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A capillary electrophoresis coupled 
to mass spectrometry pipeline for 
long term comparable assessment 
of the urinary metabolome
Franck Boizard1,2,*, Valérie Brunchault1,2,*, Panagiotis Moulos3, Benjamin Breuil1,2, 
Julie Klein1,2, Nadia Lounis4, Cécile Caubet1,2, Stéphanie Tellier5, Jean-Loup Bascands1,2, 
Stéphane Decramer1,2,5, Joost P. Schanstra1,2 & Bénédicte Buffin-Meyer1,2

Although capillary electrophoresis coupled to mass spectrometry (CE-MS) has potential application in 
the field of metabolite profiling, very few studies actually used CE-MS to identify clinically useful body 
fluid metabolites. Here we present an optimized CE-MS setup and analysis pipeline to reproducibly 
explore the metabolite content of urine. We show that the use of a beveled tip capillary improves the 
sensitivity of detection over a flat tip. We also present a novel normalization procedure based on the use 
of endogenous stable urinary metabolites identified in the combined metabolome of 75 different urine 
samples from healthy and diseased individuals. This method allows a highly reproducible comparison 
of the same sample analyzed nearly 130 times over a range of 4 years. To demonstrate the use of this 
pipeline in clinical research we compared the urinary metabolome of 34 newborns with ureteropelvic 
junction (UPJ) obstruction and 15 healthy newborns. We identified 32 features with differential urinary 
abundance. Combination of the 32 compounds in a SVM classifier predicted with 76% sensitivity and 
86% specificity UPJ obstruction in a separate validation cohort of 24 individuals. Thus, this study 
demonstrates the feasibility to use CE-MS as a tool for the identification of clinically relevant urinary 
metabolites.

‘Omics’-based strategies appear to be promising tools for the identification of diagnostic and prognostic biomarkers  
of disease. They can lead to the design of multimarker models which are potentially better suited than single 
biomarkers to describe complex pathophysiological mechanisms1–3. Metabolomics, defined as the analysis of the 
low-molecular-weight compound (< 1500 Da) content of a sample, offers advantages compared to the other omics 
traits. Indeed, being the downstream products of cellular function, metabolites represent a sensitive measure of 
the actions of upstream molecular species such as genes, transcripts, and enzymes, including the effects of disease, 
drugs, toxicity, and the environment4,5. However sensitivity to these many perturbants also contributes to poten-
tial issues about the high variability in metabolome exploration6.

Analysis of urine plays a central role in clinical diagnostics as it can be collected non-invasively, often in large 
quantities, and requires minimal sample pre-treatment due to its low complexity and protein content. In addi-
tion, we and others have already shown that urine is an excellent reservoir of biomarkers (peptides, proteins and 
metabolites) of many diseases7–17.

Metabolomics studies mostly use NMR spectroscopy and liquid chromatography coupled to mass spec-
trometry (LC-MS) that provide complementary readouts4. NMR spectroscopy allows both identification and 
quantification of metabolites. It is a highly reproducible and non-destructive method which requires minimal 
sample preparation thereby minimizing contamination and maintenance issues and enabling the routine and 
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high-throughput analysis of hundreds to thousands of samples4,18. The inherent low sensitivity of NMR, however, 
restricts the detection limit to about 1 μ M18,19. Moreover, the interpretation of NMR data is challenging18,20. In 
contrast, LC-MS allows the detection, quantification and structure elucidation of metabolites in the picomolar 
to nanomolar range of several thousand metabolites in a single measurement5. Unfortunately, the coupling of 
chromatographic separations with MS platforms requires an elevated level of maintenance, as the samples come 
in direct contact with many components of these platforms, contaminate surfaces and cause drift in the meas-
ured response and retention time over relatively short analysis periods4,5, thereby preventing the comparison of 
large numbers of samples. Relevant progress in the field of LC-MS was made with the introduction of ultra high 
performance liquid chromatography (UPLC) leading to improvement of analysis speed as well as sensitivity and 
resolution19,21,22. In particular, the potential of miniaturized UPLC-MS, based on the optimized use of microbore 
columns, was recently demonstrated for large-scale metabolomic studies23,24.

Until approximately ten years ago, capillary electrophoresis coupled to mass spectrometry (CE-MS) has only 
been rarely used for metabolome analysis. This was potentially due to issues related to stable coupling of CE to 
the MS instrument and the limited loading capacity of CE capillaries. However the significantly increased sensi-
tivity of modern mass spectrometers and optimized methods for coupling of CE to MS have transformed CE-MS 
into a potential appropriate tool for profiling of disease associated metabolites in clinical relevant body fluid 
samples20,25–29. A number of recent studies now report the use of CE-MS for metabolome analysis of clinically rel-
evant samples, with in particular those recently conducted by Soga and coworkers30–32, the first group to develop 
CE-MS for the comprehensive profiling of metabolites in biological samples33. However, the use of CE-MS for 
the discovery and validation of clinically relevant metabolic markers of human disease requires evaluation of its 
performance in terms of long term reproducibility and comparability.

Here, we present an optimized CE-MS setup and data analysis pipeline. Using a normalization procedure 
based on a set of “housekeeping” metabolites, this method allows to compare the metabolite content in urine 
samples analyzed over a period of several years. As proof of concept, we demonstrate the clinical relevance of this 
pipeline for the urinary metabolome based-detection of obstructive nephropathy in infants.

Results
Identification of metabolite internal standards for CE-MS normalization. As a first measure 
towards improved comparison of large numbers of clinical samples over time, we developed a new method that 
allows to normalize the metabolite content of a biofluid sample. This method is based on the use of a set of per-
sistent and stable metabolites across disease and healthy urine samples. In order to identify these so-called stable 
endogenous metabolites, 54 CE-MS runs of urine obtained from various kidney and urinary tract pathologies 
together with 21 control CE-MS runs of urine from healthy patients (Supplementary Table S1) were processed 
using the Bioconductor package xcms34. Each metabolite feature was identified by a unique identifier (ID) on 
the basis of the specific mass-to-charge ratio and migration time with a peak height representing the relative 
abundance. After preprocessing of the mass spectra (including mass calibration and migration time window 
restriction), the xcms pipeline (see Materials and Methods) identified 9642 distinct molecule features in terms 
of m/z and migration time pairs across all 75 samples. From this initial list, only features present (no-null abun-
dance) in at least 50% of the total samples were considered for further analysis. The 6044 remaining metabolite 
features spanned a CE migration time from 16 to 50 min and a m/z range from 30–650. This reference dataset of 
6044 metabolite features was then interrogated for the presence of stable molecule features, in terms of intensity, 
that would comprise the basis for a set of CE-MS internal normalization standards. For this, several established 
algorithms from the ‘rank invariant’ family of normalization methods present in the DNA microarray literature 
were deployed. Specifically, the Rank Invariant normalization method implemented in the dChip algorithm35, 
the Rank Invariant normalization algorithms for Illumina BeadArrays implemented in the lumi Bioconductor 
package36 and the GRSN algorithm37 were tested. However, each one of these suffered from several drawbacks, 
including among others unstable housekeeping sets because of their selection algorithm (dChip), selection pref-
erence in higher (dChip), lower (lumi) or medium (GRSN) intensities instead of spanning the whole metabolite 
abundance range, very high number of metabolites to achieve proper normalization (lumi) or poor normalization 
efficiency (dChip). The failure of present methodologies (partially due to the different nature of CE-MS data as 
compared to microarrays) to detect a stable set of metabolites led to the development of two new different inter-
nal standard selection strategies. Specifically, the first approach used the residuals of Robust Linear Regression 
models38,39 to identify sets of metabolites presenting low variability across samples and the second, more geomet-
rical than statistical, approach was based on the Euclidean distance of each metabolite abundance vector from 
the identity ‘hyperline’ in the sample space. The final set of stable metabolites for each method was derived using 
a Forward Selection procedure with the purpose of finding the smallest possible subset of metabolites with the 
greater normalization power (detailed description of the methods in the ‘Materials and Methods’ section). The 
method that was finally followed was the geometrical approach as it was found to yield more robust results in 
terms of metabolite intensity coverage, normalization power, smaller number of stable metabolites and its appli-
cation did not require any assumptions for a baseline as compared to the RLM approach which requires a base-
line. This led to the identification of 267 endogenous housekeeping metabolic features among the 6044 features 
detected (Supplementary Table S2) which spanned a CE migration time from 17 to 36 min and a m/z range from 
82 to 650. These stable endogenous metabolite features were implemented in the CE-MS normalization pipeline. 
Hence, the CE migration time is normalized in a first step (Fig. 1A) followed by normalization of the metabolite 
abundance using the endogenous housekeeping metabolic features, as exemplified on a random selection of six 
samples (Fig. 1B).

Use of a beveled capillary improves the sensitivity of metabolite detection. CE coupling to MS 
via electrospray ionization (ESI) can be performed using either a sheathless or a sheath flow interface40. The use 
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of sheathless systems is promising. In particular, the potential usefulness of a sheathless porous tip interface for 
CE-MS has been recently demonstrated for the analysis of the urinary metabolome28,29. Nevertheless this porous 
tip has not yet been adopted as a routine method for CE-MS coupling. So far, the sheath flow interface has been 
most widely used for CE-MS in metabolomics26,40,41. This type of coupling is stable and provides good sensitivity, 
its implementation is relatively easy and allows using a wide range of buffers. However, the CE-effluent is diluted 
in this configuration, thereby reducing the achievable sensitivity of the method28,29,40,41. As part of a continuous 
effort to improve the interface between CE and MS, Tseng et al.41 have developed a beveled tapered tip emitter in 
order to reduce the sheath flow leading to decreased sample dilution. By analyzing synthetic drugs and triazine 
mixtures, they demonstrated that the use of beveled tip provides better sensitivity for detection than conventional 
sheath liquid interface which uses flat capillary tips41.

Therefore in an attempt to optimize the sensitivity of the detection of urinary metabolites, we compared the 
performance of a standard flat tip and a beveled tip sheath-liquid ESI interface. A QC urine sample was analyzed 
by CE-MS using either a standard (ten consecutive runs) or beveled capillary (ten consecutive runs) for CE. Of 

Figure 1. Processing and normalization of samples. Urinary samples were analyzed in CE-MS, processed 
and then normalized using the stable endogenous metabolites-based procedure described in the Materials 
and Methods section. (A) Representative distribution profile of urinary metabolite features before and after 
migration time alignment against reference dataset. Each circle is a unique peak processed with xcms. Red: 
metabolite features detected in a random urine sample and matching the reference; yellow: equivalent features 
in the reference dataset. (B) Box-whisker plot for metabolite abundance of exemplary healthy (2) and UPJ 
obstruction (4) patients before and after intensity normalization.
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note, the previously described 267 stable endogenous metabolites required for normalization procedure were 
identified using a beveled tip. After normalization, 2275 and 1950 distinct molecule features were detected in at 
least one run using the beveled tip and standard flat tip, respectively (Fig. 2A). Moreover, 338 and 316 metab-
olite features were detected consistently in all ten runs using the beveled tip and conventional tip, respectively 
(Fig. 2A). Although the absolute number of features detected is only slightly higher using the beveled tip, compar-
ison of the intensities of 192 features detected in all runs with both types of capillary revealed a significant 3 fold 
gain in sensitivity using the modified capillary (Fig. 2B). Of note, robustness of the beveled tip was not decreased 
compared to flat tip (resisting to 40–50 runs [data not shown]). Therefore, the use of beveled tip as sheath-flow 
interface for CE-MS displays increased sensitivity towards the detection of urinary metabolites. We used the 
beveled tip for the remainder of the experiments.

QC-based validation of CE-MS pipeline for urine metabolome profiling. In order to estimate the ana-
lytical variability of the CE-MS pipeline, a set of experiments for validation was performed: repeatability (intra-assay 
precision), postpreparation stability, postdilution stability, and long-term (intermediate) precision were evaluated.

Repeatability expresses the precision under the same operating conditions over a short interval of time. 
Repeatability of the CE-MS pipeline was examined by analyzing the QC urine sample in five consecutive runs, 
covering a total run time of ≈ 8 h. Among 6044 potential metabolites, 1342 (22%) features were detected on 
average in each run. Figure 3A shows a typical plot of a CE-MS analysis of a QC sample, giving an indication of 
the distribution of mass-to-charge ratio and CE migration times encountered for this typical sample. To obtain 

Figure 2. Effect of the capillary on sensitivity of metabolite detection. The same sample was analyzed in 
CE-MS using either standard (10 times) or beveled tip capillary (10 times) for CE. (A) Euler diagrams showing 
for each capillary the number of metabolite features detected at least once (left) or every time (right). Dark gray: 
standard (flat tip) capillary; light gray: beveled tip capillary. (B) For each metabolite detected in every run and 
with both types of capillaries (n =  192), the mean intensity was calculated and then the ratio between intensity 
measured with beveled tip capillary and intensity measured with classical capillary was calculated. Graph shows 
the mean ratio ±  SEM, indicating that metabolite detection was more sensitive with beveled tip than with 
standard capillary.
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Figure 3. Short term performance characteristics of metabolomic CE-MS platform. The data from QC 
analyses were investigated to assess intra-assay precision, postpreparation stability and postdilution stability 
for molecule intensities. (A) Typical plot from the CE-MS analysis of the QC sample: Each metabolite was 
identified by a unique identifier (ID) on the basis of the specific mass-to-charge ratio and migration time. Graph 
shows the distribution of metabolite mass-to-charge ratio (m/z) with CE-migration time for a representative 
QC injection. (B) Short term precision: The QC was analyzed in five consecutive runs and the intensity in each 
run was shown for four exemplary randomly selected metabolite features. The coefficient of variance (CV) for 
amplitude was between 0.7 and 1.9% for these individual features, thereby demonstrating the repeatability in 
peak height. (C) Variability according to preparation: QC sample was prepared on three different dates using 
different lots of buffer, and then analyzed in consecutive runs. The intensity in each run was shown for four 
exemplary randomly selected metabolite features. The obtained CV for abundance was between 1.1 and 4.3%, 
showing a stability depending of the preparation. (D) Stability according to dilution: QC sample was prepared 
at different concentrations and then analyzed in consecutive runs. The intensity of four exemplary randomly 
selected metabolite features was plotted against the dilution factor.
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information on the run-to-run precision, four metabolite features were randomly selected for evaluation of inten-
sity variation. The abundance variation of these four metabolite features was found to be negligible (Fig. 3B), with 
coefficient of variation (CV) values less than 2%, thereby indicating high performance of CE-MS platform in 
terms of repeatability. Next, the effect of different sample preparations was studied (post-preparation stability). 
We prepared QC sample according to the same procedure but using three different lots of buffer before CE-MS 
analysis in 3 consecutive runs. As shown in Fig. 3C, the intensity of the four exemplary selected metabolite fea-
tures was constant in preparations, with a low CV, below 4.3%. Third, in order to test linearity of detection, the QC 
sample was prepared at six different concentrations and then analyzed by CE-MS in consecutive runs. Figure 3D 
depicts the abundance of the four randomly selected molecule features as a function of the dilution factor of a 
urine sample. For three of them, a significant negative correlation was observed between dilution and abundance 
whereas only a trend was observed for the fourth (Fig. 3D), thereby suggesting the relative stability of CE-MS 
platform when urine samples are diluted.

Finally, we evaluated intermediate precision of CE-MS platform which expresses the precision within labora-
tory variations. This assay involved analysis of QC urine metabolites at different days by different operators over 
a long period of time. It included different lot numbers of buffers, solvents and chemicals and also implies annual 
maintenance service of both CE and MS devices. This evaluation is important in the field of clinically useful 
metabolite biomarkers where durable use of CE-MS is necessary. For the long-term stability assay, the QC sample 
was analyzed repeatedly 128 times over a range of 4 years (from 2011 to 2014). Among 6044 potential metabolite 
features, 1389 (23%) were detected on average in each run, this result being similar to the previously reported 
value. A mean of 67.7% of all metabolite features and 30.5% of the stable endogenous metabolites in the QC sam-
ples from these 128 runs matched against the reference dataset. The analysis of our data set revealed that the dis-
tribution of intensities is bimodal, with a strong proportion of values at a point-mass at zero (point-of-mass values 
[PMVs] corresponding to missing values [NaN], zero intensity data being treated as missing data) and a continu-
ous component (Fig. 4A). The occurrence of zero component in the data matrix is a recurrent issue encountered 
in MS data42. The origin of PMVs may either be biological, eg absence of a specific metabolite in biological sam-
ple, or technical, eg the inability of the mass spectrometer to detect the specific metabolite or of the algorithm 
to identify the peak. Next, as it is recommended that the coefficient of variation should not exceed 15%4,43, we 
examined CE-MS results using similar acceptance criteria as a means of determining the quality of the data. 
For this, the abundance of four exemplary randomly chosen molecule features was plotted over time (Fig. 4B). 
The statistical spread for these metabolite features was between 2.2 and 8.6%, indicating that CE-MS platform 
exhibits long-term stability. In addition, CV of intensities was calculated for all metabolite features across the 
QC samples. A data subset was considered including features which were detected in at least one of the 128 QC 
injections (4879 entities) and different filters of selected metabolites were considered to evaluate improvement of 
the proportion of peaks being acceptable. Using this subset, we observed that 4487 (92%) of the 4879 molecule 
features displayed a variation of ≤ 10%, whilst 2892 (59%) exhibited a variation of ≤ 5% level. Altogether, these 
results demonstrated the long-term stability of CE-MS platform and thus suggest that the optimized CE-MS setup 
and analysis pipeline allows to compare the metabolite content in urine samples regardless of the time of analysis.

CE-MS for clinical metabolomics: application to diagnosis of UPJ obstruction. Next we analyzed 
the capacity of the aforementioned pipeline in clinical research for the identification of diagnostic/prognostic 
biomarkers of disease. Newborns with UPJ obstruction were chosen for our proof of principle study. Two dif-
ferent cohorts of infants were employed: one discovery cohort (n =  49) for the identification of urinary metab-
olite biomarkers of UPJ obstruction (15 healthy newborns and 34 patients with UPJ obstruction; Table 1 and 
Supplementary Table S3) and one cohort (n =  24) for the blinded validation of urinary biomarkers (7 healthy 
newborns and 17 patients with UPJ obstruction; Table 2 and Supplementary Table S4). All urine samples were 
analyzed by CE-MS for their metabolite content and normalized using the above developed stable endogenous 
metabolites-based normalization procedure.

Metabolic profiling of urine samples from patients with UPJ obstruction and healthy children. The urinary metabolome  
of the discovery cohort, composed of 15 healthy children and 34 patients with severe UPJ obstruction (Table 1 
and Supplementary Table S3) was studied by CE-MS. A mean of 42.0% of the stable endogenous metabolites in 
urine samples matched against the reference dataset. Among 6044 potential metabolite features, 1889 (31%) were 
detected on average in each sample. Only the features detected in at least 75% of the urine samples in each group 
(healthy and UPJ) were further investigated. This noise-filtering process reduced the number of features to 388 
entities (Fig. 5A). The distribution of the metabolite intensities for all the 388 selected metabolite features showed, 
as for QC sample data, a bimodal distribution characterized by a proportion of PMVs (Fig. 5B) and a continuous 
component. In order to explore the origin of PMVs, metabolite features with consonant or dissonant differences 
were quantified. In the former case, the group with the higher proportion of PMVs has the smaller mean in the 
continuous part, while in the latter case the group with the higher PMV proportion also has the higher mean. 
An example of each type is shown in Fig. 5C. Although this definition does not distinguish between technical 
and biological PMVs, technical PMVs naturally correspond to consonant compounds whereas biological PMVs 
generally allow for both types44,45. The data employed here contains 357 (92%) consonant compounds, 15 (4%) 
dissonant and 16 (4%) without point-mass component. The high proportion of consonant markers associated 
with the low number of dissonant markers suggests that PMVs in present metabolomics data originated from 
technical considerations rather than biological (Fig. 5D).

Identification of urinary metabolites associated to UPJ obstruction. Comparing urinary metabolites from UPJ 
and healthy patients led to the identification of 32 adjusted (Benjamini and Hochberg46) differentially excreted 
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metabolite features (Fig. 6A,B and Supplementary Table S5). Matching 32 features against databases (HMDB, 
ChEBI and KEGG) led to determination of real mass for 9 metabolite features; 5 of 9 were annotated for chemical 
formulas (Table 3). Of note, abundances of two compounds (227.111791/989.758 and 228.114334/990.108) cor-
responding to the same annotation were highly correlated (R2 =  0.94, p <  0.0001, data not shown). The 32 metab-
olite features of interest were then used to develop a support vector machine (SVM) discrimination model that 
we called “UPJMetab32”. Scoring the patients from the discovery cohort with the UPJMetab32 classifier clearly 
separated UPJ from healthy patients (Fig. 6C).

Validation of UPJMeta32 in a separate, blinded cohort. In the next step, following the recommendations 
for biomarker identification47, the UPJMetab32 model was validated in a separate, blinded study using urine 
from 7 healthy and 17 UPJ patients not used in the discovery cohort (Table 2 and Supplementary Table S4).  
These urine samples were analyzed by CE-MS and scored using the UPJMetab32 model (Supplementary Table S4).  

Figure 4. Long term performance characteristics of metabolomic CE-MS platform. The data from QC 
analyses were investigated to evaluate intermediate precision for molecule intensities. (A) Histograms of the 
distribution of abundance: The mean frequency of all features in QC sample was plotted against the logarithm 
(2) of the intensity. Profiles show a point-mass at zero and a continuous component. The zero component 
arises because the molecule features are either absent or their concentration is below the detection limit. Insert: 
magnification of the continuous distribution. (B) Long term variability: The QC sample was analyzed 128 times 
between 2011 and 2014. The intensity of four exemplary randomly selected metabolite features was plotted 
against the time.
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A UPJMetab32 score > 0 predicts patients with UPJ obstruction. These predictions were compared to the clinical 
criteria based status. The UPJMetab32 classifier diagnosed clinical status (healthy versus UPJ) with a sensitivity of 
76.5%, a specificity of 85.7%, and an area under the curve (AUC) of 0.90 [95% CI: 0.707 to 0.984] (Fig. 7A). The 
UPJMetab32 model predicted 13 out of 17 UPJ cases correctly, showing the efficacy of the model to detect patients 
with severe UPJ. In addition, it predicted 6 out of 7 control cases correctly. The distribution of the UPJMetab32 
scores for the validation cohort showed significant separation of the two patient populations (Fig. 7B).

Discussion
We have explored the use of CE-MS and endogenous stable urinary metabolites for long-term, reproducible and 
comparable analysis of the urinary metabolome. The developed pipeline allowed comparison of urinary metab-
olite content analyzed over a 4 year timespan. As proof-of-concept we have used this pipeline to discover and 
validate urinary metabolites associated to a frequently encountered renal pathology in newborns.

Clinical metabolomics aims at the detection of clinically useful metabolites that can be extracted from a 
diverse range of sample types. Amongst those samples, easily accessible bodyfluids like urine and blood are most 
suited for clinical use. Although the field of metabolomics has advanced significantly in the past 10 years4, there 
has been little progress in the identification of clinically useful urinary metabolite biomarkers. To enable the 
discovery and the validation of diagnostic/predictive biomarkers, medium-to-large-scale epidemiological stud-
ies are required in order to take into account the substantial diversity observed in physiology/physiopathology, 
metabolic status and lifestyle in the general human population. This involves the use of analytical methods able 
to analyze large numbers of samples over periods of many months or years with both high reproducibility and 
high sensitivity4. We explored the potential of CE which offers multiple advantages: (i) as CE separates com-
pounds on the basis of their charge and size25, it demonstrates high-resolution power for separation of small 
ionogenic metabolites which are important constituents of the urinary metabolome; (ii) CE separations require 
a low sample volume and consume very little solvent25, thereby reducing the matrix effect that can cause ion sup-
pression and then insufficient ionization and lower peak intensity in MS; (iii) CE displays high reproducibility 
when analyzing large numbers of samples since no gradients are applied. Indeed, we observed high stability of 
urinary metabolite abundance when analyzing the same sample nearly 130 times over a range of 4 years. A few 
studies report stability evaluation of pipelines, such as for example over 535 runs covering a timespan of 5 months 
(GC-TOF-MS48) or over 120 runs covering a timespan of 3 years (UPLC-TOF-MS49). However, such a long term 
assessment of reproducibility and comparability is only rarely performed. Hence our 4 years proof of stability of 
the developed pipeline, associated with its use in the UPJ obstruction, validates its potential use in the clinic field.

Establishing long term stability has therefore been a major objective of the study. Although CE-MS is a repro-
ducible analytical tool, some variations induced by sample concentration (especially for urine where individual 
urine outputs are dependent of water uptake, diet, … ), interfering compounds and injection volume differences 
might still be observed. Several normalization strategies, such as normalization to creatinine, osmolarity and 
total area normalization are frequently employed in urine metabolomics studies. However, these commonly used 
normalization methods are not well adapted. For example, the creatinine level can be impacted by factors such as 
kidney function impairment, gender difference, and lean body mass50,51. The osmolarity normalization procedure 
is often affected by insoluble components, such as urine particles50,52. Adjusting the total peak area might yield 
biased results since the background noise and ion suppression due to the matrix may greatly interfere with the 

All patients Healthy UPJ obstruction

n 49 15 34

Gender

 M 46 (93.9%) 15 (100%) 31 (91.2%)

 F 3 (6.1%) 3 (8.8%)

Age

 Mean (months) 2.25 + /−  0.27 2.29 + /−  0.62 2.22 + /−  0.29

 Median (months) 1.45 (range 0 to 7.0) 1.58 (range 0 
to 6.1) 1.45 (range 0.7 to 7.0)

Table 1.  Discovery cohort.

All patients Healthy UPJ obstruction

n 24 7 17

Gender

 M 21 (87.5%) 7 (100%) 14 (82.4%)

 F 3 (12.5%) 0 3 (17.6%)

Age

 Mean (months) 2.51 + /−  0.58 1.35 + /−  1.21 2.99 + /−  0.65

 Median (months) 1.28 (range 0 
to 8.6)

0.03 (range 0 
to 8.6)

1.61 (range 0.8 
to 8.6)

Table 2.  Validation cohort.
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Figure 5. Metabolomic CE-MS analysis in urine of patients with UPJ. The urine metabolome of 15 healthy 
and 34 UPJ patients of the discovery cohort was analyzed. (A) Representative figure showing abundance of 
the CE-MS detected-urinary metabolite features: on the left, before application of a filter; on the right: after 
selection of features present in at least 75% of the samples in each group. (B) Histograms of distribution: 
The frequency of all metabolite features in healthy and UPJ samples was plotted against the logarithm (2) of 
the intensity. As for QC sample data, profiles show a point-mass at zero and a continuous component. (C) 
Histograms of distribution of two selected metabolite features from example dataset. Metabolite feature ID: 
636.25007/1484.602 (left): consonant; metabolite feature ID: 601.266107/1381.567 (right): dissonant. (D) 
Repartition of compounds with consonant and dissonant differences between healthy and UPJ obstruction 
groups.
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total signal. Furthermore, the total signal for samples with different metabolite distributions does not reflect the 
total concentration differences as ionization efficiency is compound dependent50. Variations can also be corrected 

Figure 6. Identification of a classifier: UPJMeta32. The urine metabolome of 15 healthy and 34 UPJ patients 
(discovery cohort) was analyzed. (A) Volcano plot showing fold-changes (Log2) between UPJ obstruction and 
healthy groups as well as statistical significance (-Log 10 of p-value) for 388 considered metabolite features. The 
dashed line shows where p =  0.05. Points above the line had p <  0.05 and corresponding metabolite features (32) 
have been considered as significantly differentially excreted by UPJ patients. (B) Compared abundance of the 
32 urine metabolite features which were identified as differentially excreted between UPJ patients and healthy 
subjects in the discovery cohort. Insert: two strongly abundant metabolite features (C) Cross-validation score 
of an SVM metabolite model, called UPJMetab32, consisting of 32 differentially excreted metabolite features. 
***p <  0.0001 versus healthy subjects. Mann-Whitney test for independent samples.
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by addition of exogenous standards but this method assumes that those are representative of the thousands of 
injected metabolites53. In the present study, we have opted for the selection of a set of most stable endogenous 
metabolites observed in a range of samples. This method offers several advantages. Firstly, for the selection of 
these stable endogenous compounds, we have chosen 75 urine samples potentially representing the diversity 
of (pediatric) diseases to be encountered in future studies. Therefore, we anticipate that the 267 derived stable 
endogenous metabolites can be used for the discovery of metabolite-based biomarkers in a number of pediatric 
diseases of the kidney and the urinary tract. Secondly, such a high number of stable endogenous metabolites for 
normalization spanning a CE migration time from 17 to 36 min and a m/z range from 82–650 allows that signal 
normalization can be performed ‘locally’, using metabolites with comparable ionization efficiency since close in 
terms of CE migration time and m/z ratio. In addition, this inclusion ensures that for every new sample, there 
will be a sufficient number of endogenous internal standards so as to span the whole intensity range of the new 
sample. Thirdly, as a result of this high number of stable endogenous metabolites, we observed that significant 
numbers of metabolite features are available for robust normalization in nearly all cases (we identified a mean 
of 42.0% of stable endogenous metabolites in the UPJ experiments). A potential drawback of the use of these 
endogenous metabolites for normalization could be that those are stable in the specific case of kidney disease and 
are excluded for the selection of biomarkers of disease. Selection of novel endogenous stable metabolites might 
thus be required in order to discover biomarkers for disease affecting other organs than the kidney/urinary tract.

Analysis of urinary metabolome is extremely attractive since changes reflect modifications of the entire organ-
ism in its equilibrium with the environment including particularly contributions from nutritive substances, 
drugs and gut microbial activities19. However, the variability induced by these factors can introduce a day-to-day 
intrapersonal variability as well as interpersonal differences, being a major drawback in studies aiming at disease 
diagnosis/prognosis. In order to address the sources of urinary metabolome variation throughout the day, Kim  

ID Isotope Adduct Real Mass Database Database code Proposed Formula Proposed Name

227.111791/989.758 [56][M]+ [M+ H]+ 226.104515 HMDB HMDB00033 C9H14N4O3 Carnosine

228.114334/990.108 [56][M+ 1]+ KEGG cpd:C00386 C9H14N4O3 Carnosine

HMDB HMDB12482 C9H14N4O3 Hydroxypterin

HMDB HMDB00245 C10H14N2O4 Porphobilinogen

KEGG cpd:C00931 C10H14N2O4 Porphobilinogen

KEGG cpd:C02345 C15H14O2 (2S)-Flavan-4-ol

KEGG cpd:C15598 C15H14O2 Favan-3-ol

KEGG cpd:C09757 C15H14O2 7-Hydroxyflavan

KEGG cpd:C10276 C15H14O2 Pinosylvinmethylether

KEGG cpd:C10325 C15H14O2 Deoxylapachol

KEGG cpd:C13632 C15H14O2 4,4′ -Dihydroxy-alpha-methylstilbene

KEGG cpd:C07205 C14H14N2O Metyrapone

ChEBI 55316 C7H16BrNO2 Acetylcholine bromide

ChEBI 50426 H4O6P2S2 Disulfanediylbis(phosphonic acid)

229.117309/1322.695 [8][M]+ [M+ H]+ 228.110033 HMDB HMDB06695 C10H16N2O4 Prolylhydroxyproline

KEGG cpd:C13733 C10H16N2O4 (S)-ATPA

KEGG cpd:C10371 C15H16O2 MansononeC

KEGG cpd:C13624 C15H16O2 BisphenolA

KEGG cpd:C15210 C15H16O2 1,1-Bis(4-hydroxyphenyl)propane

KEGG cpd:C17424 C15H16O2 Lindenenone

ChEBI 58089 C5H11NO7P 5-phosphonato-D-ribosylaminium(1− )

ChEBI 58681 C5H11NO7P 5-phospho-β -D-ribosylaminium(1− )

KEGG cpd:C18436 C9H16N4OS Tebuthiuron

ChEBI 53648 C7H4N2O7 2-hydroxy-3,5-dinitrobenzoic acid

355.071351/1117.064 [306][M]+ 354.064075 KEGG cpd:C01268 C9H15N4O9P 5-Amino-6-(5′ -phosphoribosylamino)uracil

KEGG cpd:C02927 C15H14O10 2-Caffeoylisocitrate

KEGG cpd:C07952 C17H19ClN2S. HCl Chloropromazinemonohydrochloride

KEGG cpd:C12600 C19H14O5S Phenolsulfonphthalein

488.133087/1622.375 [453][M]+ 487.125811 KEGG cpd:C02555 C26H21N3O5S Luciferylsulfate

KEGG cpd:C18429 C18H22FN5O8S Flucetosulfuron

366.599792/1929.853 [461][M]+ 365.592516

438.677677/1763.369 [443][M]+ 437.670401

474.701959/1359.882 [359][M]+ 473.694683

526.161131/1357.627 [160][M]+ 525.153855

Table 3.  Annotation for potential chemical formulas and names. HMDB: Human Metabolome Data Base; 
KEGG: Kyoto Encyclopedia of Genes and Genomes, ChEBI: Chemical Entities of Biological Interest.
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et al.6 have performed LC-MS metabolomics analysis of urine in subjects receiving a standardized and weight-based 
diet. The largest source of instability was attributable to technical issues such as sample preparation and analysis; 
to a lesser extent, an inconstancy subject-to subjects as well as intrapersonal variability due to meals and time of 
day were observed; day-to-day fluctuation was minimal6. Despite that, several studies suggest the existence of a 
stable part (time scale: months to years) of the urine metabolomic profile which seems to be specific to each indi-
vidual54,55. Under unrestricted lifestyle conditions, multiple collections of urine samples can be used to reduce the 
metabolic noise and retrieve the individual phenotype56. In the current study, differences in alimentation are most 
likely not a confounding factor since alimentation of newborns/infants is significantly less variable than in adults.

We have show-cased the use of the pipeline in a frequently encountered renal pathology in newborns11,57. 
We were able to identify 32 metabolic features associated to UPJ obstruction. Combination of the 32 metabolite 
features in a SVM classifier predicted with 76% sensitivity and 86% specificity UPJ obstruction in a separate vali-
dation cohort, thereby demonstrating the efficacy of the model to detect patients with UPJ obstruction. Increased 
carnosine excretion in UPJ was attributed to two highly correlating isotopes of a same metabolite. Carnosine is 
a dipeptide synthesized from alanine and histidine by the carnosine synthase in muscle, brain and other tissues 
such as kidney. It is degraded by the carnosinase predominantly in the liver but also in kidneys. Carnosine from 
animal food can also be absorbed in the small intestine, and at least part of it enters the blood intactly upon 
oral ingestion. Finally, kidneys filter plasma carnosine, reabsorb a part of carnosine via specific transporters 
and excrete the remaining in urine58,59. In order to understand the origin of the elevated urinary level of car-
nosine from UPJ obstruction patients, further experiments measuring expression of carnosine related-enzymes 
and transporter proteins in both obstructed and contralateral kidneys should be performed. The dipeptide  
possesses also strong antioxidant and free radical scavenging activities58. Interestingly, protective effects of carnosine 
have been demonstrated in rodent models of kidney disease60–62 and in patients with diabetic nephropathy63 or  
children with glomerulopathies64. Thus, increased urinary excretion of carnosine in UPJ obstruction could be an 
adaptive rather than a deteriorating mechanism.

In conclusion, we have developed a robust setup and analysis pipeline for the exploration by CE-MS of the 
metabolite content of urine and found that the long-term reproducibility of the metabolite data generated was 
excellent. As proof of concept, we demonstrated the feasibility to use CE-MS as a tool for the identification of 
clinically relevant urinary metabolites.

Materials and Methods
Patients and urine collection. Samples used for optimization of the CE-MS normalization procedure.  
Fifty-four urinary samples from various kidney and urinary tract pathologies together with 21 control CE-MS 
samples from healthy patients (Supplementary Table S1) were used. We considered that these samples represent 
the potential diversity to be encountered in clinical samples and hence used those samples for the development 
of CE-MS normalization procedure.

Quality control (QC). The QC sample was a mixture of urine samples of 9 healthy individuals (3 females and 6 
males, mean age 34.1 ±  2.8 years).

Ureteropelvic junction (UPJ) obstruction and healthy patients. UPJ obstruction patients (n =  51) and healthy 
individuals (n =  22) of less than one year old were recruited in Toulouse Hospital and included in our study. 
The UPJ obstruction group was composed of patients scheduled for pyeloplasty with a pelvic dilatation of at 
least 16 mm and grade 3 and 4 hydronephrosis. Renographies were performed as soon as possible after birth, 

Figure 7. Validation of urinary metabolite classifier UPJMetab32 in a separate population. The diagnostic 
value of the UPJMetab32 model was tested in an independent cohort (7 healthy subjects and 17 UPJ patients) 
by a blinded analysis. (A) ROC curve for the UPJMetab32 classifier. (B) Box-whisker plot for classification of 
healthy and UPJ patients in the validation set according to the UPJMetab32 score. **p <  0.005 versus healthy 
subjects. Mann-Whitney test for independent samples.
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generally between week 3 and 6 to establish baseline differential renal function (DMSAscan) and washout pat-
tern (MAG3-scan). Healthy and UPJ obstruction patients were randomly divided into two cohorts: a discov-
ery cohort (n =  49; Table 1 and Supplementary Table S3) and a blinded cohort for validation (n =  24; Table 2 
and Supplementary Table S4). Mann Whitney analysis revealed no significant difference in the age of healthy 
and UPJ obstruction newborns included in both discovery and validation cohorts (p =  0.26). In addition, the 
use of Chi Squared test also revealed no gender bias (p =  0.45). Urine from newborns was collected in the 
morning during 30 min using a sterile pediatric urine collection pouch (B. Braun, Boulogne, France) during 
hospital consultation. Urine from healthy controls was collected from newborns in the maternity hospital and 
at home using the same sterile collection bags and a pair of gloves. Care was taken to not take the first morn-
ing urine. After collection, all urines were frozen within the hour at − 20 °C both in the hospital (dedicated 
− 20 °C freezer in the clinic) and at home. Transport was done using ice blocks in both cases and the samples 
were finally stored at − 80 °C in the laboratory. The UPJ study was performed in accordance with the ethical 
principles in the Declaration of Helsinki and Good Clinical Practice. The study and its experimental protocols 
were approved by the ethics committee of the French Ministry of National Education, Higher Education and 
Research (number DC-2008-452). Written informed consent was obtained from all participants (parents of 
the newborns).

Sample Preparation. A 170 μ l aliquot of urine was diluted with the same volume of a denaturing solu-
tion composed of 2 M urea, 0.0125% NH4OH, 100 mM NaCl and 0.01% SDS. To remove higher molecular 
mass proteins, the sample was ultrafiltered using a Centristat 20 kDa cut-off centrifugal filter device (Satorius, 
Göttingen, Germany) at 2000 ×  g for 45 min at 4 °C. In order to remove urea, electrolytes and SDS, 200 μ 
l of filtrate was applied onto a NAP5 gel filtration column (GE Healthcare Bio Sciences, Uppsala, Sweden), 
washed and then eluted with 700 μ l of 0.01% NH4OH. Finally, all samples were lyophilized in a Savant speedvac 
SVC100H connected to a Virtis 3L Sentry freeze dryer (Fischer Scientific, Illkirch, France). At this step, sam-
ples can be stored at 4 °C until use and re-suspended in HPLC grade water shortly before CE-MS analysis. The 
resuspension volume was adjusted to yield 1 μ g/μ l protein as measured by BCA assay (Pierce Biotechnology, 
Rockford, USA).

CE-MS analysis. CE-MS analyses were performed as previously described11,12,65 using a Beckman 
Coulter Proteome Lab PA800 capillary electrophoresis system (Beckman Coulter, Fullerton, USA) on-line 
coupled to a micrOTOF II MS (Bruker Daltonic, Bremen, Germany). The electro-ionization sprayer (ESI, 
Agilent Technologies, Palo Alto, CA, USA) was grounded, and the ion spray interface potential was set 
between –4 and –4.5 kV. The CE separation buffer contained 20% (v/v) acetonitrile and 250 mM formic acid 
(Sigma-Aldrich) in HPLC-grade water. The CE-system was equipped with a 95 cm (internal diameter: 50 μ m) 
bare fused silica capillary. Two types of CE-ESI-MS interfaces were tested (see results section); either a flatted 
or a tapered and beveled needle surrounding the capillary terminus. Data and MS acquisition methods were 
automatically controlled by the CE via contact-close-relays. Spectra were accumulated every 2 s, over a range 
of m/z 30 to 650.

CE-MS sample preprocessing for stable endogenous metabolites identification. After mass cali-
bration using the measurement of sodium formate salts at the start of each run, the raw MS-data were converted 
into NetCDF format (http://www.unidata.ucar.edu/software/netcdf/) through the Bruker software (DataAnalysis 
version 4.0). The NetCDF files were filtered by excluding spectra corresponding to a migration time less than 
520 or greater than 3650 seconds prior to preprocessing using the Bioconductor package xcms34 as previously 
described25. All the standard xcms pipeline parameters were kept to their defaults apart from steps which was set 
to 3 and bw which was set to 20. In addition, the total number of migration time alignment iterations was set to 5, 
using the LOESS approach of xcms. The resulting molecule features derived from the execution of the xcms pipe-
line (in terms of m/z and migration time pairs) were further filtered for their presence across samples by including 
only those molecule features present in at least 50% of the total samples. The latter ensured the robustness of the 
initial set of molecule intensities which would be later interrogated for the presence of stable (in terms of inten-
sity) molecule features that would serve as a set of CE-MS internal normalization standards.

Stable endogenous metabolites identification. The final filtered set of xcms preprocessed and iden-
tified m/z – migration time pairs was further interrogated for the potential presence of a set of ‘housekeeping’ 
metabolites with stable intensity across pathologies and spanning the whole intensity range. To this end, a sub-
set of ‘rank invariant’ family of normalization algorithms from the DNA microarray literature was applied with 
the purpose of identifying stable molecule features that would represent the ‘invariant set’ as referenced in the 
microarray bibliography66. Specifically, the algorithms described in35 (dChip algorithm)36, (lumi Bioconductor 
package) and37 (GRSN algorithm) were applied and sets of rank invariant metabolite abundances were retrieved. 
However, graphical assessment of the performance of these algorithms (see main text) revealed that the nature 
of CE-MS data prohibited the usage of these algorithms for the identification of a set of internal standards. 
Therefore, the following two strategies were applied:

1. The first strategy is based on the assumption that the majority of identified metabolites do not present 
differential abundance across samples (a similar assumption made for the normalization methods in the 
DNA microarray literature) and as a result, the relationship among different sample abundances is close 
to linear, after xcms preprocessing. Specifically, this approach includes the fitting of a set of Robust Linear 
Regression models38,39, either among all possible sample pairs, or for all samples against a baseline (e.g. the 
median metabolite abundances across samples) and the calculation of each model residuals. The set of stable 

http://www.unidata.ucar.edu/software/netcdf/
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metabolites is iteratively constructed by aggregating those ones whose abundance presented very low residu-
als in each model, implying low divergence from the model and subsequently, among samples.

2. The second strategy does not make any assumptions about the differential abundance distribution of the 
metabolites but requires noise preprocessing, as performed by the xcms pipeline and is based on the geomet-
rical distance of each metabolite abundance vector in the sample space from the identity ‘hyperline’. Specifi-
cally, this approach includes the construction of the identity ‘hyperline’ =

�� ��
Y X, in the n-dimensional sample 

space, where = … = …
�� ��
Y Xy y y x x x( , , , ) ( , , , )n n1 2 1 2 , and n is the number of samples. Then for each 

metabolite abundance vector = …
��
A a a a( , , , )i i i in1 2 , the Euclidean distance di from an equally spaced grid 

distributed along =
�� ��
Y X is calculated. The set of stable metabolites is constructed by aggregating metabolites 

with small di which imply both very high correlation as well as low inter-sample variability.

In both strategies (i) and (ii), the optimal number of metabolites with stable abundances is selected according 
to the normalizing potential of forward selected subsets of metabolites. The Forward Selection approach was 
selected as the number of stable metabolites should be kept to the minimum possible also for later purposes 
(exploration of prognostic or diagnostic values). Specifically, the initial candidate list is constructed by retrieving 
the first 1000 metabolites with the smallest Euclidean distance from the identity hyperline (or with the smallest 
residual value from an RLM) and sorting it in ascending order (of distance or residual value). Then, starting 
from a minimum set S of 10 metabolites, the whole dataset is normalized by fitting a LOESS curve L in this set 
and using it as the normalization reference. In each iteration one member of the stable metabolite candidate list 
is added to S, L is recalculated, the whole dataset is normalized and the following dataset variability metric is 
calculated:

=
∼ ∼

…
∼

= …M MAD X X X x x x( , , , ), where ( , , , )n i i mi1 2 1 2

and xij the normalized abundance of metabolite i in sample j, i =  1, …, m (m the number of metabolites in the 
total dataset), j =  1, …, n (n the number of CE-MS samples). M reflects the total variability of the normalized 
intensity matrix by firstly summarizing each column (sample) by taking its median value and then calculating 
the variability of this summarization, by taking the Median Absolute Deviation (MAD) of the column medians 
distribution. The final number of the stable metabolites is the size of S that minimizes M and has thus the best 
normalizing potential while at the same time being as small as possible.

Processing and normalization of new samples. New CE-MS urine samples are preprocessed up to 
filtering (exclusion of spectra corresponding to a CE-time less than on average 840 [sodium salts] or greater 
than 3000 seconds) and peak-picking (no migration time alignment) with xcms as described above. Then, the 
masses of the new samples are matched against the reference dataset (consisting of 75 disease and control runs as 
described above) with a tolerance of 0.01 mass units, and the molecule features that do not match the reference 
are excluded from further analysis. The migration time alignment of the new samples is performed with an iter-
ative procedure, similarly to the one followed by the xcms package but using the urine specific internal standards 
instead of the ones that are identified for independent datasets by xcms. Specifically, the migration times of the 
internal standards subset which is specific to the new sample (identified as described above) and span the whole 
range of the new sample’s migration times, are used as seeds for the creation of migration time clusters using 
k-means clustering with the k parameter equal to the number of matching internal standards. Then, a LOESS 
curve is fitted to each cluster and used as a reference for the alignment of migration times in each cluster. The 
intensity normalization of the new samples is performed as described above (‘stable endogenous metabolites 
identification’ section), using the proper subset of the internal standards set according to the aforementioned 
mass match procedure.

Metabolite features annotation. The final set was matched against HMDB67, ChEBI68 and KEGG69 for 
known molecules and annotated for potential chemical formulas using the CAMERA Bioconductor package70. 
From the two aforementioned methods, RLM and identity hyperline, the latter was selected as it was found to 
yield more robust results in terms of metabolite intensity coverage (S contained features spanning a sufficient 
range of intensities), normalization power, cardinality of S and its application did not require any assumptions 
for a baseline.

Statistical analysis. Biomarker identification and modelling. For the identification of potential metabolite 
biomarkers, the normalized levels of urinary metabolite features were compared between the healthy and UPJ 
obstruction patient groups. Only molecule features that were detected with a minimal frequency of 75% in every 
of the discovery groups were investigated for statistical analysis. Missing values (recorded as “Not a Number” 
[NaN]) from the discovery cohort were replaced by the average of the metabolite intensities found in the corre-
sponding group (UPJ obstruction patients or healthy newborns). However, in the validation cohort where the 
belonging of the sample is unknown, we used the mean abundance of all patients from discovery set as impu-
tation methods for missing values. Of note, zero values were considered as missing values. P-values were calcu-
lated for the comparison between healthy and UPJ obstruction patient groups using the Wilcoxon test followed 
by adjustment for multiple testing using the method described by Benjamini and Hochberg46. Only metabolite 
features with a corrected p <  0.05 were considered significant. Using an in-house developed tool, we next used a 
support vector machine (SVM)-based approach (SVM package e1071 of R)71 to generate a prognostic biomarker 
classifier based on 32 biomarkers associated with UPJ obstruction. The parameters of the radial kernel function 
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(type C) for the multi-dimensional hyperplane were: cost parameter (C) of 1 and kernel width (γ ) of 0.03125. 
Sensitivity and specificity were calculated using receiver operating characteristic (ROC) plots via the software R.

Comparison of svm scores. Statistical analyses were performed using GraphPad Prism 5.0 for Windows 
(GraphPad Software Inc) and comparisons between two groups were assessed using a Mann-Whitney test for 
independent samples. p <  0.05 was considered as statistically significant.
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