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Abstract
Footwear examiners are tasked with comparing an outsole impression (Q) left
at a crime scene with an impression (K) from a database or from the suspect's
shoe. We propose a method for comparing two shoe outsole impressions that
relies on robust features (speeded-up robust feature; SURF) on each impression
and aligns them using a maximum clique (MC). After alignment, an algorithm
we denote MC-COMP is used to extract additional features that are then com-
bined into a univariate similarity score using a random forest (RF). We use a
database of shoe outsole impressions that includes images from two models
of athletic shoes that were purchased new and then worn by study partici-
pants for about 6 months. The shoes share class characteristics such as outsole
pattern and size, and thus the comparison is challenging. We find that the
RF implemented on SURF outperforms other methods recently proposed in
the literature in terms of classification precision. In more realistic scenarios
where crime scene impressions may be degraded and smudged, the algorithm
we propose—denoted MC-COMP-SURF—shows the best classification perfor-
mance by detecting unique features better than other methods. The algorithm
can be implemented with the R-package shoeprintr.
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1 INTRODUCTION

Forensic practice in the United States has been under
intense scrutiny for several years. The development of
DNA analysis as a forensic tool in the 1990s [13] provided

the means to revisit old criminal cases and identify
individuals who had been wrongfully convicted because
of faulty forensic analyses. In addition, highly publi-
cized blunders including the false accusation of Bran-
don Mayfield as the perpetrator in the 2004 Madrid train
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bombing also put in question the reliability of forensic
techniques such as latent print analysis, forensic bite-mark
analysis, and other pattern disciplines. Pattern disciplines
include fingerprint and shoeprint examination, ballistics,
and other forensic disciplines where the evidence can
be represented in the form of a two or three dimen-
sional image. In the early 2000s, the National Research
Council (NRC) published reports discussing the scien-
tific validity and reliability of bullet lead analysis [15],
lie-detecting [14], eye witness testimony [18], and ballis-
tics [16]. But, it was the 2009 report by the NRC [17] that
finally increased awareness of the lack of science under-
pinning many of the pattern disciplines. The report noted
that even widely accepted techniques such as fingerprint
comparison had not been tested under controlled condi-
tions, and that discipline-wide error rates were unknown.
The panel made several recommendations, among them
that the broader scientific community be recruited to work
on forensic problems to put them on a more solid scien-
tific and probabilistic framework. A few years later, the
President's Council of Advisors on Science and Technol-
ogy (PCAST) revisited the subject, and in a 2016 report [24]
concluded that little progress had been made since 2009,
and that there was still need for objective, well tested a
validated methods to evaluate evidence. A recent paper by
Bell et al. [4] pointed out that after almost a decade since
the release of the 2009 NRC report, many forensic disci-
plines have yet to be validated. The paper by Bell and her
co-authors is a call to scientists in a wide range of areas to
get involved in forensic science research.

In this article, we focus on footwear examination, one
of the pattern disciplines discussed in both the 2009 NRC
report [17] and the PCAST report [24]. Both reports noted
that the comparison of footwear impressions is largely sub-
jective and relies heavily on the examiner's experience.
Furthermore, PCAST expressed concerns about the poten-
tial lack of reliability and accuracy among footwear exam-
iners and pointed out that when addressing questions of
source we must consider the question of probative value of
footwear evidence. Probative value refers to the rarity of
the observed similarity; two items of evidence have high
probative value if a strong degree of similarity is indicative
of same source.

There is a need to develop objective, accurate and
repeatable methods to compare footwear impressions.
Despite the fact that footwear impressions are more com-
monly found in crime scenes than fingerprints [29],
footwear evidence is rarely introduced as evidence in crim-
inal proceedings. In fact, it is often the case that footwear
evidence is not even lifted from the crime scene. This
is so because crime scene investigators lack the tools
and the knowledge to do so correctly [5] and footwear
examiners lack accurate, reliable and validated methods

to quantify the similarity between two outsole (the bot-
tom of the shoe) impressions. Consequently, examiners
are limited in the type and strength of conclusions they
can make.

The state of the art in footwear examination is to
compare two or more outsole images visually and then
use a 7-point scale to subjectively determine the degree
of similarity between them. The guidelines for imple-
menting the 7-point scale were published in a report
entitled Range of conclusions standard for footwear and tire
impression examinations in 2013 by the Scientific Work-
ing Group for Shoeprint and Tire Tread Evidence, which
also includes suggestions for the wording to use when
reporting conclusions.

The fact that footwear examination relies on a subjec-
tive assessment of the similarity between outsole impres-
sions is problematic for various reasons. First, there is no
universal agreement of what constitutes the degree of simi-
larity associated with each point in the scale. Second, there
is no mechanism to estimate error rates for the discipline
as a whole and for individual examiners.

Unless the crime scene print is significantly degraded,
it is relatively simple to exclude a suspect's shoe when it
does not share class characteristics (such as size of the
shoe, make, and model) with the questioned shoe impres-
sion at the scene. However, when two impressions share
class characteristics, the only identifying marks would be
those that arise from wear and tear. If the two impressions
are found to be similar enough, then the next question
is whether the observed degree of similarity is probative:
could we observe the same degree of similarity if the two
impressions had been produced by different shoes?

In the last decade, there have been several pub-
lished papers [2,11,26,27,29,31] proposing automated
or semi-automated algorithms to compare shoe outsole
impressions. Yet, there has been no systematic evalua-
tion of the performance of those methods on a database
of two-dimensional (2D) shoe impressions of outsoles
with the same class characteristics. In addition, databases
of images of outsoles obtained from well-designed trials
controlling for brand, model, size, and degree of wear
are scarce, and this has impeded progress by the research
community.

The main goal of this work is to introduce a statistical
learning algorithm that can reliably determine whether a
questioned outsole impression may have been made by a
specific shoe. The algorithm produces a score that takes a
value between 0 and 1, where higher scores correspond to
higher degree of similarity between the impressions that
are being compared. To develop and test the algorithm,
we used 2D images of outsole impressions collected by
the Center for Statistics and Applications in Forensic Evi-
dence (CSAFE; www.forensicstats.org). The database can

http://www.forensicstats.org
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F I G U R E 1 The outsole photos of Nike Winflow 4 and Adidas Seeley

be accessed freely via the resources link in the center's
webpage. The algorithm is not meant to replace the human
examiner, but to provide an objective tool that the exam-
iner can use to shore up visual examination.

The use of learning algorithms in forensic science
applications is still experimental, but gaining popularity.
In the past decade or so, learning algorithms in combina-
tion with more traditional statistical methods have been
proposed for use in firearms examination [7], trace evi-
dence [21], questioned documents [9], and footwear analy-
sis [2,11,27,31], just to name a few. In all cases, algorithms
have been proposed as complementary to current forensic
practice, and as a means to quantify the degree of similar-
ity between two items as well as the probative value of the
similarity. In the remainder, we describe the data and the
algorithm, implement the algorithm on high quality and
on degraded images and offer some conclusions.

2 DATA

Researchers in CSAFE obtained 2D images of shoe impres-
sions for research purposes. One hundred and sixty new
pairs of shoes of brand Nike Winflow 4, sizes 8.5 and 10.5 or
Adidas Seeley skateboard, sizes 8 and 10 were purchased.
Figure 1 shows the outsole pattern of study shoes. Volun-
teers were given a pair of brand-new shoes equipped with
a step counter, and were asked to walk at least 10 000 steps
per week in the shoes. Participants brought the shoes back
to the lab every 8 weeks over a 6-month period so that out-
soles could be scanned, photographed and printed. During
each of these occasions, both the left and the right shoe
were scanned four times. The resulting database includes
over 30 000 images obtained using various devices in a
longitudinal study design. Importantly, each image has a
known source (or shoe).

One of the measurement instruments used in the study
was a 2D EverOS scanner (https://www.shopevident.
com/). The EverOS scanner obtains a 2D image of the
outsole of the shoe by detecting the weight distribution on

the outsole as the wearer steps on the scanner. The reso-
lution of the image is 300 dpi and the image also includes
a ruler to measure the size of the impression. For good
quality images, participants carefully step on the scan-
ner putting weight from the heel to the toe of the shoe,
attempting to capture the entire shoe outsole.

In this paper, we use a subset of the images obtained
during the last collection period, when shoes had been
worn for about 6 months by study participants. The subset
includes images of the left and the right shoe from 60 pairs
of Nike Winflow 4 shoes size 8.5 (38 pairs), 10.5 (22 pairs)
and from 21 pairs of Adidas Seeley skateboard shoes size 8
(11 pairs) and size 10 (10 pairs).

All images underwent some preprocessing: we
removed the ruler areas in the boundary of the images and
down-sampled all images at a 20% rate. We used Matlab
to implement these steps and also for detecting the SURF
(speeded-up robust features) [3]. We revisit this step in the
next section.

Figure 2 shows three example impressions of the left
shoe in pairs of Nike Winflow 4 size 10.5 shoes. Images 1
and 2 are were obtained from replicated impressions of the
left shoe worn by participant #144. Image 3 is an impres-
sion from the left shoe worn by participant #105. Since the
two pairs of shoes used to draw Figure 2 are of the same
brand and model and are used for a similar amount of time,
these three impressions look very similar. By the naked
eye alone, it is challenging to see the differences in the
impressions that are due to differences in wear and tear.

3 ALGORITHM TO COMPARE
IMPRESSIONS

We propose an algorithm to quantify the similarity
between pairs of images of footwear impressions. The goal
is to build a classifier that can accurately predict whether
two impressions have a common source, and produce a
quantitative assessment of the strength of the similarity
between the impressions.

https://www.shopevident.com/
https://www.shopevident.com/
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F I G U R E 2 Three impressions of left Nike Winflow 4 shoes
size 10.5, worn for about 6 months. Image 1: impression #1 from the
left shoe of the pair with ID 144 scanned on May 2, 2018. Image 2:
impression #3 from the left shoe of the same pair. Image 3:
impression #1 from the left shoe of pair with ID 105 scanned on
May 9, 2018. Image 1 and Image 2 are mates and Image 1 (or Image
2) and Image 3 are nonmates

The method we propose relies on three critical steps to
construct a similarity score; we have attempted to optimize
each of the steps to improve the predictive performance of
the algorithm. In the first step we define an outsole signa-
ture, or a subset of the image pixels on which we will focus.
The second step is to align two signatures and the last step
is to measure the similarity between them.

3.1 The signature of an outsole

Rather than carrying out a pixel-wise comparison of two
images, it is typically more efficient to select points of inter-
est from the outsole image. There are different ways of
doing so; for example, chapter 3 in [20] extracted all edge
pixels in footwear outsole images using a Prewitt oper-
ator [25]. Other points of interest might include corner
pixels, blobs, or scale-invariant feature transforms (SIFT,
[19]), (KAZE [1]), ORB (oriented FAST and rotated BRISK,
[28]). Desirable attributes of points of interest include reli-
ability (the same points in the same positions are iden-
tified repeatedly), distinctiveness (features are uniquely
captured), and robustness to noise and background effects.
A comparison of the performance of several methods can
be found in [30].

In this work, we rely on the strongest 500 SURFs
[3], because the algorithm is invariant to changes in
scale and rotation of images and is computationally
efficient. Footwear outsole images like ours that have been

down-sampled at a 20% rate can have about 1000 SURFs.
We opted for using 500 of the SURFs as a trade-off between
computational efficiency and classification performance
of the algorithm.

3.2 Alignment

A method called maximum clique comparison
(MC-COMP) was introduced by Park ([20], section 3.4.1)
and discussed in Park and Carriquiry [23]. MC-COMP
plays an important role in the alignment of images
obtained from two shoes—a questioned and a known or
reference shoe—which we label Q and K.

Suppose that we have extracted nQ strong SURFs from
the questioned outsole and transform them into (x, y)
coordinate values. The coordinate values are anchored by
coordinates (0, 0) in the lower left corner of the image. For
the questioned impression (Q), the matrix of coordinate
values corresponding to the SURFs is denoted by SnQ,Q as
in expression (1). We define a similar matrix SnK ,K (see
expression (1)) to represent the coordinates of the SURFs
in shoe K.

SnQ,Q =
(

x1 … xnQ
y1 … ynQ

)
. (1)

SnK ,K =
(

x1 … xnK
y1 … ynK

)
. (2)

We rely on the concept of maximum clique (MC) to find
subgroups of points in SnQ,Q and SnK ,K with the same
geometric arrangement. To identify a MC, the algorithm
calculates all possible pairwise distances between points in
each of SnQ,Q and SnK ,K and then finds the subsets of points
in each image that share a geometric arrangement. There
are many such subsets; the one with the largest member-
ship is called the MC. Figure 3 illustrates this idea. The
two images on the left panel of the figure have four and six

points, respectively. There are
(

4
2

)
pairwise distances in

Image 1 and
(

6
2

)
in Image 2. Since the pairwise distances

among all points in Image 1 are similar to those among
points #1, #3, #5, and #6 in Image 2, the MC in this case
has size four, and is shown on the right panel of the figure.

Finding the MC is a computationally demanding task;

there are
(

500
2

)
= 124, 750 possible pairwise distances

between the 500 values in S500,Q. To speed up calculations,
we select a subset of 100 points from SnQ,Q. The subsam-
pling process is the following. Image Q is divided into 100
equally sized bins and a single point is randomly selected
within each bin. In that way, we construct a set of no more
than 100 random points evenly distributed in the plane of
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F I G U R E 3 Left panel: Two images with 4 and 6 points each. Right panel: maximum clique of size 4

Q. The set of sampled points in SnQ,Q is denoted SnQr ,Qr .
The algorithm proceeds as before, but now with a reduced
set of points in Q: find the maximum set of corresponding

points in SnQr ,Qr and SnK ,K , by comparing
(

nQr
2

)
pairwise

distances in SnQr ,Qr and
(

nK
2

)
pairwise distances in SnK ,K .

The set of points in the MC between SnQr ,Qr and SnK ,K is
denoted MQ,K and is shown in (3):

MQ,K = {(p1,Q, p1,K), … , (pm,Q, pm,K)}T

pj,Q = (xj,Q, yj,Q), j = 1, … ,m
pj,K = (xj,K , yj,K), j = 1, … ,m. (3)

In (3), MQ,K has size m. A point p1,Q and a point p1,K are in
correspondence if the Euclidean distance between p1,Q and
p2,Q is the same as the distance between p1,K and p2,K . In a
clique of size m, pairwise distances between m points in Q
are the same as the pairwise distances between m points in
K. Each point pi,Q has coordinates xi,Q, yi,Q for i = 1, … , m.

The MC obtained from SnQr ,Qr and SnK ,K is an effective
tool to align the two images by overlaying SnQ,Q and SnK ,K .
Based on the m points in MQ,K , the algorithm calculates the
rotation angle (𝜃) and a translation matrix (TA) to overlay
SnQ,Q on to the plane of SnK ,K . We use the estimated 𝜃 and
TA to transform the entire set of points SnQ,Q so that they
can be overlaid with the set of points SnK ,K :

SK
nQ,Q

= ΣA × SnQ,Q + TA

=
(

cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃

)
× SnQ,Q +

(
Tx … Tx
Ty … Ty

)
.

3.3 Learning algorithm

Once the two sets of SURFs are aligned as described above,
we can define several features to measure the similarity
between the SURFs in Q and K. Here we focus on three

different similarity features: (a) clique size, (b) % over-
lap, and (c) median distance (median Euclidean distance
between overlapping points).

The clique size is defined as the number of SURFs in the
MC, m. The feature that quantifies the degree of overlap
between the two aligned images is calculated as follows.
After alignment of SK

nQ,Q
and SnK ,K , for each transformed

point in SK
nQ,Q

, the algorithm finds the closest point in SnK ,K .
If the distance between these two closest point (one is a
transformed SURF in Q and the other is a SURF in K) is
less than two units, then we say that the two points overlap
(OP). The number of OP is denoted nOP and by construc-
tion must be less than nQ and nK . The threshold of two
units is arbitrary, but appears to work well. The similar-
ity feature % overlap is defined as the proportion of points
in Q and K that overlap. The last similarity feature is the
median (Euclidean) distance among OP points.

None of the summary features can individually deter-
mine the source of an image with an acceptable degree
of accuracy. Consequently, an alternative is to construct a
scoring metric that combines all the features into a sin-
gle score that has good discriminating ability. Ideally, the
resulting score is a numeric value with a bounded range,
where high values of the score are associated with high
(or low) degree of similarity between the images in a pair.
Here, we combine the three similarity features using a
random forest (RF; [6]). Park and Carriquiry [21] used a
random forest to combine the differences in 18 chemical
compositions for a pair of glass fragments into a univari-
ate score to decide whether fragments originated from the
same pane of glass. A random forest outputs an empirical
class probability for the binary response “mates” and “non-
mates.” A pair of images is mated when the images were
made by the same outsole. Nonmates are images made by
different outsoles. We use the empirical probability associ-
ated with the “mated” class as our final similarity score.

The RF is a supervised learning algorithm, meaning
that the algorithm learns on a training data set with known
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labels. Its classification performance is then evaluated on a
different test set. Here, to construct the training set, we ran-
domly selected 70% of pairs of shoes within brand and size
strata; the remaining 30% of the pairs of shoes were allo-
cated to the testing group. The resulting training data set
included 42 pairs of Nike shoes (15 and 27 pairs in sizes 8.5
and 10.5, respectively) and 15 pairs of Adidas shoes (seven
pairs in size 8 and eight pairs in size 10). We use the term
RF-SURF to indicate that the features are extracted from
SURFs.

3.4 R-package

To implement MC-COMP, we have developed an
R-package called shoeprintr that can be used to com-
pare shoe outsoles. The package is available on Github,
in https://github.com/CSAFE-ISU/shoeprintr. The pri-
mary function in shoeprintr is boosted_clique that
calculates similarity features given two sets of coordi-
nate points after rotation and translation, based on a set
of estimated parameters. The function has an option to
adjust the number of points by subsampling points in Q.
Subsampling is carried out in a stratified manner. First,
we overlay a grid on the entire outsole to create disjoint
sections of size inversely proportional to the subsampling
rate we have chosen. We then select one or a few points
at random from each small section. In this way, we guar-
antee that the subsample will cover the entire outsole. We
are exploring other subsampling approaches where the
size of the sections depends on the local density of pix-
els. To improve computational efficiency, shoeprintr
is fully parallelized. This is particularly useful in the
calculation of the MC used for alignment. An example
of how to use the R-package shoeprintr can be
found at [22].

4 RESULTS

We first discuss the results we obtained when compar-
ing pairs of good quality impressions. We consider only
the more challenging case, where shoes in a pair share
brand, model, size and side (left or right shoe) in both
the mated and the nonmated (NM) comparisons. Differ-
ences between two shoe impressions are due to individ-
ual characteristics or randomly acquired characteristics
(RACs), which can be difficult to detect by visual means,
unless they are clearly marked. Mated comparisons are
constructed by comparing two replicate scans of the same
shoe. NM comparisons consist in comparisons between
two impressions from two shoes sharing class characteris-
tics, worn by two different participants for about 6 months.

F I G U R E 4 Variable importance from the trained random
forest on three similarity features (clique size, % overlap and
median distance)

Richetelli et al. [27] reviewed several of the methods
for matching outsole impressions proposed in the litera-
ture. We implement the three best performing approaches
on our dataset, to see how they compare to the method
we propose. Two of the methods reviewed in Richetelli
et al. [27] rely on the calculation of a phase-only cor-
relation coefficient (POC) and the third is based on
a Fourier-Mellin transformation correlation coefficient
(FMTC). POC is not rotation invariant, so we estimate the
rotation angle needed to align two impressions using a
built-in registration function called imregtform in Matlab
for Q and K. We call this approach POC-R. FMTC is a rota-
tion invariant version of POC that is obtained by first by
transforming images on the log polar axis system. In these
data, FMTC does not exhibit good discrimination ability,
so we do not discuss it further.

We computed the value of the three features and of the
RF score using 681 pairs of mated (M) images and 570 NM
pairs of images created from the shoes that were included
in the training group. In addition to the RF, we imple-
mented other learning algorithms and compared results,
both in terms of accuracy and computational efficiency.
The other algorithms included in the comparison were
support vector machines, neural networks, and Bayesian
additive regression trees (BART). In our application, the
tree-based algorithms outperformed the rest, at least in
terms of accuracy. Predictive accuracy was essentially the
same when comparing BART and RF, so both algorithms
were equally well-suited for this particular application.
We focused on RF because the algorithm is efficient and
results are easier to interpret.

One good feature of the RF is that it outputs an estimate
of importance of each feature in the classifier. Figure 4
shows the ranking of the three features by their impor-
tance. In this particular application, the variable % over-
lap is clearly the most important similarity feature and
appears to drive the classifier's predictive performance.

https://github.com/CSAFE-ISU/shoeprintr
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F I G U R E 5 Observed densities of three similarity scores, by class in testing set

To test whether the RF can effectively determine
whether a pair of images has a common or a different
source, we classified 288 pairs of M and 204 pairs of NM
of impressions in the testing data set. We compute the pro-
portion of erroneous decisions and use it as a criterion to
quantify the performance of the method. We also compute
the precision and recall of the algorithm.

Figure 5 shows the observed distributions of three clas-
sifiers: % overlap, POC-R, RF-SURF computed using only
the pairs of images in the testing set. Although all pairs of
images include shoes that share brand and model, results
show reasonably good separation by classes by the classi-
fiers that consist of the % overlap or the POC-R, and very
good separation by the RF classifier. This suggests that
when properly combined, the features extracted from the
SURFs are better at discriminating M and NM pairs of
images than the methods based on phase-only correlations
discussed in Richetelli et al. [27]. In Figure 5, the density
plot in the right most is the predicted scores in test set,
which shows a very good separation between two classes.

The ROC (receiver operating characteristic) curves
shown in Figure 6 help visualize the difference in

performance of the algorithms on the test images. The
x-axis shows the false positive rate and the y-axis shows
the true positive rate, so the ROC curve illustrates the
trade-offs between sensitivity (true positive rate) and speci-
ficity (one minus false positive rate) of the algorithms for
a range of choices of the classification threshold. An ideal
algorithm would yield 100% sensitivity and 100% speci-
ficity. Figure 6 confirms that the RF score appears to have
a good classifying performance, but the simple classifier
that just uses the proportion of overlapping SURFs also
performs well. Table 1 shows additional diagnostics asso-
ciated with the ROC curves in Figure 6. The first column
in Table 1 is the estimated AUC (area under the ROC
curve). The larger the AUC, the better the classifier. We
also calculated the optimal threshold (OT), which we use
as the cut-off to classify pairs of images into same and
different source. The OT is defined as the cut-off that min-
imizes the sum of FPR and FNR (false positive and false
negative rates, respectively), and is shown in the third
column of Table 1. In the fourth and fifth columns, sensi-
tivity and specificity values using the optimal threshold are
reported.

F I G U R E 6 Receiver
operating characteristic curves of
three classifiers applied to the
images in the testing data set
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T A B L E 1 Area under the curve (AUC), optimal threshold
(OT) to produce the lowest sum of false positive rate and false
negative rate from receiver operating characteristic curves in
Figure 6, sensitivity and specificity calculated using OT

Methods AUC OT Sensitivity Specificity

RF-SURF 0.9910 0.4910 0.9706 0.9618

% Overlap (SURF) 0.9855 0.4052 0.9167 0.9618

POC-R 0.7947 0.0958 0.9510 0.6875

Abbreviations: POC, phase-only correlation coefficient; RF, random forest;
SURF, speeded-up robust feature.

5 ROBUSTNESS TO IMAGE
DEGRADATION

5.1 Degraded images

Shoe outsole impressions found at crime scenes are often
degraded in some way. They can be smudged, or par-
tially obscured, with background effects and other noise.
Therefore, any comparison algorithm that is useful in prac-
tice, must be reasonably robust to degradation of the Q
impression (the questioned shoe outsole impression). To
test whether the algorithms we discuss here can with-
stand degradation of Q, we carried out a small, preliminary
experiment.

Still using the set of Nike shoes with the same class
characteristics, for each pair in the data set, we obtained a
degraded Q image by interposing sheets of paper between
the surface of the EverOS 2D scanner and the bottom of
the shoe. We created a sequence of images from each shoe,
each time adding more sheets of paper between the shoe
outsole and the surface of the scanner. We started with two
sheets of paper and increased the number by two until we
reached 10 sheets of paper below the shoe. Figure 7 shows
a sequence of impressions of the same shoe with increased
levels of blurring. The left-most impression in Figure 7 cor-
responds to the normal scan without any added noise or
degradation. As more sheets of paper were placed on top of
the scanner, the images became more and more smudged.
In addition to blurring the images, we also deleted the
portions of the Q images outside of the rectangular
sections shown in the three right-most impressions in
Figure 7.

5.2 Performance on degraded images

In this section, we present the results we obtained when
comparing the K images to the partially observed and
degraded Q images that were obtained when 10 sheets of
paper were interposed between the surface of the EverOS
2D scanner and the outsole of the shoe.

F I G U R E 7 Degraded impressions from the same shoe of Nike Winflow 4. For Q, we used the partial impression shown in the
rectangles in the three right-most impressions. For K, we used a good quality image
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F I G U R E 8 Receiver operating
characteristic curves for three classifiers
applied to pairs of images in the test data
set where one of them is partially
observed and blurry

We randomly selected 24 pairs of Nike shoes (48 shoes
in total) from the database, from which we constructed M
and NM pairs of images using a good quality image for K
and a partially observed and degraded image for Q (like the
right most image in Figure 7). As before, we extracted 500
strong SURFs from each of the images. To train the random
forest, we randomly selected 75% of the shoes and con-
structed 108 M and 108 NM comparisons. The rest of the
shoes were used to make 36 M and 36 NM pairs of images
to test the performance of the classifiers.

Figure 8 shows the ROC curves that are used to com-
pare the classification performance of three classifiers:
RF-SURF, % overlap on SURF, and POC-R. When Q is
degraded and partially observed, the simple classifier that
consists in using the proportion of overlapping SURF
pixels as the score, seems to be robust to this particu-
lar form of degradation and image fragmentation. Even
when Q is very blurry as a consequence of the 10 sheets
of paper placed between the shoe and the scanner, the
single-feature classifier exhibited high sensitivity and high
specificity. The RF-SURF classifier also performed well,
but only after the RF was retrained on pairs of images
where one of the images was blurred in the same manner.

The POC-R classifier's accuracy was, however, just
slightly better than what might result from flipping a coin.
When Q is degraded and partially observed, finding an
adequate rotation angle for overlaying Q on top of K was
not easy, due to lack of corresponding points in Q for
K. This resulted in low correlation values, which in turn
led to high false negative predictions. Table 2 summa-
rizes results. From the table, the estimated AUC is 0.96 for
RF-SURF and is 0.93 for the simple % overlap on SURF
classifier.

6 DISCUSSION

Shoe outsole impressions are ubiquitous in crime
scenes, yet are rarely presented as evidence in criminal

T A B L E 2 Area under the curve (AUC), optimal threshold
(OT) to produce the lowest sum of false positive rate and false
negative rate from receiver operating characteristic curves in
Figure 8, sensitivity and specificity calculated using OT

Methods AUC OT Sensitivity Specificity

RF-SURF 0.9645 0.5580 0.8889 0.9167

% Overlap (SURF) 0.9302 0.3839 0.9167 0.8889

POC-R 0.6404 0.0197 0.9444 0.4722

Abbreviations: POC, phase-only correlation coefficient; RF, random forest;
SURF, speeded-up robust feature.

proceedings. This is in part due to the fact that forensic
scientists do not have reliable and objective approaches to
quantify the degree of similarity between two impressions
and are limited to offering their subjective opinion. Efforts
to develop objective, reliable, reproducible, repeatable
methods to help determine whether the suspect's shoe
might have been the source of the print at the crime scene
are ongoing and several approaches have been proposed
in the literature. Most of the methods have been tested on
datasets that do not reflect real case work, where examin-
ers typically must compare impressions left by shoes that
share class characteristics, and where the questioned print
may be partially observed and subject to degradation.

Some of the recent literature [10,26] focuses on the
comparison of RACs. Because RACs arise as a conse-
quence of wear and tear, they are believed to be unique
to each shoe. Therefore, researchers are interested on the
estimation of the probability of observing a specific pair of
RACs on two outsole images that may be due to chance
alone. Here, we consider the entire outsole and propose an
approach to compare two impressions, that relies on robust
and efficient features (SURFs) and on an algorithm that
uses the geometric arrangement of SURFs to align both
impressions. Unless RACs are faint, we would expect them
to be included as part of the robust features, and therefore,
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as part of the classifier. The algorithm we propose is not
meant to replace the examiner; rather, it is meant to serve
as a quantitative measure of the similarity between two
outsole impressions and to complement the examiner's
expert opinion.

The algorithm we propose can be applied more broadly,
in problems where the goal is to quantify the similar-
ity between 2D images. In addition to forensic applica-
tions, images similar to the ones we have analyzed arise
in biomedical, environmental, and biological applications.
We are currently exploring extensions of the method to
compare 3D images, which would increase the domains
of application even further. In the specific case of foren-
sic pattern matching, the alignment of features on images
using the MC approach can be applied to other evidence
types, including finger prints, tire treads, biometrics and
other. The R-package shoeprintr that we developed for
this application, and continue to improve, has a function
called boosted_clique, which implements a highly opti-
mized algorithm to compute the MC using parallel com-
puting. This function carries out calculations efficiently
and enables application of the graph-based alignment
method in many other problems.

Another direction for extension of the method consists
in increasing the number and variety of “points of inter-
est” on which to train the algorithm; many more features
can be extracted using methods such as KAZE [8], ORB
[28], and SIFT [12] in addition to SURF. In this paper,
we have focused on SURF to represent images, but the
other approaches to extract different types of image fea-
tures mentioned above can also be implemented. We fitted
the RF using KAZE features, ORB features, or a combi-
nation of KAZE, ORB, and SURF features, and compared
classification accuracy. In general, the RF based on KAZE
or SURF features exhibited similar classification perfor-
mance, both when implemented on pairs of good quality
images or on pairs where one image was degraded. ORB
on the other hand selects the corner pixels as features, so
its performance on degraded images is poor.

We use an experimental set of impressions obtained
from Nike and Adidas shoes of a limited set of sizes and
that had about the same degree of wear and tear. When
constructing pairs of images for comparison, we paired
Nike with Nike and Adidas with Adidas, so that every pair
included two impressions with the same class characteris-
tics and a similar degree of use. While we focused on high
quality images to develop our method, we created a set of
partial and degraded images to explore its robustness and
its usefulness in real case work.

The experimental set of images allowed us to con-
struct comparison pairs for which we knew ground truth;
the pairs of images were mated, if they corresponded to
replicate impressions of the same shoe, or NM if they

were obtained from different shoes. The final goal was to
develop a classification algorithm that can correctly tell
whether two images were mates or not. To construct such a
classifier, we measured various attributes using the aligned
pairs of images, and then explored whether any of those
attributes could effectively discriminate M and NM pairs
of images. While all attributes carried information about
the source of two images, none of them could sufficiently
tell mates and nonmates apart, so we combined attributes
into a single score using a random forest (RF). The ran-
dom forest produces a score between 0 and 1 computed as
the empirical probability that the images are mates. The
higher the score, the higher the probability that the images
are mates.

Results are promising; on hundreds of pairs of good
quality images, the RF classifier outperformed every
algorithm with which we compared it. The out-of-bag
error was a low 2%, even though comparisons included
only images of shoes sharing class attributes and even
though the pairs in the testing set were not used to train the
algorithm. Most of the false positive results occurred with
pairs of images obtained from shoes with less wear. When
the latent print was degraded and only partially observed,
the RF trained on good quality images suffered, but inter-
estingly, one of the attributes we measured—the propor-
tion of overlapping SURFs in aligned images—exhibited
robustness to degradation and the fact that the Q was par-
tially observed. We note that when the RF was retrained
using both good quality and degraded images, its perfor-
mance on a test set that included degraded images was
greatly improved, as is shown in Table 2.

Before any of these automated approaches can be used
in real case work, much research remains to be done. First,
the algorithm we propose must undergo extensive testing
and validating, using a wide arrange of outsole patterns,
with varying degrees of wear and tear, and that are subject
to different types of noise and degradation. In this work,
we could not consider all possible types of image degrada-
tion, so we focused on increasingly smudging the Q image
using a single tool, sheets of papers interposed between
the shoe outsole and the surface of the scanner. We also
deleted about 50% of Q in the comparisons, to mimic what
may be observed at a crime scene. We fully recognize that
these limited tests are just initial steps toward proposing
an algorithm that is useful in a wide range of real world
situations.

Second, even if we can confidently declare that two
images exhibit high degree of similarity, that in no way
implies that they have a common source. So the existence
of an effective classifier does not address the question of
the probative value of the evidence. We also need to show
that a high degree of similarity is observed only when
two impressions have a common source. To do this, we
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need to carefully think about the construction of large
databases of outsole pattern images for which we know
ground truth and that are representative of the outsole pat-
terns that are observed in the wild. The probative value
of evidence is associated with the likelihood ratio statis-
tic, computed as the probability of observing the evidence
under two competing propositions: the latent at the crime
scene was made by the suspect's shoe versus the latent was
made by someone else's shoe. The latter proposition must
be clearly defined, and determines which images from the
reference database are included in the comparison. We do
not address these important issues in this article, but note
that these are not easy questions and require a lot more
research and collaboration with practitioners.
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