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Abstract

Hematopoietic stem cells (HSCs) play an important physiological role as regulators of all

blood and immune cell populations, and are of clinical importance for bone marrow trans-

plants. Regulating HSC biology in vitro for clinical applications requires improved under-

standing of biological inducers of HSC lineage specification. A significant challenge for

controlled HSC expansion and differentiation is the complex network of molecular crosstalk

between multiple bone marrow niche components influencing HSC biology. We describe a

biology-driven computational approach to model cell kinetics in vitro to gain new insight

regarding culture conditions and intercellular signaling networks. We further investigate the

balance between self-renewal and differentiation that drives early and late hematopoietic

progenitor populations. We demonstrate that changing the feedback driven by cell-secreted

biomolecules alters lineage specification in early progenitor populations. Using a first order

deterministic model, we are able to predict the impact of media change frequency on cell

kinetics, as well as distinctions between primitive long-term HSCs and differentiated myeloid

progenitors. Integrating the computational model and sensitivity analyses we identify critical

culture parameters for regulating HSC proliferation and myeloid lineage specification. Our

analysis suggests that accurately modeling the kinetics of hematopoietic sub-populations in

vitro requires direct contributions from early progenitor differentiation along with the more

traditionally considered intermediary oligopotent progenitors. While consistent with recent in

vivo results, this work suggests the need to revise our perspective on HSC lineage engineer-

ing in vitro for expansion of discrete hematopoietic populations.

Introduction

Hematopoietic stem cells (HSC) mediate production of the body’s full complement of blood

and immune cells through a series of linked differentiation steps. HSCs are primarily located

in distinct niche microenvironments in the bone marrow where their activity is strongly influ-

enced by a constellation of molecular signals from local niche components including other

niche cells, extracellular matrix (ECM), and soluble or ECM-immobilized biomolecular
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signals[1, 2]. Primary stem cell fates associated with hematopoietic homeostasis such as differ-

entiation, proliferation, and quiescence are regulated by these signaling mechanisms, making

the hematopoietic system highly responsive to external stimuli[3–6]. Dysregulation within the

HSC niche can also play a significant role in the onset of a range of hematopoietic pathologies

such as cancers (leukemia, lymphoma, myelodysplasia) and degenerative conditions (bone

marrow failure) [7, 8].

Hematopoietic stem cell transplantation is an important element of successful therapies for

a range of hematopoietic pathologies that require myelo-ablative treatments. Here, the

immuno-compromised recipient bone marrow is fully reconstituted by transplantation of a

small fraction of healthy and highly repopulating CD34+ HSCs from a donor [9]. The success

or failure of this process can be strongly dependent on the number of functional long-term

repopulating HSCs and often low numbers lead to poor engraftment, reduced platelet and

neutrophil recovery and negatively impact patient survival [10, 11]. Efforts are aimed at in
vitro expansion of functional HSCs in liquid cultures via a cocktail of cytokines and small mol-

ecules prior to transplantation, which offer an opportunity of improved engraftment either

through expansion of donor HSCs or preconditioning them towards improved homing and

engraftment in the recipient. However, such efforts face the challenge of uncontrolled HSC dif-

ferentiation and the loss of the functional long-term repopulating stem cells in vitro[12].

Indeed, an optimal culture environment for targeted hematopoietic expansion may need to

emulate aspects of the native niche interactions between HSCs and key cellular, matrix and

biomolecular niche components that trigger the necessary HSC response. While much is

known about the underlying signaling mechanisms governing these interactions, replicating

them in vitro to successfully guide HSC fate remains challenging. One significant element of

this challenge is the need to develop a framework that explicitly defines and examines the

effects of complex in vitro cultures.

Computational approaches may provide a critical resource for engineering an optimal HSC

culture environment, specifically via its capacity to identify key niche components that drive

the vital balance between stem cell self-renewal vs. differentiation in vitro. Such efforts also

offer the opportunity to significantly reduce the number of expensive, time-consuming experi-

ments that need to be performed. This is particularly important in the context of scaling up

culture systems for HSC biomanufacturing to address the clinical need for donor HSCs. Previ-

ous efforts have investigated the application of mathematical models to study the impact of sig-

naling networks on cell fate determination. In particular, the importance of cytokine-mediated

feedback mechanisms in determining lineage specification for stem cells and cancer progres-

sion is well established [13–15]. Stiehl et al. have adapted mathematical modeling approaches

to correlate cytokine response of leukemia patients suffering with treatment response and

overall survival[16] as well as predict acute myeloid leukemia survival from HSC frequencies

in patients[17]. Experimental investigations of HSC lineage specification processes have estab-

lished the importance of dynamically regulating feedback-mediated cell-cell signaling, cell-

secreted biomolecules,[18–21] and exogenously added cytokines[12] to alter the kinetics of

stem cell lineage specification and progenitor populations. A common theme across these

studies is the positive and negative effects as well as feedback loops associated with cell-

secreted cytokines that dynamically alters stem cell behavior.

Here we examine the balance between stem cell self-renewal vs. differentiation and prolifer-

ation at the apex of the HSC hierarchy using a combination of biology and computational

methods. Our efforts concentrate on demonstrating a means to develop a modeling framework

to facilitate studying feedback from cell-secreted biomolecules in the context of the differentia-

tion of early and late progenitors into mature hematopoietic populations. We explore the use

of parameter sensitivity analyses to identify principal instructive elements as well as the
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predictive nature of the model to describe HSC response to perturbations in culture condi-

tions. These studies bring us closer to creating a holistic model of an engineered, highly regu-

lated HSC culture system capable of targeted hematopoietic cell expansion for clinical

purposes.

Materials and methods

All work involving primary cells harvested from animals (mouse) was approved and con-

ducted under approached animal welfare protocols by Institutional Animal Care and Use

Committee (IACUC), University of Illinois at Urbana-Champaign, Animal Use Protocol

#14202. All animals were housed under standard IACUC procedures. Animals were eutha-

nized with CO2 under proper IACUC guidelines prior to tissue dissection for harvesting the

primary stem cells.

HSC isolation

Primary HSCs were isolated from the bone marrow of the femur and tibia of female C57BL/6

mice (Jackson Labs; Ages 1–2 months) as described previously [22, 23]. HSCs were identified

as the Lin−Sca-1+c-kit+ (LSK) fraction by incubating the cells with the following cocktail of

antibodies (eBioscience San Diego, CA): PE-conjugated Sca-1 (1:100 dilution), APC-Cy7 con-

jugated c-kit (1:100 dilution), and a 1:100 dilution of a FITC-conjugated Lineage (Lin) cocktail

(CD5, B220, Mac-1, CD8a, Gr-1, Ter-119). The LSK cell fraction was sorted using a BD FACS

Aria II flow cytometer (BD FACS Diva software) and collected in PBS/FBS on ice for immedi-

ate use.

Cell culture and surface antigen expression analysis

5000 freshly sorted LSKs were seeded into 96 well plate wells, along with 300 μL of StemSpan

SFEM media (Stem Cell technologies, Vancouver, Canada) containing 100 ng/mL of Stem Cell

Factor (SCF), (Peprotech, NJ). Cell culture was maintained in the incubator at 37˚C and 5%

CO2. Cell phenotype was determined at day 1, 4, 7 and 9, post culture via flow cytometry. The

cells were first washed with PBS/FBS containing 0.1% sodium azide, centrifuged at 1400 rpm

for 5 minutes, resuspended in 100 μL and stained with the following antibody cocktail

(eBioscience): APC anti-CD34 (1:20 dilution, 60 mins), APC-Cy7 anti-c-kit (1:100, 30 mins),

PE anti-Sca-1 (1:100, 30 mins), PE-Cy7 anti-CD16/32 (1:100, 30 mins), FITC-anti lineage

cocktail (CD5, B220, Mac-1, CD8a, Gr-1, Ter-119, 1:100, 30 mins). Cells were identified as

LSK (Lin−c-Kit+ Sca-1+), Common Myeloid Progenitors (CMP) (Lin−c-Kit+ Sca-1– CD34+

CD16/32–) or Long Term HSC (LT-HSC) (LSK�CD34–�Flk2–), Short Term HSC (ST-HSC)

(LSK�CD34+�Flk2–), and Multipotent Progenitor (MPP) (LSK�CD34+�Flk2+). All remaining

cells were identified as ‘Terminal’ for the purposes of the model. All analysis was done on the

BD LSRII flow cytometer (BD Bioscience) and the FCS Express software.

ELISA to determine SCF concentration in culture

SCF concentration in culture was determined by performing ELISA (R&D systems, Minneap-

olis, MN) on the supernatant media extracted during FACS analysis. Analysis was performed

at end points for the condition of no media exchange, as per manufacturer’s protocol. This

provided the maximum possible SCF consumption rate for the purposes of model estimations

(Table A in S1 File).
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Computational model using STELLA and Berkeley Madonna

The computational software STELLA (isee systems, NH) was used to generate a mathematical

representation of the cell culture system using graphical means, while curve fitting of the

model to experimental data was done using the software Berkeley Madonna.

3-cell (LSK–CMP–Terminal) computational model.

1. The 3 cell groupings (LSK, CMP, Terminal) were designated as individual stocks in cul-

ture, where each stock had inputs (proliferation and/or differentiation from previous

state) and outputs (apoptosis and/or differentiation into next state). The general differen-

tial equation for each state can be given as:

dCelli
dt
¼ Celli proliferation � Celliþj differentiation þ Celli� j differentiation � Celli apoptosis

Where i+j and i-j are the subsequent or prior cell states in the differentiation hierarchy.

2. Media was designated as a stock, with the input and output set as a pulse function with a

frequency corresponding to the frequency of media exchange (2 or 10). Media volume

was set to 300 μL and remained constant during the culture period.

3. SCF was designed as a stock with an input concentration of 100 ng/mL. The input was

also set as a pulse function with a frequency corresponding to the frequency of media

exchange (2 or 10). SCF output was a combination of a pulse function (where SCF was

refreshed corresponding to media changes) and SCF consumed by the cells during cul-

ture. With a constant cellular consumption rate, SCF consumed by the cells (K_SCF_con-
sumption) was:

SCFconsumed ¼ KSCFconsumption
�#cells

SCF Consumption rate was estimated based on the experimentally observed SCF values

at various time points (Table A in S1 File). For simplicity, this rate was kept constant in

the model, but within experimentally observed limits.

4. Nutrient availability within the media (labeled GC for Glucose) was defined as a function

similar to SCF with an input concentration of 10 mM and a constant cellular consump-

tion rate (K_GC_consumption) such that the amount consumed by the cells was:

GCconsumed ¼ KGCconsumption
�#cells

Model values for this rate were based off previously observed consumption rates [24].

5. Four groups of cell-secreted biomolecules were classified as proliferation stimulators

(ProS), proliferation inhibitors (ProI), differentiation stimulators (DiffS), differentiation

inhibitors (DiffI). Initial models defined biomolecule secretion from each cell sub-set at a

constant rate. Therefore, the amount of the respective biomolecules in culture is the sum

of individual secretion factors, such that:

Biomolecule ðngÞ ¼
Xn

i¼1

ci �#cells

Where ci is the secretion rate (ng/cell/day) for each cell type and is a function of the active

concentration of the secreted cytokines, thus forming a feedback loop. For simplification,

the total number of LSK and CMP cells at any given time were summed and denoted
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PLOS ONE | https://doi.org/10.1371/journal.pone.0212502 March 1, 2019 4 / 21

https://doi.org/10.1371/journal.pone.0212502


‘Progenitors’. Therefore, the amount of biomolecule secreted by the system is given by:

Biomolecule ðngÞ ¼ ci � Progenitorsþ cj � Terminal

Where each cell secretion rate was given as:

ci ¼ mie
ð� ½biomolecule�Þ

Where mi is the secretion rate (ng/cell/day). In the model, ratios of the stimulators vs. the

inhibitors were defined as:

Rd ¼
DiffS
DiffI

Rp ¼
ProS
ProI

6. Cell apoptosis was a function of GC concentration in the media for each cell type such

that the death rates (DR) was given by:

CelliDR ¼
CelliDRmax

1þ di � ½GC�

Here, Celli_DRmax is the maximum biological death rate for that cell type and di is a

constant.

7. Progenitor populations have the ability to self-renew and the fraction of self-renewing

progenitors at any given time (fi) is based off a modified Monod equation and is given by:

fi ¼
fi max

1þ Rd þ si � ½SCF�

Where fi max is the maximum self-renewal capacity (� 1) and si are constants. Since the

denominator is always� 0, as both Rd and the SCF concentration ([SCF]) are positive,

the self-renewing fraction of any cell type fi is always� fi max.

8. The proliferation rate of each cell type was given by PRi and was defined by a Gaussian-

type function [21]:

PRi ¼ PRi max � ð1 � e
� ð½SCF��RpÞÞ

Where PRi max is the maximum proliferation rate.

9. A quintessential property of stem cells is their ability to be in a quiescent state, where they

are not involved in any biological activity such as proliferation or differentiation. The

LSK state was assigned a quiescent fraction q, which was determined by the degree of dif-

ferentiation being induced in the cells in culture and given another Gaussian-type func-

tion:

q ¼ qmax � e
� ðRdÞ

Where qmax is the maximum quiescent fraction. Here, it is hypothesized that the quies-

cent fraction of the stem cells drops in response to a rise in the concentration of differen-

tiation stimulators (and hence Rd).

A computational model of hematopoietic stem cells in vitro
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10. The differentiation rate for cell state i to cell state j is given by DRitoj (#cells/cell/day) and

is a constant.

11. Finally, we assign a fraction to LSK cells that transition directly into the Terminal state,

while skipping CMPs as j. This dynamic is dictated by feedback provided by the Terminal

cells via concentration of the secreted differentiation stimulators: c3�#Terminal cells. This

active concentration is denoted Td, such that:

j ¼ jmax � e
� ð½Td �Þ

Where jmax (� 1) and is a constant. Increasing numbers of Terminal cell population trig-

ger a negative feedback response within the LSK differentiation dynamic that drops the

differentiating fraction (j). Therefore, as [Td] increases, e� ½Td � decreases and the jump frac-

tion over longer periods reduces.

5-cell (LT-HSC–ST-HSC–MPP–CMP–Terminal) computational model. The computa-

tional model for the 5-state system was similar to the 3-state model with the following

exceptions:

1. Proliferation rates for each cell type was a constant

2. Cell secretion rates were constant

3. Jump fractions were assigned to 2 different cell states: jST-HSCtoTerminal and jMPPtoTerminal

4. Quiescent fractions were assigned to 3 different cell states: qLT-HSC, qST-HSC, qMPP

The full system of differential equations developed based on these criteria for both 3-state

and 5-state models, along with parameter values are provided in the S1 file.

Results

Dynamic growth profiles of early and late progenitors indicate complex

culture feedback

The classical model of HSC hierarchy involves stepwise differentiation of early long-term

repopulating progenitors into late oligopotent progenitors and eventually terminally differen-

tiated mature myeloid or lymphoid cells [25]. Primary murine HSCs were identified on the

basis of their surface antigens via flow cytometry (FACS) as early progenitors (LSK: Linea-

ge−cKit+ Sca1+) cells, late progenitors (common myeloid progenitors (CMP: Lin–c-kit+S-

ca1–CD34+CD16/32–), and terminally differentiated (Terminal: remainder of hematopoietic

cells) (Fig 1A, S1A Fig)[25] and analyzed over a 9-day culture period. With a starting popula-

tion of only LSK cells, the LSK fractions showed a biphasic behavior with a steady decline

through day 4 followed by a rapid increase through day 9. The CMP population exhibited a

more dynamic profile with multiple rises and falls in their overall numbers over time. Finally,

Terminal cells increased rapidly in number through the end of the experiment. Critically, the

magnitude of changes associated with each cell population were vastly different in scale (Fig

1C–1E). While the Terminals cells reached a peak population of 6 x 105, LSK cells oscillated in

number between 102 and 2 x 103, and CMPs maintained a variable but overall low numbers

(<300) throughout. The relative numbers and time-scales of these responses highlight that

hematopoietic sub-populations may display vastly different kinetics despite being in the same

culture.

A computational model of hematopoietic stem cells in vitro
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CMPs represent a transient state in the hematopoietic differentiation

hierarchy

We developed a first order differential equation model describing the kinetics of growth and

early myeloid specification for a 3-cell state model of early hematopoietic differentiation (Fig

2A). Cell-secreted biomolecules that directly or indirectly influence cell kinetics such as prolif-

eration, apoptosis, and differentiation were categorized into 4 types: differentiation stimulators

(DiffS) and inhibitors (DiffI), and proliferation stimulators (ProS) and inhibitors (ProI). Cell

secretion rates are designed to dynamically respond to active biomolecule concentrations

Fig 1. FACS analysis of cell progenitor populations over time. (A) Schematic of the classical HSC differentiation hierarchy where early

progenitors (identified as LSK) differentiate into CMPs before maturing into fully developed myeloid cells (Terminal). (C-D) Total number

of each cell sub-population (LSK, CMP, Terminal) in culture over time. While the LSK cells recover some of their numbers, CMP population

show variable kinetics but overall low numbers, and Terminal cells grow at an exponential rate. Error bars represent standard error of mean.

https://doi.org/10.1371/journal.pone.0212502.g001
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through a feedback mechanism such that the culture system, and the model, naturally adjusts

to temporal changes expected due to cell secretions and cell-cell interactions. We expressed

Fig 2. Computational set up of a 3-state cell model and experimental verification. (A) A 3-state computational model featuring the LSK, CMP and Terminal

hematopoietic cells. Culture dynamics is influenced via feedback from cell-secreted biomolecules that stimulate and/or inhibit the proliferation and

differentiation rates of each cell type. Additionally, a fraction of LSKs would be available to transition directly into Terminal (‘jump’). (B-D) The model

simulation is able to capture the dynamics and scale of the experimental data for all 3 cell profiles (B: LSK; C: CMP; D: Terminal). The initial model further

predicted a peak in CMP population prior to day 1 of culture. (E-G) Further experiments were performed to capture data before and after the 1 day data point

(12hr; 48hr) for all three cell sub-populations (E: LSK; F: CMP; G: Terminal) to substantiate the initial model predictions. Error bars represent standard error of

mean.

https://doi.org/10.1371/journal.pone.0212502.g002
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the temporal changes in kinetic parameters such as the self-renewal fractions (fLSK, fCMP), qui-

escent fraction of the early progenitors (qLSK), and cell proliferation rates (PRLSK, PRCMP,

PRTerminal) as functions of biomolecule concentrations. Given recent evidence [26] for a two-

tier model of HSC hierarchy during blood cell development rather than the classical step-wise

differentiation process, we also introduce the concept of a state ‘jump’. Here a fraction of LSK

cells (jLSK) circumvent the intermediate CMP state and differentiate directly into Terminal

cells, making the CMP state more transient in the developmental process of mature myeloid

phenotypes.

Model simulations were able to successfully capture changes in cell numbers for all 3-cell

sub-populations, providing a strong validation for the underlying kinetics described (Fig 2B–

2D). Interestingly, the model predicted the existence of an early spike in the CMP population

prior to day 1 of culture (the first time point at which we gathered experimental data). Given

the high correlation between model fit and experimental data, we considered the possibility

that the peak was not a model anomaly but existed at a hitherto untested data point. We veri-

fied the existence of this peak by repeating experiments to gather data points both before (12h)

and after (2 days) the original day 1 data point (Fig 2E–2G). Excitingly, the model successfully

predicted the peak increase for the CMP sub-population prior to the day 1 experimental data

point, while accurately representing the kinetics of LSK and Terminal cells throughout the 12h

to 2-day culture period. Notably, the presence of a jump fraction (jLSK) was crucial in obtaining

a high degree of correlation between model predictions and experimental data. Eliminating

this fraction and its corresponding kinetics led to a poor experimental-model fit (S2 Fig). This

suggests a more involved differentiation process than the traditionally accepted stepwise differ-

entiation pathway for mature cell development. While even a relatively simple HSC liquid cul-

ture displays complex cell growth profiles, the mathematical model was able to robustly

capture key features of its dynamics and nuances.

Model response to culture perturbations and analysis of parameter values

We leveraged model capabilities to predict the system’s response to changes in culture condi-

tions. Given that signaling feedback has been previously shown to be vital in regulating HSC

fate,[18, 27, 28] we explored the consequence of altering the timeframe for media exchange

changes and its effect on the balance between self-renewal vs. differentiation. Under condi-

tions of no media exchange (10 day media change), experiments indicate that the recovery of

both LSK and CMP populations after the initial decline (at day 4) is reduced compared to

media exchange every 2 days. Not surprisingly, expansion of Terminal cells is drastically

reduced with no media exchange. The model could successfully reflect these experimental pro-

files simply by changing the media frequency parameter, further underlining the efficacy of

the model. In order to further validate the capacity of the model to adapt to multiple culture

conditions, we generated model predictions for an intermediate (5-day) media exchange fre-

quency. These predictions suggested that while the temporal profile of the cell populations

remains unchanged, slight variations in absolute cell numbers were to be expected, particularly

at longer times (Fig 3A–3C, inset). Experimental results matched model predictions of

increased number of LSK, CMP, and Terminal cells relative to no media exchange.

We established temporal profiles of kinetic parameters involved in cell proliferation and

differentiation. Here, the model suggests the self-renewing fractions of LSK and CMP increase

with longer culture periods (S3A Fig), presumably with decreased differentiation and

increased proliferative rates. Not surprisingly, the number of quiescent LSKs remain relatively

low while a steady fraction of LSKs continue transitioning into Terminal cells over time. The

importance of cell-secreted biomolecules in regulating feedback-mediated cell kinetics is
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observed through their respective profiles (S3B and S3C Fig). Higher concentrations of pre-

dicted differentiation stimulators during early culture periods promote Terminal cell expan-

sion, while the increase in differentiation inhibitors secreted by the mature progeny contribute

to the observed increase in progenitor numbers. Interestingly, the inflection point for this

change is around day 4 and corresponds to the changes in cell profiles. The proliferation rates

for each cell type remain relatively constant through most of the 9-day culture period (S3D

Fig), while the increase in apoptosis rates at longer time points correlate with a decrease in

SCF and nutrient availability owing to higher cell numbers (S3E and S3F Fig).

Cell differentiation is driven by the proliferative short-term HSCs, while

long-term HSCs remain quiescent in culture

Building upon the 3-state system, we increased the model complexity by separating the hetero-

geneous LSK population into 3 discrete stages: the most primitive long-term repopulating

HSC (LT-HSC), the short-term repopulating HSC (ST-HSC), and the multipotent progenitors

(MPP) (Fig 4A) [28, 29]. Our model for this 5-cell state system (LT-HSC, ST, HSC, MPP,

CMP, Terminal) relied on a series of linked 1st order differential equations that expanded on

the 3-state system described previously. Jump fractions were included between ST-HSC

(jST-HSCtoTerm) and MPP (jMPPtoTerm) cells transitioning directly into Terminal cells (Fig 4B).

Based on kinetic profiles of the 3-cell model, proliferation, apoptosis, and cell secretion rates

were set constant for all cell types. We observe that the LT-HSC population reduces signifi-

cantly over the culture period while the MPP and CMP fractions have similar growth kinetics.

The bulk of the early progenitor activity was compartmentalized in the ST-HSC sub-popula-

tions, where these cells showed biphasic behavior similar to that observed for the larger LSK

fraction in the 3-state model (S4 Fig). The 5-state model was able to successfully fit the growth

curves for all the five cell types simultaneously (Fig 4C–4G). The model predicts that similar to

the 3-state model the jump fractions remain relatively constant over the 9-day culture period

and with roughly equal contributions from ST-HSCs and MPPs (S5B Fig). The model also

predicts a high fraction of LT-HSCs remain quiescent while ST-HSCs show elevated self-

renewing fraction in culture (S5A and S5C Fig). Similar to the 3-state model, the presence of

jump fractions was critical for a high degree of model-data fit. Model simulations failed to cap-

ture the growth kinetics of all cell populations, over-estimating the number of early progeni-

tors due to the absente jump fractions, while underestimating the Terminal cell populations

possibly owing to delayed differentiation (S6 Fig).

Identification of high-impact parameters

System stability in response to perturbations in individual parameter values is an essential part

of the model and presents an opportunity to identify critical parameters to exploit in future

experimental cultures. From an engineering perspective focused on developing a more guided

HSC culture platform, we endeavored to identify biological or kinetic parameters that have the

greatest impact on each cell state. Local parameter sensitivity analysis was performed by

Fig 3. Model fit and predictions for intermediate media exchange frequencies. (A—C) Undisturbed culture

conditions over the 9 day period (denoted as 10 day), led to a drop in all cell populations as compared to the 2-day

media exchange. Model parameters were optimized to obtain a high degree of correlation with experimental data

simply by changing media frequency change in the model to 10 days. The model was able to predict the system

response to a 5-day media exchange for all the 3 cell populations, without any parameter optimization. Subtle

differences in cell numbers were captured over long term culture. Inset: a close up of the model and data fit between

days 7–9. Error bars represent standard deviation.

https://doi.org/10.1371/journal.pone.0212502.g003
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Fig 4. A five state model framework for HSC lineage specification. (A) A schematic of the classical HSC differentiation hierarchy where

long-term progenitors (LT-HSC) differentiate into short-term (ST-HSC) progenitors, then multipotent (MPP), then common myeloid

progenitors (CMP) before maturing into fully developed myeloid cells (Terminal). (B) A 5-state computational model featuring the

LT-HSC, ST-HSC, MPP, CMP, and Terminal cell types. Culture dynamics may be influenced via feedback from cell-secreted biomolecules

that stimulate and/or inhibit the proliferation and differentiation rates of each cell type. Additionally, a fraction of ST-HSCs and MPPs

would be available to transition directly into Terminal cells without going through CMP differentiation (‘jump’). (C-G) The model

simulation is able to capture the dynamics and scale of the experimental data for all 5 cell profiles (C: LT-HSC; D: ST-HSC; E: MPP; F:

CMP; G: Terminal) over a 9 day period. Error bars represent standard deviation.

https://doi.org/10.1371/journal.pone.0212502.g004
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defining the sensitivity S where [21]:

S ¼
hDO=Oi
hDP=Pi

Where ΔO is the change in output value, O is the original output value, ΔP is the change in

parameter value (1%) and P is the original parameter value. The resulting sensitivity S is thus

the average of individual sensitivities at each time point. This analysis produces an i (cell states)

x j (parameters) matrix for S values, which were then projected onto a heat map, developed for

both the 3-state (S7 Fig) and 5-state model (Fig 5). Overall, the Terminal cell populations were

the least sensitive to parameter perturbation for both model structures, possibly on account of

their large numbers and cellular heterogeneity that was not accounted for in the model. The

most number of high-impact parameters were observed for ST-HSCs, MPPs, and CMPs, that

possessed both a dynamic growth profile and were the early drivers of cell growth in culture.

Kinetic parameters such as maximum proliferation rates (PRST_max, PRTerminal_max), differenti-

ation rates, self-renewing fractions (fST-HSC-max), and select secretion constants had a large

impact on system response. Interestingly, the impact of these parameters was consistently

observed across all cell populations. The 3-cell model elicited a similar parameter sensitivity

response with consistencies observed for both LSK and CMP populations.

To address our long-term goal of developing engineering system to selectively expand more

primitive HSC populations in vitro, we closely examined cell-specific sensitivities in order to

identify the temporal trends in parameter sensitivities. The sensitivity profile varied widely

across all conditions, with sensitivities either increasing, decreasing, or changing dynamically

over time. Increasing parameter sensitivities are an indication that model stability is weakened

over longer culture periods. Representative profiles of parameter sensitivities (S8 Fig) highlight

the highly complex system response underway, as can be seen from the non-linear profiles

across all parameters and cell populations. Interestingly, inflection points for all cell types are

consistently observed around days 3–5, where the corresponding cell growth kinetics are the

most volatile. These data suggest that accurate experimental determination of high-impact

parameters is vital to developing an accurate and stable model. Sensitivity information of this

nature can be potentially utilized to dynamically alter targeted parameters (based on high sen-

sitivity) at specific time points (based on their temporal response) to modulate cell fate.

Discussion

The ability to identify key parameters that dominate culture kinetics and utilizing them to

engineer optimal conditions for stem cell expansion is important for future advances in

hematopoietic stem cell biomanufacturing. Bone marrow transplants that rely on high num-

bers of repopulating hematopoietic stem and progenitor cells for marrow reconstitution could

benefit from such strategic cell expansion. Our efforts build on key findings in the literature.

Using a mathematical model, Kirouac et al demonstrated umbilical cord blood (UCB) Lin−

cells progenitor cell fate is directly integrated with cell-cell signaling mechanisms and cell-

secreted biomolecules [20, 21]. Csaszar et al. employed an integrated computational and

experimental approach to increase the yield of HSCs within a closed culture system by regulat-

ing the negative paracrine signaling feedback via a controlled media dilution method [19].

Building upon previous modeling frameworks we developed a multi-state (3 and 5) differentia-

tion system to capture essential elements of the feedback dynamics that govern HSC progeni-

tor vs. mature cell growth in vitro. Dynamic changes in these cell populations suggest that

much of this process is dictated by the endogenous cell-secreted biomolecules broadly catego-

rized to influence cell differentiation and proliferation. While the kinetics of subsets of these
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biomolecule groups is likely much more nuanced and complex, our classification was suffi-

cient to adequately capture the observed population profiles in vitro. The role of inhibitory

factors secreted by differentiating hematopoietic cell populations on progenitor cell differenti-

ation and proliferation arrest has been previously observed [13]. Marciniak-Czochra et al.
proposed parallel multi-compartment models for HSC differentiation to examine the relation-

ship between stem cell self-renewal and proliferation rate and the expansion of progenitor

populations. Their results elegantly identify the role of early progenitor population self-

renewal in steady state hematopoiesis [30]. Notably, our model can successfully replicate these

observations, highlighting the complex relationship between signaling feedback and cell fate

determination.

The concept of a non-hierarchical, discrete development of lymphoid and myeloid progeni-

tors through HSC differentiation has been gaining traction. The existence of the proposed

adult lymphoid-primed multipotent progenitors (LMPP) that lack erythroid and megakaryo-

cyte lineage specification question the hierarchical relevance of common myeloid (CMP) and

lymphoid (CLP) progenitors in the classical HSC differentiation model[31, 32]. Notta et al.
therefore proposed a two-tier hierarchy of hematopoietic development in adult hematopoiesis

[26] where the main stem cell compartment remains multipotent while the progenitors are

instead unipotent and strongly committed to the myeloid or lymphoid lineage. These findings

support the need to revise the classical step-wise transitions from early to late progenitors both

experimentally and in the model. Excitingly, our results show unequivocally that the cell state

Fig 5. Parameter sensitivity matrix of the 5-state HSC differentiation model, broken down by cell state (LT-HSC, ST-HSC, MPP, CMP, Terminal) and

type of model parameter. Red nodes in the matrix indicate that model sensitivity is>1% for a 1% change in parameter values. This is indicative of high

parameter sensitivity and system instability, but also design parameters for future experimental optimization. Terminal cells, on account of their large and

heterogeneous populations, are relatively insensitive to several model parameters except their proliferation rates (PRTermmax).

https://doi.org/10.1371/journal.pone.0212502.g005
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‘jump’ from LSK to Terminal (in the 3-cell model) or from ST-HSC and MPP to Terminal (in

the 5-cell model) is a critical parameter required to capture the kinetics of the experimental

data with a computational model. Experimentally, CMP populations remained relatively small

throughout the 9-day culture, making a step-wise transition from LSK to CMP and ultimately

to Terminal cells not sufficient to accurately describe observed growth rates. The dependence

of this transient (jump) fraction on cellular feedback is also evident in the case where media is

not replenished over the 9 day culture period, leading to the accumulation of differentiation

and proliferation inhibitors within the system (S10 Fig). It is important to note that all cell

populations are detected via surface antigen expression profiles at discrete time points. Conse-

quently, nuances of single cell differentiation process may diverge due to transience of gene or

surface antigen expression patterns. It is likely that understanding more deeply population

dynamics of cohorts of hematopoietic cells, classified via a series of constants in this model,

may involve more complex culture kinetics. Therefore, a more deterministic partial differenti-

ation equation model (PDE) may be required for future efforts to gain more comprehensive

understanding of the entire HSC differentiation hierarchy. Such models have been employed

to investigate the role of cytokine signaling on cancer cell activity[33], cell cycle response to

therapeutics [34], and the human-microbiome symbiosis[35]. Interestingly, stochastic models

have also been employed to study a wider range of biological systems and multi-cell popula-

tions [36–38]. So while the absolute kinetics dictating hematopoietic cell behavior is expected

to be far more complex, our study provides insight regarding tradeoff in early hematopoietic

cell differentiation as well as conforms to the recently observed non-hierarchical HSC model

[26], suggesting it provides an important first validation of such modeling approaches.

Sensitivity analysis provides key insight into model stability and identification of parame-

ters that have the biggest influence on culture kinetics. They represent master descriptors of

optimal culture conditions with stem cell biomanufacturing potential. The parameter sensitivi-

ties observed are an indication of model stability; while low sensitivity values indicate minimal

response to system perturbations the retained parameters remain crucial to model output. Our

model is sensitive to many parameters at varying degrees, the most prominent being the prolif-

eration and differentiation rates of individual cell populations (Fig 5, S7 Fig). We assessed

parameter impact roughly split into an early and late-stage response in culture. A rapid initial

response implies that a higher degree of control during the early culture phase is important for

regulating the final outcome. Experimental determination of some of the unknown parameters

could potentially improve model stability and provide a more reliable model construct. While

the differentiation rates in the model are assumed constant over the 9-day culture period, the

dynamic cellular feedback observed hints to a more non-linear and interdependent rate kinet-

ics. A more stable model allows us to better establish such kinetics and enable a model-param-

eter system capable of accurately predicting cell behavior for a wider range of culture

conditions. Although the mathematical expressions and the number of parameters used in our

model can be subject to modification, the approach described here highlights the possibility of

describing complicated cell culture dynamics with a high degree of accuracy. A reduction in

the number of variables would reduce model complexity, but at the cost of kinetic information

such as temporal shifts in proliferation or apoptosis rates, dynamically changing self-renewal

vs. quiescent fractions, and signaling cascades between cell populations. The dependence of

cell response on biomolecular feedback identified by this model presents an opportunity to tai-

lor culture systems response in a manner similar to that exploited to create bioreactor para-

digms for HSC culture [27], and by our lab to alter the diffusive transport of paracrine vs.

autocrine signals within a 3D hydrogel to influence HSC fate specification [39]. The work

described here provides a facile tool to inform efforts profiling shifts in the secreted
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biomolecules as a means to identify factors that can be added exogenously or perturbed endog-

enously to boost early hematopoietic cell expansion.

In order to be clinically applicable, large-scale expansion of hematopoietic populations

requires biomanufacturing capabilities with a high degree of control over early progenitor

populations (HSCs, MPPs). Such tools will likely require the addition of supporting niche

cells, exogenous biomolecules, and the presence of a biomaterial matrix [40, 41] within a

dynamic culture environment. Experimentally determining the individual and combinatorial

effects of all external factors will likely be an extremely expensive and time intensive process.

Modeling efforts, such as the approached described here, can provide a powerful tool to facili-

tate rapid assessment and optimization of culture parameters to direct HSC proliferation and

differentiation. Here, our findings that HSC hierarchy and lineage differentiation in vitro is

not wholly stepwise but rather follows grouped developmental routes is an important attribute

to be considered for future experimental and computational studies.

Conclusions

We employ an integrated computational and experimental approach to successfully describe

in vitro culture kinetics of murine hematopoietic stem cells. Used as a prognostic tool, the

model was able to capture the multi-scale population shifts in multiple hematopoietic subpop-

ulations and predict cell response to different culture conditions in a means that could be used

to tailor experimental conditions for selective expansion of discrete hematopoietic sub-popula-

tions. We demonstrate that the CMP population represents a transient state within the HSC

hierarchy and much of the downstream differentiation is driven by rapid differentiation of pri-

marily short term repopulating HSC progenitor populations. These observations are consistent

with the recently proposed tiered rather than step-wise HSC differentiation model. Finally, via

sensitivity analyses we identify culture parameters, such as proliferation and biomolecule

secretion rates, most strongly associated with the observed experimental responses as a means

to generate more complex HSC culture models optimized for targeted cell expansion.

Supporting information

S1 File. Supporting information and tables.

(DOCX)

S1 Fig. Cell sorting strategy for hematopoietic cell populations. (A) Singlets selected from

the population are first gated into live (DAPI–) cells, followed by gating into Lin−(FITC) cells.

The LSK population is gated across c-kit+ (PE) and Sca1– (APC-Cy7) and a Pre-CMP selection

is made for the c-kit+ and Sca1–
, followed by the CMP gate Lin–ckit+Sca1–. The LSK popula-

tion is further gated into LT-HSC (Flk2– CD34–), ST-HSC (Flk2– CD34+) and MPP (Flk2+

CD34+). (B) Representative FACS plots of the early progenitor populations across 9 days in

culture, with the fractions denoting their relative populations from the LSK sub fraction. Over-

all, the ST-HSC population increases most substantially whereas the size of LT-HSC and MPP

populations remain small throughout.

(TIF)

S2 Fig. Model predictions in the absence of the jump fraction. When the jLSK value is set to

0, the model is unable to capture the experimental data for (A) LSK, (B) CMP, and (C) Termi-

nal cells, particularly at long time periods. The lack of early jump fraction leads to a predicted

over-accumulation of the CMP cells and reduced size of the Terminal cell population. Error

bars represent standard error of mean.

(TIFF)
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S3 Fig. Model-predicted profiles of multiple culture parameters that influence the expan-

sion of each cell sub-set. (A) The self-renewing fractions of LSK (fLSK) and CMP (fCMP) cells,

the fraction of LSKs that ‘jump’ to Terminal cells while bypassing the CMP stage (j) and the

relatively low quiescent numbers of the early progenitors (q) in culture. A relatively high frac-

tion of LSK cells transition into Terminal cells even during day 9 of culture. (B, C) The concen-

trations of proliferation and differentiation stimulators and inhibitors in the culture media

dictate the shift of cell fractions from differentiation to proliferation and is a function of cell-

secreted cytokines. (D) Proliferation rates of each cell type remain largely constant over the

culture period. (E) death (or apoptosis) rates of all cell types are predicted to remain constant

while there is a high level of SCF and nutrient (Glucose availability) and increases with nutri-

ent depletion (F) SCF and Glucoase (GC) content is replenished every 2 days due to media

exchange and, decreasing rapidly with increasing cell numbers.

(TIFF)

S4 Fig. Total number of each cell type in culture over time. (A) The LT-HSC population

declines over the entire culture period. (B) ST-HSCs recovers after day 4 of culture in a manner

similar to the overall LSK cell growth observed in the 3-cell state model. (C) Similar kinetics

are observed for MPPs and CMPs. (D) An exponential increase in the Terminal cell population

is seen. Error bars represent standard error of mean.

(TIF)

S5 Fig. Predicted culture kinetics for the 5-state cell model. (A) self-renewing fractions of

each sub-set rise steadily over time, also evidenced by the rising cell numbers. (B) fraction tran-

sitioning directly from ST-HSC or MPP to Terminal cells (jump). A higher number of

ST-HSCs ‘jump’ to Terminal compared to MPPs, however each fraction is maintained over

the entire culture period. (C) A higher fraction of LT-HSCs are predicted to remain quiescent

while the more mature ST-HSC and MPP cells display a reduced quiescent capability. (D) The

concentrations of differentiation stimulators and inhibitors in the culture media change

dynamically over time, and is a function of cell-secreted cytokines. (E) Similar to the 3-state

model, SCF and Glucose (GC) content is replenished every 2 days due to media exchange and,

decreasing rapidly with increasing cell numbers. (F) Death (or apoptosis) rates of all cell types

are predicted to remain constant while there is a high level of SCF and nutrient (Glucose avail-

ability) and increases with nutrient depletion.

(TIFF)

S6 Fig. Model predictions in the absence of the jump fraction. When the jSTHSCtoTerm and

jMPPtoTerm values are set to 0, the model is unable to capture the experimental profiles for all

cell populations. (A–E). The ST-HSC, MPP, and CMP populations exceed experimental obser-

vations, while Terminal cells are underpopulated due to lower initial differentiating cell num-

bers.

(TIFF)

S7 Fig. Parameter sensitivity matrix of the 3-state HSC differentiation model, broken

down by cell state (LSK, CMP, Terminal) and type of model parameter. Red nodes in the

matrix indicate that model sensitivity is>1% for a 1% change in parameter values. This is

indicative of high parameter sensitivity and system instability, but also design parameters for

future experimental optimization. Similar to the 5-state model, Terminal cells, on account of

their large and heterogeneous populations are relatively insensitive to several model parame-

ters except their proliferation rates (PRTermmax).

(TIFF)
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S8 Fig. Representative temporal profiles of parameter sensitivities. (A-C) For the 3 state

model, changes in sensitivity for select parameters for each cell type indicate that the system

response is highly non-linear. While the impact of some parameters steadily rises over time

(ApoptosisLSK, ProlifCMP etc.), others plateau or decrease over time. (D-F). These dynamic

profiles are also observed for the 5-state model. Cell state response to these factors can help us

identify the positive or negative impact of specific parameters over time, and whether culture

modulation can further help regulate system response.

(TIFF)

S9 Fig. Graphical representation of the model in STELLA. (A) Schematic of the overall dif-

ferentiation process with input and output flows associated with each cell type. The inputs cor-

respond to increase in cell population (proliferation, differentiation from previous state)

whereas outputs correspond to decrease in cell population (apoptosis, differentiation into next

state). Rates associated with each flow are described in the equations given in the Supplemental

section. (B) Schematic of the 3 exogenous soluble components of the system: Media, SCF,

nutrient availability (denoted as GC for Glucose). Exchanging the media replenishes both

components and is controlled by the parameter ‘change frequency’. (C) Concentrations of

groups of biomolecules (DiffS, DiffI, ProS, and ProI) are governed by the number of cells and

a constant secretion rate associated with each cell type (c1 –c12) which dictate the self-renew-

ing fractions (DiffS, DiffI) and the proliferation rates (ProS, ProI) for all cell types.

(TIF)

S10 Fig. Concentration of proliferation and differentiation inhibitors for the condition

where media exchange does not take place over the 10 day period.

(TIFF)
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