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entangling capacities 
and the geometry of quantum 
operations
Jhih‑Yuan Kao 1,2 & chung‑Hsien chou1,2*

Quantum operations are the fundamental transformations on quantum states. In this work, we 
study the relation between entangling capacities of operations, geometry of operations, and positive 
partial transpose (PPT) states, which are an important class of states in quantum information. We 
show a method to calculate bounds for entangling capacity, the amount of entanglement that can be 
produced by a quantum operation, in terms of negativity, a measure of entanglement. The bounds 
of entangling capacity are found to be associated with how non-PPT (PPT preserving) an operation 
is. A length that quantifies both entangling capacity/entanglement and PPT-ness of an operation or 
state can be defined, establishing a geometry characterized by PPT-ness. The distance derived from 
the length bounds the relative entangling capability, endowing the geometry with more physical 
significance. We also demonstrate the equivalence of PPT-ness and separability for unitary operations.

Entanglement has been found to be a useful resource for various tasks in quantum  information1,2, so a problem 
arises: How to create entanglement? As an aspect of quantum states, this is the same as discerning what quan-
tum processes/channels/operations3–7 can effectively produce this valuable resource, because operations govern 
how a state evolves or changes. There have been many studies on this problem, from various perspectives, such 
as how much entanglement an operation is able to produce/erase at most, on average, or per unit  time8–18 and 
what operations can produce the most entanglement (perfect entangler)19–22. Unitary operations are usually 
 considered8–10,13–17,21,22, while sometimes general quantum or Gaussian operations are  investigated11,18, with 
respect to various measures.

As the more general mappings dictating quantum processes, quantum operations are completely positive (CP), 
and they can be deterministic (such as conventional unitary evolutions) or probabilistic (such as measurements), 
but either way are trace-preserving (TP) as a  whole23,24 in order that a density operator remains a density operator 
after quantum operations. A probabilistic operation S is composed of multiple CP maps Si , and the probability 
that a sub-operation Si is applied is pi = trSi(ρ)

24.
PPT states and operations have a profound importance in entanglement theory; for example, it was found 

no entanglement can be distilled from PPT  states25. This class of states/operations is the subject of numerous 
studies, e.g. how to utilize them, and whether they are Bell  nonlocal25–33.

In this work, we quantify the capability of a quantum operation to produce entanglement by entangling 
capacity, defined as the maximal entanglement measure that can be created by a quantum  operation10,13,15,16,18. 
It was found the existence of an ancilla, a system on which the operation isn’t directly applied, may help boost 
entangling  capacity10,13,18. One can thus define the entangling capacity of an operation S assisted by an ancilla 
with respect to an entanglement measure m:

where I is the identity mapping on the ancilla. For a probabilistic operation S, define the (average) entangling 
capacity assisted by an ancilla as

(1)ECm(S) := max
ρ

{m(I ⊗ S(ρ))−m(ρ)},

(2)ECm(S) := max
ρ

{
∑

i

pim(I ⊗ Si(ρ))−m(ρ)

}
.
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Note the maximizations in (2) are over all density operators ρ of the composite system, comprising the original 
system and the ancilla.

We will obtain bounds (Proposition 1) for entangling capacities in terms of negativities. Since negativities 
bound teleportation capacity and distillable  entanglement1,25,34–36, our results give bounds for teleportation capac-
ity and distillable entanglement that can be created by quantum operations.

Qualitatively, it is known that a PPT operation can’t create negativity out of a PPT  state3,25, and in this work, 
we would like to investigate the quantitative importance of PPT-ness of operations—A length, or norm associ-
ated with the bounds and PPT-ness, can be defined, by which, along with the distance or metric induced from 
it, we can provide entangling capacities of operations a geometric meaning. A strongly non-PPT operation, i.e. 
an operation that is “longer” in this norm, has the potential to create more negativity. In addition, the distance 
between operations can bound their relative entangling capability (Proposition 2). Therefore, this geometry of 
operations has physical importance.

A method to find bounds of entangling capacity in terms of negativities was proposed in Ref.18. We will com-
pare his approach with ours, and show that, albeit quite dissimilar in form, our bounds can lead to his. Whenever 
there are bounds, it is natural to ask whether or when they can be saturated. Proposition 4 will answer this ques-
tion, and we will lay out a procedure to find the states with which to reach the bound. In addition, we are able 
to show PPT-ness and separability are equivalent for unitary operations, similar to pure states (Proposition 3).

The result of this work can be applied to systems of any finite dimensions, so it may be useful in the study 
of quantum processes that utilizes high-dimensional  spaces37. A list of symbols and acronyms is compiled; see 
Table 1. The reader may refer to the supplemental material S1 accompanying this paper or J.-Y. Kao’s PhD  thesis38 
for details, derivations and a more rigorous approach to this study.

preliminaries
Linear mappings. In this work, a “linear mapping” always refers to one that maps an operator to another 
operator. A generic linear mapping will be denoted by L. Quantum operations are CPTP linear mappings, which 
will be denoted by S.

Choi isomorphism. For a linear mapping L,  Choi39–42 showed that with a mapping T defined as

where {|ai�} is an orthonormal basis, L is CP if and only if T (L) ≥ 041. Conversely, L can be expressed in terms 
of T (L):42

where the transposition is on the basis {|ai�} , and the partial trace tr1 is with respect to the first party, i.e. the 
party to the left of ⊗ in Eq. (3).

(3)T (L) :=
∑

i,j

|ai��aj| ⊗ L(|ai��aj|),

(4)L(O) = tr1(O
T ⊗ IT (L)),

Table 1.  List of symbols and acronyms.

CP Completely positive

TP Trace-preserving

HP Hermiticity-preserving

PPT Positive partial transpose (preserving)

ECm Entangling capacity w.r.t. measure m

L A linear mapping from operators to operators

O A generic operator

I Identity mapping on operators

I Identity operator

L̃± L as the difference of two CP mappings

L± Like above, but by eigendecomposing (4)

S and Si Quantum operations and sub-operations

T, OT Transposition and transpose

Ŵ , OŴ , LŴ Partial transposition and partial transposes; LŴ := Ŵ ◦ L ◦ Ŵ

SŴ± SŴ±

S
Ŵ
i

†

± Si
Ŵ
±
†

S̃
Ŵ
i ± and SŴ

i ± Like L̃± and L±

di Dimension of system i

ker The kernel or null space

ran The range/image of a mapping
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When there are two parties A and B involved, (3) becomes

where {|ai�} and {|bj�} are orthonormal bases of A and B.

Operator‑sum representation. To obtain an operator-sum  representation5,23,41 of a linear mapping L, suppose 
the eigenvalues of T (L) are ci with corresponding eigenvectors |vi� =

∑
jk d

i
jk|aj�|ek�, where {ei} is an orthonor-

mal basis. Define

and it turns out that

is an operator-sum representation of L.

Hilbert–Schmidt inner product. We can express the trace of an operator O after a linear mapping L as a Hilbert–
Schmidt inner  product39,40:

L is TP if and only if L†(I) = I . L†(I) can be obtained via the operator-sum representation (7): L†(I) =
∑

i ciV
†
i Vi , 

or by Lemma 3 from “Methods”.

Hermiticity‑preserving mappings. Any Hermiticity-preserving (HP) mapping L can be decomposed  as39,41

Given any operator O, we can find the “positive” and “negative” parts of O by spectral decomposition:

We can similarly eigendecomposing T (L) of Eq. (3): T (L) = (T (L))+ − (T (L))−43, and Eq. (4) shows how 
they act on any operator O:

As (T (L))± ≥ 0 , L± are also CP, so L± obtained this way are a special case of Eq. (9).

Norms of operators, partial transposition and negativities. The trace norm is defined  as35,44–47

For a Hermitian operator H, its operator norm ||H||45–50 is

Transposition T is a positive but non-CP  mapping43,51; namely partial transposition

is a non-positive linear mapping. The partial transpose of an operator O is often denoted by

Both T and Ŵ are HP and  TP5. A state ρ is said to be a PPT (positive partial transpose) state if ρŴ ≥ 0 . A separable 
state must be PPT by Peres–Horodecki  criterion26,51. Negativity and logarithmic  negativity35 are both entangle-
ment measures (monotones) and can be considered as quantitative versions of Peres  criterion5,35,52,53, defined 
respectively as

The partial transpose of a linear mapping L is defined  as24,30,54

(5)T (L) =
∑

i,j,k,l

|ai��aj| ⊗ |bk��bl| ⊗ L(|ai��aj| ⊗ |bk��bl |),

(6)Vi :=
∑

j,k

dijk|ek��aj|,

(7)L(O) =
∑

i

ciViOV
†
i

(8)trL(O) = (I|L(O)) = (L†(I)|O).

(9)L = L̃+ − L̃−, where L̃± are CP.

(10)O = O+ − O−, O± ≥ 0.

(11)L±(O) = tr1

(
OT ⊗ I(T (L))±

)
.

(12)||O||1 := tr|O| = tr
√
O†O.

(13)||H|| = max(|hi| : h′is are eigenvalues of H).

(14)Ŵ := T ⊗I

(15)OŴ := Ŵ(O) = (T ⊗I )O.

(16)
EN := ||ρŴ−||1 = (||ρŴ ||1 − 1)/2,

EL := log ||ρŴ||1.

(17)LŴ(O) := L(OŴ)Ŵ , or LŴ := Ŵ ◦ L ◦ Ŵ.
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Transposition is linear, so is LŴ . An operation S for which SŴ is CP, i.e. T (SŴ) ≥ 0 , is called a PPT (PPT preserv-
ing) operation, as it maps a PPT state to another  one3,24,30,54,55.

Results and discussions
Bounds for entangling capacities. Proposition 1 (Note the upper bounds for ECN(S) below are actually 
maximized over all states ρ with a given ||ρŴ||1 , in contrast with the definition (1) and (2)) 

1. There exist upper and lower bounds for entangling capacities of deterministic operations:

2. For a probabilistic operation composed of sub‑operations Si , 

The upper bounds of part 2 can be applied to a deterministic operation S =
∑

i Si.
3. With an initial negativity EN , the expected negativity, i.e. probability times pi the actual negativity EN i , after 

a sub‑operation Si is bounded by:

The entangling capacity of a sub‑operation is bounded from below by:

All the upper bounds remain the same after the addition of an ancilla: ||(I ⊗ S̃Ŵi −)
†(I)|| = ||S̃Ŵi

†

−(I)||.
How entangling an operation can be in terms of negativities is associated with the norms of SŴi

†
−(I) . They vanish 

if and only if the operations are PPT, as an PPT operation on average can not increase the negativities of any 
 state35,53. With a small or zero entangling capacity with respect to negativities, even if the operation is entangling, 
it produces mostly or entirely bound  entanglement3,25.

For a deterministic operation S =
∑

i Si , the upper bounds from (19) can be regarded as a special case of 
(18), by choosing S̃Ŵ± =

∑
i S̃

Ŵ
i ±. With S = pS1 + (1− p)S2 , where both Si are TP and 0 ≤ p ≤ 1 , if S2 is PPT, 

Proposition 1 suggests that S is at most about p times as entangling as S1 is—Mixing an operation with a PPT 
one in general makes it less entangling.

From part 3 of Proposition 1, if a sub-operation is PPT, e.g.  LOCC54, whether its negativity can increase 
depends on ||SŴi

†
(I)||/pi . If the state is initially PPT, Si should be non-PPT for any negativity to be produced, 

and the amount is bounded by ||SŴi
†
−(I)||/pi ; in other words, no entanglement can be distilled out of a PPT state 

after PPT (sub-)operations3,25.

A geometrical point of view. A norm that quantifies entangling capacity and entanglement. Let us focus 
on deterministic operations. With a one-to-one homomorphism between two vector spaces l : V → W and 
a norm p for W, p ◦ l is a norm for V49. Thus we can define such norms for any operator or linear mapping X:

where

for any linear mapping L, because partial transposition is one-to-one.
||ρ||1,Ŵ decides the negativities of a state, and ||S||1,Ŵ the lower bounds for entangling capacities by 

Eq. (18), which can be taken for the negativity or entanglement of the operation (if normalized), because 
||T (SŴ)||1 = ||(T (S))Ŵ ||143,56. In addition, the upper bound of entangling capacity from Proposition 1 is 
bounded by ||S||1,Ŵ:

(18)

||SŴ−
†
(I)||1

dAdB
≤ ECN(S) ≤ ||S̃Ŵ

†

−(I)|| ||ρŴ ||1,

log
||T (SŴ)||1

dAdB
= log

(
1+ 2

||SŴ−
†
(I)||1

dAdB

)
≤ ECL(S) ≤ log(1+ 2||S̃Ŵ

†

−(I)||).

(19)

∑

i

||SŴi
†
−(I)||1
dAdB

≤ ECN(S) ≤ ||
∑

i

S̃Ŵi
†

−(I)|| ||ρ
Ŵ ||1,

∑

i

trT (Si)

dAdB
log

||T (SŴi )||1
trT (Si)

≤ ECL(S) ≤ log(1+ 2||
∑

i

S̃Ŵi
†

−(I)||).

(20)piEN i ≤ EN

(
||S̃Ŵi

†

−(I)|| + ||S̃Ŵi
†

+(I)||
)
+ ||S̃Ŵi

†

−(I)||.

(21)

ECN(Si) ≥
trSŴi

†
−(I)

trS†i (I)
=

�
trSŴi

†
+(I)

trSŴi
†
−(I)

− 1

�−1

,

ECL(Si) ≥ log

�
1+ 2

trSŴi
†
−(I)

trS†i (I)

�
= log


1+ 2

�
trSŴi

†
+(I)

trSŴi
†
−(I)

− 1

�−1

.

(22)||X||n,Ŵ := ||XŴ ||n,

(23)||L||n := ||T (L)||n
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The right hand side of the inequality is zero for PPT operations. Therefore Proposition 1 implies that the length 
of an operation is correlated with the extra length a state can gain after the aforementioned operation, with 
respect to these norms.

As a norm-induced metric,

is a distance between operations/operators X and Y. Geometrically, PPT operations are a subset of a dAdB-sphere 
centered at the origin with respect to || · · · ||1,Ŵ . By the triangle inequality, | ||a|| − ||b|| | ≤ ||a− b|| , the length of 
an operation is bounded by the distance to another operation, and any operations within an open ball with center 
being a non-PPT operation S and radius ||S||1,Ŵ − dAdB are non-PPT. The distance from a non-PPT operation 
S to a PPT one is at least ||S||1,Ŵ − dAdB = 2||T (SŴ)−||1—It may not be the exact distance, as linear mappings 
||S||1,Ŵ − dAdB away from S are not necessarily quantum operations. All these can be applied to density operators; 
see Fig. 1. This is somewhat like distance-based entanglement  measures57.

These norms are  equivalent49. For any Hermitian operator H and HP mapping L:

Therefore two states or operations that are close in one norm should not be far apart in another, and vice versa. 
Using whichever norm does not change the  topology58, by continuity (or linearity) of partial transposition or 
equivalence of  norms59,60.

Significance of the distance. The distance as defined in Eq.  (25) has another important physical implication 
beyond what’s shown in Fig. 1:

Proposition 2 For any density operators ρ and ρi , and deterministic operations S and Si , we have an equality

and the following inequalities:

(24)
||SŴ−

†
(I)|| ≤ ||SŴ−

†
(I)||1

= ||T (SŴ−)||1 = (||S||1,Ŵ − dAdB)/2.

(25)D1,Ŵ(X,Y) := ||X − Y ||1,Ŵ

(26)
||H||1

min(dA, dB)
≤ ||H||1,Ŵ ≤ min(dA, dB)||H||1,

(27)
||L||1

min(dA1dA2 , dB1dB2)
≤ ||L||1,Ŵ ≤ min(dA1dA2 , dB1dB2)||L||1.

(28)(SŴ2 − SŴ1 )
†
+(I) = (SŴ2 − SŴ1 )

†
−(I),

(29)D1,Ŵ(S1(ρ), S2(ρ)) ≤ 2||(SŴ2 − SŴ1 )
†
±(I)|| ||ρŴ ||1

1 1,Γ

Non-PPT 
opera�on 1

Every opera�on in the 
open ball is non-PPT 

1 1,Γ −

Twice “unnormalized” 
nega�vity

Distance: D

2 1,Γ − 1 1,Γ ≤

Opera�on 2

1 1,Γ

Non-PPT 
state 1

Every state in the 
open ball is non-PPT 

1 1,Γ − 1

Twice nega�vity

Distance: D

2 1,Γ − 1 1,Γ ≤

State 2

(a) (b)

Figure 1.  Geometry of operations and states in the spaces of linear mappings and operators, with respect 
to || · · · ||1,Ŵ . The entanglement/entangling capacity in terms of negativity is related to the length, and nearby 
operations/states are similarly entangling/entangled. (a) PPT and non-PPT operations in the space of 
linearmappings. (b) PPT and non-PPT states in the space of operators.
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By the triangle inequality, this proposition provides bounds for

• the difference in negativity between different operations acting on the same state, and
• the difference in negativity between the same operation acting on different states

in terms of D1,Ŵ . In other words,

• if two operations are close relative to D1,Ŵ , they have similar capabilities in changing the negativity or entan-
glement of any state;

• if two states are close relative to D1,Ŵ , then their negativites won’t differ much after they’re acted upon by the 
same operation.

See Fig. 2 for a geometric presentation of Proposition 2. In short, the norm || · · · ||1,Ŵ and the associated distance 
D1,Ŵ can quantify or estimate the entangling capability of quantum operations.

comparison between approaches. In Ref. 18, it was shown for a deterministic operation S(ρ) =
∑

i ViρVi , 
where Vi has a Schmidt  decomposition61 Vi =

∑
j(i) �ijAij ⊗ Bij:

It was found in Ref. 18 for a unitary operation with an ancilla:

By Lemma 5 from the “Methods”, the upper bound can be derived from Proposition 1 and the lower bound is 
the same as ours.

ppt‑ness and separability of unitary operations. By Peres–Horodecki criterion, separable states are 
a subset of PPT  states26,51; similarly, separable  operations24,62 are a subset of PPT  operations54. Additionally, all 
PPT pure states are separable, so only for mixed states are PPT-ness and separability distinct  properties35,63,64. We 
find an analogy for unitary operations:

Proposition 3 In a finite‑dimensional system, the following statements are equivalent for any unitary operation 
S(O) = UOU† , where U is a unitary operator:

1. The (Schmidt) rank of U is 1.
2. S is separable.
3. S is PPT.

(30)≤ D1,Ŵ(S1, S2)||ρŴ ||1,

(31)D1,Ŵ(S(ρ1), S(ρ2)) ≤
(
1+ 2||SŴ−

†
(I)||

)
D1,Ŵ(ρ1, ρ2).

(32)ECL(S) ≤ log


�

i

||
�

j(i)

�ijA
†
ijAij|| ||

�

k(i)

�ikB
†
ikBik||


.

(33)ECL(S) ≥ log
(
∑

i �i)
2

dAdB
,

1

1
Γ

1,Γ 1, 2
Γ

1

2
Γ should be in the purple ball 

2
Γ

1
− 1

Γ
1

≤

0

2 2
Γ − 1

Γ

±

†
( ) Γ

1

2
Γ

All states are on this sphere

1

1
Γ

2
Γ should be in the purple ball

2
Γ

1
− 1

Γ
1

≤

0

= 1 + 2 −
Γ†

1,Γ( 1, 2)

2
Γ

1
Γ

2
Γ

1,Γ( 1, 2)

Figure 2.  Proposition 2 and its implication in the space of operators with respect to trace norm || · · · ||1 . Similar 
diagrams can be drawn in terms of || · · · ||1,Ŵ.
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Hence, any non-separable unitary operation, being PPT as well, can create negativity according to Proposi-
tion 1. In other words, only for mixed  states65 and non-unitary  operations54,65 are PPT-ness and separability two 
different properties.

Basic unitary operators and exact entangling capacity. Basic unitary operators are those whose 
Schmidt decompositions U =

∑
i �iAi ⊗ Bi have all the Ai and Bi proportional to unitary  operators18. It was 

shown that all 2⊗ 2 unitary operators are  basic18, and that for a basic unitary operator, the upper and lower 
bounds for the entangling capacity are identical (with S̃Ŵ± = SŴ± ), so they are the exact entangling  capacity18, 
which by Proposition 1 implies trSŴ−

†
(I) = dAdB||SŴ−

†
(I)||, so

More generally, for deterministic operations:

Proposition 4 Suppose S̃Ŵ± = SŴ±. Let ran denote the range or image of a mapping, and

be operator‑sum representations of SŴ± , and

be ensembles of ρŴ± . The upper bound of the entangling capacity given by Proposition 1 is reached if and only if the 
two conditions below are both satisfied:

1. ran
[
SŴ−(ρ

Ŵ+
)+ SŴ+(ρ

Ŵ−
)

]
 and ran

[
SŴ+(ρ

Ŵ+
)+ SŴ−(ρ

Ŵ−
)

]
 are orthogonal, which is equivalent to the orthog‑

onality of the following vectors:

2. ranρŴ is a subspace of the eigenspace relative to the largest eigenvalue of SŴ±
†
(I).

The second condition above is satisfied by any state ρ when SŴ±
†
(I) ∝ I . Besides, the upper and lower bounds in (18) 

are the same if and only if SŴ±
†
(I) ∝ I.

If SŴ±
†
(I) ∝ I , it does not matter whether S is unitary or even basic—the exact entangling capacity is acquired, 

and ||S||1,Ŵ reflects its true entangling capacity. The other way around, we can show a basic unitary operation 
always satisfies SŴ±

†
(I) ∝ I , so the upper and lower bounds are exact.

Application to pure separable states. If the state ρ is PPT, there will be no |ψ̃−
i � in Eq. (37). Let’s further assume 

the state is pure and separable: ρ = |ψ��ψ | and |ψ� = |ψ1�|ψ2� . Given an orthonormal basis {|ai�} of A, the 
partial transpose of |ψ� is still pure and separable:

where |ψ1� =
∑

ci|ai� and |ψ∗
1 � =

∑
c∗i |ai�. Hence, ρŴ+ = |ψ∗

1 ��ψ∗
1 | ⊗ |ψ2��ψ2| and ρŴ− = 0, and (37) becomes

Consider a 2⊗ 2 unitary operator:

Being basic, we can find:

With |ψi� = cos θi|↑� + eiφi sin θi|↓� the solution to Eq. (39) is θ1 = π/4+ nπ/2 , and θ2 = mπ/2 or φ2 = pπ , 
with m, n, p ∈ Z . Any pure separable states that satisfy this condition, e.g. (1, 0, 1, 0)/

√
2 will have

(34)SŴ±
†
(I) ∝ I .

(35)SŴ±(O) =
∑

i

c±i V
±
i OV±

i
†
, c±i > 0,

(36)ρŴ± =
∑

i

|ψ±
i ��ψ±

i |

(37)�V±
i ψ∓

j |V+
k ψ+

l � = 0 and �V±
i ψ∓

j |V−
k ψ−

l � = 0 ∀i, j, k, l.

(38)(|ψ��ψ |)Ŵ = |ψ∗
1 ��ψ∗

1 | ⊗ |ψ2��ψ2|,

(39)(�ψ∗
1 |�ψ2|)V−

i
†
V+
j (|ψ∗

1 �|ψ2�) = 0 ∀i, j.

(40)U =




cosα sin α 0 0
− sin α cosα 0 0

0 0 cosβ sin β
0 0 − sin β cosβ


.

(41)SŴ−
†
(I) =

|sin(β − α)|
2

I ∝ I .

(42)EN =
|sin(β − α)|

2
and EL = log(1+ |sin(β − α)|)
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after this unitary operation according to Propositions 1 and 4, and Eq. (42) is also the maximal negativities any 
state can gain under U.

Now consider a 2⊗ 3 unitary operator:

In general the upper and lower bounds do not coincide; however when α = 2π/3 and β = 0 , SŴ−
†
(I) = I/2 , so 

by Proposition 1 and 4 we can find the exact entangling capacities there, which are

Now let’s find pure separable states that reach the entangling capacities, i.e. to solve Eq. (39). For simplicity 
assume |ψ1� = cos θ1|↑� + sin θ1|↓� and |ψ2� = cos θ2 sinφ|0� + sin θ2 sinφ|1� + cosφ|2� , and we can find the 
solution will be sin2 φ cos2 θ2 = 1/3 and cos 2θ1 = 0 , e.g. 1/

√
6(|↑� + |↓�)(|0� +

√
2|2�).

conclusion
In Proposition 1 we found upper and lower bounds for entangling capacities that are applicable to both deter-
ministic and probabilistic operations, generalizing the work by  Campbell18. Furthermore, by giving operations 
and states appropriate norms (lengths) and metrics (distances), Eqs. (22) and (23), we associate the bounds of 
entangling capacities and entanglement with geometry, as illustrated by Figs. 1 and 2. Proposition 2 provides 
the distance another physical importance. Note the difference between Proposition 1 and 2: Even if two opera-
tions have identical upper bounds and identical lower bounds in Eq. (18), when they act on the same state, the 
negativities afterwards may be wildly different if the two operations are far apart, according to Proposition 2.

Proposition 3 is interesting in that it shows PPT-ness only manifests itself as different from separability when 
we start to consider mixed states and non-unitary operations. Finally, Proposition 4 demonstrates the condition 
under which the bounds upper from Proposition 1 can be attained, as well as the condition under which the 
bounds become exact. We further portrayed how to find pure separable states that satisfy such conditions. Entan-
glement of a dynamical system can be studied with this method in a state-independent way. For example, with 
α(t) and β(t) for the unitary operator in Eq. (40), we can investigate how entangling the system is as it evolves, 
and because the solution to Eq. (39) turned out to be independent of α and β , we know that with a proper initial 
state the entanglement (negativity) is maximized at any moment.

Our results also reflect that operations and states are tight-knit: The entanglement (negativity) of operations 
is correlated with that of states. In Ref. 56 a similar phenomenon was observed for entangling power in terms of 
linear entropy. We expect this to happen in other facets of states/operations: For example, a more non-separable 
operation could make states more non-separable, if a suitable measure of non-separability is  used66.

Because PPT operations are defined to be CP after partial transposition, ancillas come in naturally: As we 
decompose an HP mapping into CP rather than positive parts, the upper bounds are unaltered with the addition 
of an ancilla. Furthermore, a non-PPT operation may be positive after partial transposition, and not be able 
to create any negativity due to positivity, but after adding an ancilla, it will fail to become positive after partial 
transposition. Studying operations through Choi isomorphism makes ancillas a natural fit.

Practically, this work could facilitate the study of quantum information in higher  dimensions37: Proposi-
tion 1 (or the bounds shown in Ref.18) provides a tool for easily finding out which operations are potentially 
more entangling, after which we may apply Proposition 4 to discover the optimal states. As we may not be able 
to peform a quantum operation perfectly, Proposition 2 presents a tolerance for imperfection: For example, let’s 
assume the operation isn’t perfect. Suppose the perfect and imperfect (deterministic) operations are S and S′ 
respectively, and that the input state ρ is separable. If we want the negativity of S′(ρ) to be within 99.9% of that of 
S(ρ) , then any operations inside the 0.1%||S(ρ)||1,Ŵ-closed ball centered at S (in terms of || · · · ||1,Ŵ ) can be used; 
similarly, if we can’t prepare a perfect state, Proposition 2 can also provide the tolerance.

Methods
Here are several lemmas relevant to the derivation.

Lemma 1 For any Hermitian operator H on a finite‑dimensional Hilbert space H , among all possible such decompo‑
sitions: H = H̃+ − H̃−, H̃± ≥ 0 , the eigendecomposition H = H+ −H− is the unique one that minimizes trH̃+ , 
trH̃− , and tr(H̃+ + H̃−); minimizing any one of them is the same as minimizing each of them. A decomposition in 
which H̃± := (ker H̃±)⊥ = ranH̃± are orthogonal is equivalent to the eigendecomposition.

Lemma 2 Suppose P1 and P2 are two positive operators, and they have such ensembles65,67:

where each {|ψ i
j �} is a set of nonzero vectors that aren’t necessarily normalized or mutually orthogonal. Then each 

eigenvector/eigenspace of P2 corresponding to a nonzero eigenvalue is orthogonal to each of P1 if and only if

(43)




I3 03

03

cosβ sin β 0
− sin β cosβ 0

0 0 1


 ·




I4 04

04
cosα sin α
− sin α cosα


.

(44)ECN = 1/2 and ECL = 2.

(45)Pi =
∑

j

|ψ i
j ��ψ i

j |,
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in other words, if and only if

Lemma 3 For a linear mapping L,

The (partial) trace is taken on the second party, i.e. to the right of ⊗ in Eq. (3).

Lemma 4 For an HPTP mapping L and Hermitian H,

Lemma 5 For a deterministic operation S =
∑

i Si , where Si = ViρV
†
i  with the Schmidt decompositions of Vi being 

Vi =
∑

j(i) �ijAij ⊗ Bij ,

For a unitary operation S(ρ) = UρU† , where the Schmidt decomposition of U is U =
∑

i �iAi ⊗ Bi,

The upper bounds come from matrix Hölder  inequality45,68: For 1 ≤ p, q ≤ ∞ and 1/p+ 1/q = 1 given two 
operators O1 and O2 we have

We chose p = ∞ and q = 1 , because negativity is determined by trace norm, and physical states have trace 1. 
Concavity of logarithm is also  utilized53,69. More general bounds can be derived as well; details can be found in the 
supplementary material S1, which contains derivations and particulars of other essential elements for this work.

Data availability
Figures required for this study can be found in the supplementary material.
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