in Beijing. Int. J. Environ. Res.
Public Health 2018, 15, 2217. [CrossRef]

22. De Marco, A.; Amoatey, P.; Khaniabadi, Y.O.; Sicard, P.; Hopke, P.K. Mortality and morbidity for
cardiopulmonary diseases attributed to PM2.5 exposure in the metropolis of Rome, Italy. Eur. J. Intern. Med.
2018, 57, 49–57. [CrossRef]

23. Khaniabadi, Y.O.; Sicard, P.; Takdastan, A.; Hopke, P.K.; Taiwo, A.M.; Khaniabadi, F.O.; De Marco, A.;
Daryanoosh, M. Mortality and morbidity due to ambient air pollution in Iran. Clin. Epidemiol. Glob. Health
2018, in press. [CrossRef]

24. Cohen, A.J. Urban Air Pollution, in Comparative Quantification of Health Risks: Global and Regional Burden of
Disease Attributable to Selected Major Risk Factors; Ezzati, M., Lopez, A.D., Murray, C.J.L., Eds.; World Health
Organization: Geneva, Switzerland, 2004; pp. 1353, 1433.

http://dx.doi.org/10.3390/ijerph15071452
http://www.ncbi.nlm.nih.gov/pubmed/29996511
http://dx.doi.org/10.1289/ehp.1205006
http://www.ncbi.nlm.nih.gov/pubmed/23033456
http://dx.doi.org/10.3390/ijerph15071504
http://dx.doi.org/10.1016/j.atmosenv.2004.01.039
http://dx.doi.org/10.1029/2003GL018174
http://dx.doi.org/10.3155/1047-3289.59.6.645
http://dx.doi.org/10.1289/ehp.1408646
http://www.ncbi.nlm.nih.gov/pubmed/25343779
http://dx.doi.org/10.1016/j.envpol.2017.11.077
http://dx.doi.org/10.1016/j.jclepro.2018.03.290
http://dx.doi.org/10.1016/j.rse.2015.12.008
http://dx.doi.org/10.1016/j.scitotenv.2017.09.241
http://dx.doi.org/10.1021/acs.est.5b05833
http://www.ncbi.nlm.nih.gov/pubmed/26953851
http://dx.doi.org/10.3390/ijerph14101103
http://dx.doi.org/10.1016/j.atmosenv.2014.06.030
http://dx.doi.org/10.3390/ijerph15102217
http://dx.doi.org/10.1016/j.ejim.2018.07.027
http://dx.doi.org/10.1016/j.cegh.2018.06.006


Int. J. Environ. Res. Public Health 2018, 15, 2785 13 of 13

25. Ostro, B.; World Health Organization. Outdoor Air Pollution: Assessing the Environmental Burden of Disease at
National and Local Levels; World Health Organization: Geneva, Switzerland, 2004.

26. Daryanoosh, M.; Goudarzi, G.; Rashidi, R.; Keishams, F.; Hopke, P.K.; Mohammadi, M.J.; Nourmoradi, H.;
Sicard, P.; Takdastan, A.; Vosoughi, M.; et al. Risk of morbidity attributed to ambient PM10 in the western
cities of Iran. Toxin Rev. 2017. [CrossRef]

27. Burnett, R.T.; Pope, C.A., III; Ezzati, M.; Olives, C.; Lim, S.S.; Mehta, S.; Shin, H.H.; Singh, G.; Hubbell, B.;
Brauer, M.; et al. An integrated risk function for estimating the global burden of disease attributable to
ambient fine particulate matter exposure. Environ. Health Perspect. 2014, 122, 397–403. [CrossRef] [PubMed]

28. Sacks, J.D.; Lloyd, J.M.; Zhu, Y.; Anderton, J.; Jang, C.J.; Hubbell, B.; Fann, N. The Environmental Benefits
Mapping and Analysis Program—Community Edition (BenMAP-CE): A tool to estimate the health and
economic benefits of reducing air pollution. Environ. Model. Softw. 2018, 104, 118–129. [CrossRef] [PubMed]

29. Mehra, S. Estimating the Impact of a Select Criteria Pollutant (PM2.5) on Childhood Asthma in Florida. Ph.D.
Thesis, University of South Florida, Tampa, FL, USA, 2017.

30. Stewart, D.R.; Saunders, E.; Perea, R.A.; Fitzgerald, R.; Campbell, D.E.; Stockwell, W.R. Linking Air Quality
and Human Health Effects Models: An Application to the Los Angeles Air Basin. Environ. Health Insights
2017, 11, 1178630217737551. [CrossRef]

31. Carvour, M.L.; Hughes, A.E.; Fann, N.; Haley, R.W. Estimating the Health and Economic Impacts of Changes
in Local Air Quality. Am. J. Public Health. 2018, 108, S151–S157. [CrossRef]

32. Chen, L.; Shi, M.; Li, S.; Bai, Z.; Wang, Z. Combined use of land use regression and BenMAP for estimating
public health benefits of reducing PM2.5 in Tianjin, China. Atmos. Environ. 2017, 152, 16–23. [CrossRef]

33. Gopalakrishnan, V.; Hirabayashi, S.; Ziv, G.; Bakshi, B.R. Air quality and human health impacts of grasslands
and shrublands in the United States. Atmos. Environ. 2018, 182, 193–199. [CrossRef]

34. Lefever, D.W. Measuring geographic concentration by means of the standard deviational ellipse. Am. J. Sociol.
1926, 32, 88–94. [CrossRef]

35. Wang, B.; Shi, W.; Miao, Z. Confidence analysis of standard deviational ellipse and its extension into higher
dimensional euclidean space. PLoS ONE 2015, 10, e0118537. [CrossRef]

36. World Health Organization. WHO Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and
Sulfur Dioxide—Global Update 2005—Summary of Risk Assessment, 2006; WHO: Geneva, Switzerland, 2006.

37. National Bureau of Statistics. National Bureau of Statistics 2012 China Statistical Yearbook 2012; China Statistics
Press: Beijing, China, 2012.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/15569543.2017.1370602
http://dx.doi.org/10.1289/ehp.1307049
http://www.ncbi.nlm.nih.gov/pubmed/24518036
http://dx.doi.org/10.1016/j.envsoft.2018.02.009
http://www.ncbi.nlm.nih.gov/pubmed/29962895
http://dx.doi.org/10.1177/1178630217737551
http://dx.doi.org/10.2105/AJPH.2017.304252
http://dx.doi.org/10.1016/j.atmosenv.2016.12.023
http://dx.doi.org/10.1016/j.atmosenv.2018.03.039
http://dx.doi.org/10.1086/214027
http://dx.doi.org/10.1371/journal.pone.0118537
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Data 
	Satellite-Retrieved PM2.5 
	Population Data 

	Methods 
	Standard Deviational Ellipse Analysis 
	Exposure Assessment 
	Health Risks and Economic Benefits Evaluation 


	Results 
	Spatioemporal Patterns and Variations in PM2.5 
	PM2.5 Exposure Assessment 
	Health Impact Due to PM2.5 Pollution 

	Discussion 
	Correlation between Exposed Population and PM2.5 
	Estimating Health Benefits on Air Pollution Prevention and Control Action Plan 

	Conclusions 
	References

