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Abstract: Dry eye disease (DED) is a multifactorial condition caused by tear deficiency and accom-
panied by ocular surface damage. Recent data support a key role of oxidative and inflammatory
processes in the pathogenesis of DED. Hyaluronic acid (HA) is widely used in artificial tears to treat
DED by improving ocular hydration and reducing surface friction. Crocin (Cr), the main constituent
of saffron, is a renowned compound that exhibits potent antioxidant and anti-inflammatory effects.
The present study was undertaken to assess the viscosity and muco-adhesiveness of a photoactivated
formulation with crosslinked HA (cHA), Cr, and liposomes (cHA-Cr-L). Our aim was also to evaluate
whether cHA-Cr-L may exert cytoprotective effects against oxidative and inflammatory processes in
human corneal epithelial cells (HCECs). Viscosity was measured using a rotational rheometer, and
then the muco-adhesiveness was evaluated. Under hyperosmolarity (450 mOsm), the HCECs were
treated with cHA-Cr-L. Interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα) were quantified
by quantitative real-time polymerase chain reaction (RT-qPCR). The levels of reactive oxygen species
(ROS) were measured using the DCF assay. The combined action of cHA-Cr-L produced a higher
viscosity and muco-adhesiveness compared to the control. The anti-inflammatory effect of cHA-Cr-L
was achieved through a significant reduction of IL-1β and TNFα (p < 0.001). The results also showed
that cHA-Cr-L reduces ROS production under conditions of hyperosmolarity (p < 0.001). We conclude
that cHA-Cr-L has potential as a therapeutic agent in DED, which should be further investigated.

Keywords: dry eye; hyaluronic acid; crocin; liposomes; anti-inflammatory; antioxidants

1. Introduction

Dry eye disease (DED) is defined as a multifactorial disease caused by tear deficiency,
and it is often accompanied by ocular surface damage [1]. Recent evidence supports the
key role of inflammatory and oxidative processes in the pathogenesis of DED. In fact, high
levels of reactive oxygen species (ROS) and increased inflammatory markers are reported
in the tear film of DED patients [2,3]. In DED, inadequate tear production or excessive
tear evaporation leads to tear film instability and hyperosmolarity with subsequent ocular
surface inflammation [4]. Eye inflammation, in turn, can affect the dysfunction of the ocular
surface and its associated structures, leading to further tear deficiency and damage [5].
Additionally, oxidative stress causes macromolecular alterations and damage to ocular
epithelial cells and lacrimal glands, exacerbating inflammation [2,6].

Artificial tears play a crucial clinical role in treating DED and are associated with
several beneficial effects on the tear film’s physical characteristics and ocular surface
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epithelium [7]. Although new treatments are becoming available, artificial tears are still
the first-line treatment of DED. One of the main challenges associated with conventional
eye drops is the short retention time on the ocular surface. After instillation, there is
drainage of the components, mainly due to blinking and lachrymation, which lower the
effectiveness [8,9].

Hyaluronic acid (HA) is a glycosaminoglycan widely distributed throughout con-
nective, epithelial, and neural tissues, with an excellent water-holding capacity. HA is
commonly used in artificial tears to treat DED symptoms as it enhances ocular surface
hydration and minimizes friction, dependent on its molecular weight and viscosity [10].
Furthermore, HA counteracts ROS production, acts as a cytoprotective agent, and exerts
long-term beneficial effects on corneal epithelium regeneration [11,12]. However, eye
drops with HA lose viscosity as a function of time, reaching DED patients with decreased
activity and effectiveness [13]. Covalent cross-linked HA (cHA) is a more viscoelastic
material, enhancing the contact time with the ocular surface and has an improved physical
and chemical stability compared to linear HA [14]. Liposomes are well-tolerated lipidic
elements that reduce aqueous evaporation by increasing tear film stability. The clinical
efficacy of liposomes is well established, mainly due to phosphatidylcholine and choles-
terol, which play an essential role in developing a monolayer surface and reducing surface
tension [15,16].

Crocin (Cr), the main constituent of saffron, is a water-soluble carotenoid that can
interact with light in the wavelength range of 380–510 nm (violet-blue and green spectral
colors). Cr undergoes a reversible photochemical reaction that generates a balance between
cis-trans forms, with a concentration of about 20% of 13-cis-Cr at the photo-equilibrium.
This photoactivation allows Cr, in an aqueous solution, to establish non-covalent inter-
actions with different molecular structures, increasing the degree of cross-linkage and,
consequently, viscosity and mucoadhesive properties [17]. Moreover, Cr exerts several
cytoprotective properties, including anti-inflammatory and antioxidant activities [18,19].

Therefore, the purpose of this study was to assess the viscosity and mucosal adhesive-
ness of cHA with Cr and liposomes (cHA-Cr-L). Our aim was also to evaluate whether
cHA-Cr-L may exert cytoprotective effects against oxidative and inflammatory processes
in human corneal epithelial cells (HCECs).

2. Results

We used a rotational rheometer to evaluate the viscosity of cHA-Cr-L and its interac-
tion with mucin. The results depicted in Figure 1 show that photoactivated cHA-Cr-L has
a higher shear viscosity compared to linear HA 0.15%, with values of 0.0112 ± 0.0006 and
0.0033 ± 0.0004 Pa.s at 1 s−1, and 0.0099 ± 0.0004 and 0.0042 ± 0.0002 Pa.s at 100 s−1 shear
rates, respectively (Table 1). At high shear rates, cHA-Cr-L slightly shifted, exhibiting shear
thinning behavior. Furthermore, cHA-Cr-L exhibited a high muco-adhesiveness under
illuminated conditions, as its interaction with mucin was seven-fold higher than Cr alone
(p < 0.01) (Figure 2).

Then, we examined the anti-inflammatory effect of cHA-Cr-L under hyperosmolarity
in HCECs. Figure 3 shows the mRNA levels of IL-1β and TNFα in HCECs incubated with
cHA-Cr-L, HA, and Cr. Treatment with 450 mOsM medium increased mRNA expression
of IL-1β and TNFα to 8.68 ± 0.79 and 8.05 ± 0.94 fold, respectively, compared with normal
control cells (312 mOsM). However, the expression of these proinflammatory cytokines
significantly decreased to 4.58 ± 0.6 and 3.98 ± 0.74 fold (p < 0.01), respectively, in HCECs
at 450 mOsM treated with Cr. The cytokines were further downregulated to 2.84 ± 0.79
and 2.49 ± 0.76 fold (p < 0.001), respectively, when treated with cHA-Cr-L. Conversely, a
non-significant decline was seen in HA-treated cells. These results suggest that cHA-Cr-L
has a potent suppressive effect on inflammatory mediators at mRNA levels.
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Figure 1. Shear viscosity of cHA-Cr-L compared to linear hyaluronic acid (HA) 0.15%.

Table 1. Shear viscosity of cHA-Cr-L compared to linear HA 0.15%.

Formulation Viscosity [Pa.s] (1[1/s]) Viscosity [Pa.s] (10[1/s]) Viscosity [Pa.s] (100[1/s])

HA 0.15% 0.0033 ± 0.0004 0.0031 ± 0.0001 0.0042 ± 0.0002

cHA-Cr-L 0.0112 ± 0.0006 0.0111 ± 0.0003 0.0099 ± 0.0004

HA, hyaluronic acid; cHA-Cr-L, crosslinked HA-crocin-liposome

Molecules 2021, 26, x FOR PEER REVIEW 3 of 9 
 

 

Figure 1. Shear viscosity of cHA-Cr-L compared to linear hyaluronic acid (HA) 0.15%. 

 

Figure 2. Muco-adhesivity of cHA-Cr-L, Cr, and HA. Results are expressed as fold increase of 

muco-adhesive index compared to control. * p < 0.01 cHA-Cr-L vs. Cr alone; ** p < 0.01 cHA-Cr-

L vs. HA alone. 

Then, we examined the anti-inflammatory effect of cHA-Cr-L under hyperosmolarity 

in HCECs. Figure 3 shows the mRNA levels of IL-1β and TNFα in HCECs incubated with 

cHA-Cr-L, HA, and Cr. Treatment with 450 mOsM medium increased mRNA expression 

of IL-1β and TNFα to 8.68 ± 0.79 and 8.05 ± 0.94 fold, respectively, compared with normal 

control cells (312 mOsM). However, the expression of these proinflammatory cytokines 

significantly decreased to 4.58 ± 0.6 and 3.98 ± 0.74 fold (p < 0.01), respectively, in HCECs 

at 450 mOsM treated with Cr. The cytokines were further downregulated to 2.84 ± 0.79 

and 2.49 ± 0.76 fold (p < 0.001), respectively, when treated with cHA-Cr-L. Conversely, a 

Figure 2. Muco-adhesivity of cHA-Cr-L, Cr, and HA. Results are expressed as fold increase of muco-adhesive index
compared to control. * p < 0.01 cHA-Cr-L vs. Cr alone; ** p < 0.01 cHA-Cr-L vs. HA alone.
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Figure 3. mRNA levels of IL-1β and TNFα in HCECs exposed to hyperosmotic media and treated with cHA-Cr-L, Cr, and
HA. Cr and cHA-Cr-L vs. control * p < 0.01; ** p < 0.001.

Finally, oxidative stress was determined by quantifying ROS levels in HCECs. This
was accomplished by DCF assay, which is used to detect all ROS forms generated during
cell metabolism. DCF fluorescence intensity measurement revealed that hyperosmotic
stress markedly stimulated intracellular ROS production. However, Cr and cHA-Cr-L
treatment significantly reduced ROS levels from 798 ± 158 to 383 ± 55 and 275 ± 52,
respectively (p < 0.01), while HA treatment resulted in a non-significant decline in DCF
intensity (Figure 4).
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Figure 4. Levels of ROS in HCECs exposed to hyperosmotic media and treated with cHA-Cr-L, Cr,
and HA. Cr and cHA-Cr-L vs. control * p < 0.01; ** p < 0.001.

3. Discussion

In this study, we tested the rheological properties and cytoprotective effects of cHA-
Cr-L on HCECs exposed to hyperosmolarity. The data demonstrated that cHA-Cr-L has
an enhanced viscosity with shear thinning behavior and a strong muco-adhesive property.
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The results also showed that cHA-Cr-L has direct antioxidant and anti-inflammatory
effects in an experimental model of DED. High viscosity at low shear rates improves
hydration of the ocular surface between blinks, and decreased viscosity at high shear rates
is beneficial for ocular comfort during blinking and potentially reduces friction-related
inflammation. Artificial tears that display low viscosity at low shear rates are more likely
to drain or evaporate and are usually used in thick mucus secretion cases. In contrast,
excessive viscosity due to shear thickening or resistance to shear-thinning may result in
blurred vision [20]. Furthermore, the muco-adhesive capacity of a formulation prolongs
the adhesion time with the ocular surface, allowing a sustained delivery and reducing the
frequency of administration [21]. Eye drops with low adhesion may not retain the required
time to relieve DED symptoms [10]. The interaction between adhesive compounds and
mucin is generally formed by physical entanglements, van der Walls bonds, electrostatic
forces, and hydrogen bonds [22]. The enhanced viscosity and muco-adhesive property
of cHA-Cr-L would help to develop a protective layer on the ocular surface, improving
lubrication and hydration, and reducing friction [23]. Thus, the results of our study
provide a rationale for the use of cHA-Cr-L as a potential agent to improve the rheological
characteristics of eye drops.

Hyperosmolarity of the muco-aqueous tear layer is one of the major etiological factors
in ocular surface inflammation [21,24]. In DED, tear hyperosmolarity is associated with an
increased expression of proinflammatory cytokines, chemokines, and adhesion molecules,
resulting in ocular surface damage [25]. We confirmed the inflammatory role of hyperosmo-
larity in our DED experimental model, observing an increase of proinflammatory cytokines
in HCECs exposed to hyperosmolarity. Interestingly, we also observed a significant decline
of IL-1β and TNFα after the treatment with cHA-Cr-L. These results confirmed previous
findings obtained in similar experimental conditions but using a single compound, such
as HA or Cr [26–28]. In our study, the combined action of cHA-Cr-L appears more effec-
tive than the response achieved by the single compounds, indicating a synergistic effect
between cHA and Cr that may be useful to suppress inflammatory processes associated
with DED.

The human eye is particularly vulnerable to oxidative stress, mainly due to constant ex-
posure to sunlight, high metabolic activities, and oxygen tension [29]. Several antioxidants
are present in the tear, protecting the ocular surface; however, instability in the tear film
leads to ROS overproduction [6,29]. An association between ROS overproduction, lipid and
protein oxidation, and inflammatory processes have been reported in DED patients and
animal models [30–32]. Scavenging ROS would prevent oxidative damage and, therefore,
potentially reduce DED symptoms. ROS overproduction in hyperosmolarity-stimulated
HCECs was effectively diminished by cHA-Cr-L, as determined by DCF fluorescent inten-
sity. This is consistent with the antioxidant activities of Cr, which is known to neutralize free
radicals and convert them into stable forms through its hydroxyl and sugar moieties [19,33].
Cr is also reported to inhibit lipid peroxidation, increase superoxide dismutase (SOD) levels,
and reverse the harmful effects of oxidative stress [33,34]. These data and our results reveal
that Cr potentially protects the human corneal epithelium from hyperosmolarity-induced
oxidative damage.

4. Materials and Methods
4.1. Viscosity Measurements

Viscosity was measured using a discovery hybrid rotational rheometer (DHR-2) (TA
Instruments, Milan, Italy) equipped with a 60 mm diameter 1◦ cone-plate geometry at
20 ◦C. cHA-Cr-L (Lumixa®; FB-Vision, Ascoli Piceno, Italy) is a formulation based on a
6% buffered L dispersion (water, lecithin, and propylene glycol), of which 10% is L with
0.15% cHA and Cr. The shear viscosity of cHA-Cr-L and linear HA 0.15% was obtained for
shear rates ranging from 0.1 to 1000.0 s−1. A flow curve, which is the dynamic viscosity as
a function of the shear rate, was obtained as the mean of three measurements. Before the
measurement, cHA-Cr-L was left in direct daylight for 30 min.
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4.2. Muco-Adhesion Measurements

The muco-adhesiveness of the formulations with mucin was evaluated through viscos-
ity measurements, as previously described [10]. To determine the interaction with mucin,
four solutions were prepared: (1) 5% (w/w) mucin suspension, (2) mucin suspension +
HA 0.15% (w/v) (1:1), (3) mucin suspension + Cr (w/v) (1:1), and (4) mucin suspension +
cHA-Cr-L (w/v) (1:1). The muco-adhesion of the formulations was calculated using the
following equation:

∆ (%) = [ηmuc + sample − (ηmuc + ηsample)]/(ηmuc + ηsample) × 100

where ∆ (%) is the muco-adhesion index, ηmuc, ηsample, and ηmuc + sample are the mucin’s,
the formulations’, and the mucin with formulations’ viscosity, respectively. For cHA-Cr-L,
the mucoadhesive property of ηmuc + cHA-Cr-L is higher than (ηmuc + ηcHA-Cr-L) due to the
interactions between the components and mucin [35].

4.3. HCEC Exposure to Hyperosmolarity

HCECs were cultured in 12-well plates with explants from corneal limbal rims in a
supplemented hormonal epidermal medium (SHEM) containing 5% fetal bovine serum
(FBS), according to a previously published method [36]. When they reached confluence,
the HCEC cultures were maintained in a serum-free medium and then treated for 4 h with
isosmotic (312 mOsM) or hyperosmotic (450 mOsM) medium, which was achieved by
adding sodium chloride (NaCl, 69 mM). The medium’s osmolarity was measured by a
vapor pressure osmometer (ELITech Group, Torino, Italy). Hyperosmolar HCECs were then
treated with cHA-Cr-L, HA, or Cr formulations at 37 ◦C for 120 min. Gene expression and
DCF assays were performed before and after treatments. All experiments were performed
in triplicate.

4.4. Evaluation of Interleukin-1β (IL-1β) and Tumor Necrosis Factor α (TNFα) Gene Expression
by Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR)

Total RNA was extracted from HCECs by RNeasy Plus Mini Kit (Qiagen, Milan,
Italy) according to the manufacturer’s instructions and quantified by a spectrophotometer
(NanoDrop ND-1000; Thermo Scientific, Wilmington, DE, USA). Reverse transcription from
1 µg of total RNA was performed to synthesize cDNA using Ready-To-Go You-Prime First-
Strand Beads as described previously [37]. The real-time PCR was performed (Mx3005PTM
system; Stratagene, La Jolla, CA, USA) with a 20 mL reaction volume containing 5 mL of
cDNA, 1 mL of TaqMan Gene Expression Assay for IL-1β (Hs01555413_m1) and TNFα
(Hs00174128_m1) or GAPDH (Hs99999905_m1) and 10 mL master mix (TaqMan; ABI). The
thermocycling was performed at 50 ◦C for 2 min, 95 ◦C for 10 min, followed by 40 cycles
of 95 ◦C for 15 s and 60 ◦C for 1 min. A non-template control was used to evaluate DNA
contamination. The results were analyzed by the comparative threshold cycle (CT) method
and normalized by GAPDH.

4.5. Evaluation of Cellular ROS Production

Cellular ROS production was measured by DCFDA/H2DCFDA—Cellular ROS As-
say Kit (Abcam, Milan, Italy) according to the manufacturer’s protocol. DCFDA (2′,7′-
dichlorofluorescein diacetate) is a cell-permeable fluorogenic compound that is deacety-
lated by cellular esterase and subsequently oxidized by ROS to high fluorescent DCF
(2′,7′-dichlorofluorescein), which is used to measure cellular ROS levels [37]. HCECs,
plated in 12-well plates, were washed with phosphate-buffered saline (PBS) and incubated
with 200 µL DCFDA (25 µM) solution at 37 ◦C for 30 min in the dark and rewashed with
PBS afterward. Finally, fluorescent intensity was measured by microplate reader using
488 nm for excitation and 535 nm for ROS detection.
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4.6. Statistical Analysis

Student’s t-test was used to compare differences between two groups. One-way
ANOVA was used to compare three or more groups, followed by Dunnett’s post hoc test to
identify group differences, using SPSS Statistics software version 26.0 (IBM Corp., Armonk,
NY, USA). Significant differences were established at p < 0.05.

5. Summary

The antioxidant and anti-inflammatory effects of cHA-Cr-L on hyperosmolar HCECs
suggest that this combined formulation might be a potential approach to treat DED symp-
toms. Future studies could further investigate the protective effects and mechanism of
action of cHA-Cr-L on DED in in vitro and in vivo models. Moreover, clinical studies could
evaluate whether this formulation may effectively counteract the deleterious effects of DED
in human patients.
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