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Neuronal Activity in Rat Barrel Cortex
Underlying Texture Discrimination
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Rats and mice palpate objects with their whiskers to generate tactile sensations. This form of active sensing endows
the animals with the capacity for fast and accurate texture discrimination. The present work is aimed at understanding
the nature of the underlying cortical signals. We recorded neuronal activity from barrel cortex while rats used their
whiskers to discriminate between rough and smooth textures. On whisker contact with either texture, firing rate
increased by a factor of two to ten. Average firing rate was significantly higher for rough than for smooth textures, and
we therefore propose firing rate as the fundamental coding mechanism. The rat, however, cannot take an average
across trials, but must make an immediate decision using the signals generated on each trial. To estimate single-trial
signals, we calculated the mutual information between stimulus and firing rate in the time window leading to the rat’s
observed choice. Activity during the last 75 ms before choice transmitted the most informative signal; in this window,
neuronal clusters carried, on average, 0.03 bits of information about the stimulus on trials in which the rat’s behavioral
response was correct. To understand how cortical activity guides behavior, we examined responses in incorrect trials
and found that, in contrast to correct trials, neuronal firing rate was higher for smooth than for rough textures.
Analysis of high-speed films suggested that the inappropriate signal on incorrect trials was due, at least in part, to
nonoptimal whisker contact. In conclusion, these data suggest that barrel cortex firing rate on each trial leads directly
to the animal’s judgment of texture.
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Introduction illuminated only by infrared light, thereby eliminating
potential visual cues. To discriminate textures, rats perched

One aim in studies of sensory coding is to quantify how
neuronal activity represents objects in the external world. In
rats, as in humans [1], tactile exploration entails the interplay

at the edge of an elevated platform, extending their whiskers
across a gap to touch a textured plate mounted on a second

platform. Gap length, around 15 c¢m, was great enough that
of motor output and sensory input: Rats palpate objects by

sweeping their whiskers in a rhythmic forward-backward
cycle [2]. This active sensing gives rise to a number of well-
developed tactile capacities [3-6], including the sense of

on nearly every trial, they could reach the textured surface
only with the long whiskers of the snout—the macrovibrissae.
Rats were trained to execute different actions according to

texture [4]. The aim of the present work was to explore the
neuronal coding of textures in rats while they perform a
discrimination task.

The signals from each whisker reach layer IV “barrels” of
primary somatosensory cortex [7] after synaptic relays
through the brain stem and thalamus. In the barrel cortex
of anesthetized rats, the whisker vibrations associated with
different textures evoke cortical responses that differ
according to texture—coarser textures evoke more spikes
per sweep [8,9]. By extending this line of investigation to
awake rats, we now ask which features of sensory coding are
conserved during active exploration of the environment,
when stimuli are not imposed on the receptors, but are
generated by the animal through its own motor program.
Because the behaving animal makes choices based on the
signals carried by its sensory neurons, we can ask how the
neuronal code leads to the animal’s decisions.

Results

Texture Discrimination Task and Cortical Spike Trains
The purpose of this study was to identify the neuronal

representation of texture in the barrel cortex of actively

behaving rats. Experiments were performed in an arena
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the texture they contacted—smooth or rough. In the “I-arm
task” (Figure 1A), rats had to withdraw and turn to a water
spout. The texture identity indicated whether a left or right
turn was correct. In the “3-arm task” (Figure 1B), they had to
either cross to the opposite platform (if the contacted texture
signaled the presence of the reward on that platform), or
withdraw and proceed to a second gap at which the reward
texture was present. In this task, we examined behavioral and
neuronal data only from the first gap encountered on each
trial. In both tasks, rats received a water reward when they
performed the correct action. Each rat was trained only in
one task (l-arm or 3-arm), and the learned association was
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Author Summary

How cortical activity contributes to sensation is among biology’s
oldest problems. We studied the nature of the cortical representa-
tions underlying judgments of texture in rats. The rodent whisker
sensory system is particularly intriguing because it is “active”: the
animal generates sensory signals by palpating objects through self-
controlled whisker motion (just as we move our fingertips along
surfaces to measure their tactile features). Rats touched rough or
smooth textures with their whiskers and turned left or right for a
reward according to the texture identity. Monitoring behavior with
high-speed videography, we have found that on trials when the rat
correctly identified the stimulus, the firing rate of cortical neurons
varies during a window of a few hundred milliseconds before
making a decision according to the contacted texture: high for
rough and lower for smooth. This firing-rate code is reversed on
error trials (lower for rough than smooth). So when cortical neurons
report the wrong stimulus, the rat, “feeling” the signals of its
cortical neurons, fails to identify the stimulus. We conclude that
barrel cortex firing rate on each trial predicts the animal’s judgment
of texture. This experiment begins to elucidate which features of
cortical activity underlie the animal’s capacity for tactile sensory
discrimination.

fixed over time for each rat (e.g., in the 1-arm task, rough—
turn left, smooth—turn right).

One typical trial in the 1-arm task is illustrated in Figure 2.
To constrain the rat to use the whiskers providing input to
the recorded cortical neurons, we had clipped most whiskers
on both sides of the snout except for the C row (see Materials
and Methods for details). We monitored rat behavior by
filming the head and whiskers [10] with a pair of high-speed
cameras (1,000 frames/s) as the rat probed the texture (Figure
2A). Top- and side-view images show crucial behavioral
events (Figure 2B; complete films can be viewed in Videos S1,
S2, and S3). At the outset, the rat approached the discrim-
inandum (first frame), then it touched the plate with whisker
C2 (second frame). Next, the whiskers retracted while the
snout remained in the forward position (third frame).
Whisker C2 made a second touch (fourth frame), and finally
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Figure 1. Texture Discrimination Tasks
Trials sketched from camera images.
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Cortical Representation of Texture

the rat withdrew to collect a water reward from a drinking
spout (last frame).

During the session illustrated above, we recorded the
activity of a neuronal cluster from barrel cortex (electrode
depth: 700 pm; principal whisker: C2). Below the film images,
the spike train on the corresponding trial is illustrated (Figure
2C). The instant when the rat made the first detectable
movement signaling identification of the texture (i.e., snout
withdrawal) was set to 0 ms and aligned to the gray vertical
line. This is referred to as the moment of choice. Times of the
film frames are projected down to the spike train, and time
windows of whisker C2 touch are highlighted by red frames.

Spike trains collected from the same neuronal cluster in all
trials of this session with discernible touches—13 rough trials
(upper panel) and eight smooth trials (lower panel)—are
shown in Figure 3. Trial 20 (green box) was illustrated in
Figure 2. The moment of choice on every trial was set to 0 ms
and aligned to the gray vertical line. Whisker C2 touch times
are highlighted by red frames, and it is evident that firing rate
increased when the whisker touched the plate.

Whisker Contact with Textures

We analyzed the high-speed films to extract the times of
whisker contact with the plate. For each session, we
monitored those whiskers that were used by the rat to extract
texture and that were in the receptive field of responsive
neuronal clusters. The full dataset of whisker touches comes
from two rats (rat 1, 3-arm task; and rat 16, 1-arm task) and
consists of 20 sessions containing 701 trials, 402 of which had
touches with clear onset and offset; the total number of
touches was 1,210, from whiskers C1, C2, D2, and D3, where
the caudal whiskers of either the C or the D row were present
in a given session. Figure 4 summarizes the findings: On a
typical trial, the rat made 1-3 touches of 24-62-ms duration
each before making its choice, summating to a total touch
time per whisker of 88-224 ms; the time from first whisker
contact to the choice action was 98-330 ms (interquartile
ranges). We then asked whether any of these parameters
differed according to the texture presented to the animals.
Statistical tests (Mann-Whitney-Wilcoxon tests, p > 0.05)

(iii) (iv)

I

Rough

(A) The 1-arm task. (i) The rat perched on the edge of the platform and extended to touch the rough texture (gray rectangle) with its whiskers. (ii)
Having identified the texture, the rat turned to the right drinking spout and received a water reward.

(B) The 3-arm task. (i) The rat began by crossing from the start arm to the central platform, (ii) touched the smooth-textured discriminandum with its
whiskers, (iii) rejected the first texture and proceeded to touch the rough-textured discriminandum, and (iv) crossed the gap to collect a water reward at

the distant part of the arm.
doi:10.1371/journal.pbio.0050305.g001
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Cortical Representation of Texture
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Figure 2. Behavior and Neuronal Activity in a Typical Trial
(A) Spatial arrangement of the two high-speed cameras.

(B) Images from high-speed films taken from two different views (top row—top view, bottom row—side view, see [A] for positions; frame pairs of the
upper and lower rows are synchronous). Whisker C2 is traced. Although in the side view, the rat’s snout seemed to touch the texture, the corresponding
top view frames show that this was not the case. Although on a small proportion of trials, rats were close enough that microvibrissae contact could not
be excluded, this happened too rarely to explain the animals’ high performance.

(C) Spikes fired by a neuronal cluster whose receptive field was centered o

n whisker C2. Estimated moment of choice is given by gray vertical line at 0 ms.

Contacts of the selected whisker before decision are marked as red frames. Note the increase in firing rate during contact. Contacts after choice are not
highlighted, and the corresponding spikes were not considered in the analysis. Shown: rat 16, session 2006-07-23, cluster #58, trial 20, smooth texture.

doi:10.1371/journal.pbio.0050305.g002

showed that rats exhibited the same distributions of contact
parameters for rough and smooth, suggesting that motor
output was not modulated by the encountered texture.

Texture Coding during Whisker Contact

During the texture discrimination sessions described
above, we obtained 54 neuronal recordings from barrel
cortex (five of them judged as single neurons according to
conventional measures and the remainder multiunit clusters).
There were, on average, 23 analyzed trials per cluster.

To find out how firing rate was modulated by contact with the
textured plate, we first define a cluster’s contact index C as the
touch-evoked firing rate, averaged across rough and smooth
trials, normalized to the whole session’s mean firing rate:

iE). PLos Biology | www.plosbiology.org

R+S
c=fE2 (1)

2-A

where R and § are the mean firing rates across all rough and
smooth touches, respectively, and A is the session’s average
firing rate (including intertrial periods). During contact,
spikes were counted from 4 ms after touch onset to 4 ms after
touch offset, in line with the response latency we observed in
later analyses (see below). For the neuronal cluster of Figure
3, C=8.1.

Further, we define a cluster’s texture index 7T as the firing
rate difference between rough and smooth trials normalized
to the sum of those two rates:
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Figure 3. Activity of the Same Neuronal Cluster in the Course of a
Session

Trial 20, depicted in Figure 2, is highlighted by a green box. Spike times
are relative to moment of choice (gray line). Contacts of whisker C2
occurring before choice are marked by red frames. Note the increase in
firing rate during contact. On missing trial numbers, whisker contact
times could not be defined.

doi:10.1371/journal.pbio.0050305.g003

R-S
T=k+s @
A value of T between —1 and 0 signifies a higher firing rate
during smooth touches, whereas a value between 0 and 1
signifies a higher firing rate during rough touches. For the
same neuronal cluster, spiking density was higher during
contacts with the rough texture than with smooth, reflected
by a value of 7= 0.050.

The distributions of C and T indices for all clusters are
shown in Figure 5A and 5B, respectively. The fact that all C
values are greater than one indicates that neuronal clusters
encoded contact with the texture plate, whether rough or
smooth, by an increase in firing rate. If there were single
neurons inhibited by contact, the suppression may have been
disguised by the activity of other units in the multineuron
cluster. However, among the studied single neurons, none was
inhibited by contact. The mean value of C was 3.81. Contact
coding could serve many functions, such as providing a signal
to support object localization [5,11,12].

Beyond this, the neuronal clusters encoded the identity of
the plate by a differential firing rate for rough and smooth.
The majority of clusters produced a higher firing rate for
rough than for smooth contacts (T distribution skewed to
positive values). The mean value of T was 0.051, a value
significantly different from what would be expected if texture

iE). PLos Biology | www.plosbiology.org
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Figure 4. Whisker Touch Statistics

For the whiskers of interest, contact onset and offset times were
measured for all touches ending prior to the moment of choice.

(A) Number of touches per trial per whisker (red—rough texture; blue—
smooth texture)

(B) Individual touch durations.

(C) Summated duration of all touches of a single whisker per trial.

(D) Time from first contact of the whisker of interest to the rat’s choice.
Values are consistent with a reported range of 150 to 500 ms in a
different texture discrimination task [34].
doi:10.1371/journal.pbio.0050305.9g004

had no influence on firing rate (p < 0.005, permutation test).
This value of T corresponds to a mean difference between
rough and smooth firing rates of 10%.

Considering only the single neurons among these data, we
found similar texture coding (7 = 0.085, significantly greater
than chance, p = 0.008). Whereas the single-unit session-
average firing rates spanned a wide range (4.6-43 spikes/s),
they all reacted to whisker contact with a robust increase in
firing rate: their contact indices C all lay between 2.6 and 3.1
(see green points in Figure 5C).

The present finding that neurons encode surface coarse-
ness by firing rate, and that the rate is higher for rough rather
than smooth textures, confirms results from studies using
artificial whisking on textures in anesthetized rats [8,9].

The correlation between C and T indices within these 54
clusters (Figure 5C) was close to zero and insignificant.

Response dynamics. To explore the temporal evolution of
signals in the behaving rat, we built a peri-contact time
histogram (PCTH) by aligning spikes to the instant of whisker
contact with the plate, judged from high-speed films (Figure
6A). In order to show all neuronal clusters together, firing
rates were normalized by dividing by each cluster’s whole-
session average rate. The fact that firing rate just prior to
contact rested at the normalized value of one indicates that
neurons assumed baseline values of firing rate in the interval
before and between whisker contacts. Responses began 4 ms
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(A) Distribution of the contact index, C. All clusters have C > 1, equivalent to an increase in firing rate on contact.
(B) Distribution of texture index, T. Most clusters have T > 0, equivalent to a higher firing rate for rough than for smooth contact.
(C) Correlation between contact index and texture index across clusters. The green points are single neurons.

doi:10.1371/journal.pbio.0050305.g005

after onset of contact (Figure 6B; the firing rate in the bin at 4
ms was higher than all 1-ms bins from —50 to 0 ms), which, in
the limits of the resolution of our analyses (1 ms), is consistent
with a value of 5 ms for layer 4 neurons reported in
anesthetized rats [13]. This indicates that response onset
dynamics in layer 4 are similar in anaesthetized and awake
animals. Responses showed a marked onset peak followed by
a gradual falloff after about 11 ms.

With what time course did the texture-specific firing-rate
difference develop? To answer this, we plotted touch-evoked
activity in two separate traces corresponding to rough and
smooth touches (Figure 6C). This revealed no texture-related
difference during the initial, sharply rising response phase (4-
11 ms, marked “early” in Figure 6C: T = —0.006, p = 0.6,
permutation test). Shortly thereafter, a greater firing rate for
rough touches (red trace) compared to smooth touches (blue
trace) became evident (from 11 ms to the end, marked “late”:
T=10.061, p = 0.003). Integrated across the whole touch (from
4 ms to the end), the firing-rate difference between rough and
smooth was significant (7" = 0.051, p = 0.007; permutation
tests), as shown previously in Figure 5B.

Texture Coding Preceding Choice
In the previous section, neuronal activity precisely aligned
to contact times revealed a higher firing rate during rough
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Figure 6. Dynamics of Neuronal Response During Whisker Contact

touches than smooth. In the next analysis, we suppose that the
rats integrated spikes without exact knowledge of specific
touch times. We ask whether the posited firing rate code
could support discrimination between the two textures even
in the absence of touch-time knowledge. This choice-
triggered analysis aligns trials at the moment of choice and
explores any texture-specific signals present in neuronal
firing rate in the preceding interval.

The analysis included three animals—rats 1 and 16 from
above, plus a third animal, rat 10. The latter had all its
whiskers intact, which made the detection of individual
whisker touches impractical. Therefore, it was excluded from
contact-time analysis but was suitable for choice-triggered
analysis. For these three rats, based upon 77 neuronal clusters
(eight of them single neurons) and 868 trials, Figure 7 shows
the average normalized firing rate around the moment of
choice. On correct trials (solid lines), the firing rates on rough
and smooth trials diverged about 200 ms before the moment
of choice, with a higher firing rate on rough trials.

The presence of a texture signal in barrel cortex, averaged
across correct trials, leaves open the question of whether the
rats used the signal to guide their behavior. One strategy to
address this question is to ask whether the variance in sensory
signals was connected in any way to the decision expressed by
the animal. Did the representation of texture differ on
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Spike times were aligned to the onset of each whisker contact; onset time was set to 0 ms. Touches had a wide range of durations (see Figures 3 and 4)
so that response values at progressively later times were gathered from progressively fewer contacts; only 30% lasted longer than 80 ms.
(A) Quartile plot of firing rates. The interquartile range (25% to 75% of neuronal clusters) is shaded gray; the black line is the mean. All clusters were

normalized by dividing by their average rates across the whole session.
(B) Magnified view of mean response onset.

(C) Response dynamics separated by texture.
doi:10.1371/journal.pbio.0050305.g006
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Figure 7. Average Normalized Firing Rate as a Function of Texture

Firing rates were aligned to the moment of choice (0 ms) and binned in a
sliding 250-ms window, centered on each data point. Each cluster’s firing
rates were divided by the recording session mean rate (note the value of
1.0 before whisker contact, at —-600 ms), then the average was calculated
across all clusters. The unmasked area, from —200 to 0 ms, shows the
strongest texture coding before the rat’s choice. Texture-related differ-
ences after the rat’s choice were a consequence of the different actions
rats performed in correspondence with each texture (e.g., turn left or
turn right) and were not further analyzed.
doi:10.1371/journal.pbio.0050305.9007

incorrect trials? The dashed lines in Figure 7 show that the
relation of firing rate to texture reversed on incorrect trials:
smooth greater than rough.

In order to quantify the difference in response to the two
discriminanda, we calculated a texture index 7T analogous to
the one used above for the touch-based analysis:

= R=S (3)

R+S
where R and § are the average firing rates for rough and
smooth trials, respectively, in a window reaching from 0 ms
(choice time) back to ¢t ms prior to moment of choice. Figure
8A, upper panel, shows the average texture index, on correct
trials, as a function of the time window ¢, averaged across
multiunit clusters and single units. The index is significantly
greater (p < 0.05 for most time windows) than what would be
expected if texture had no influence on firing rate (Figure 8A,
lower panel).

For time windows around —75 ms, T = 0.06, a value close to
the touch-delimited texture index (0.051; see “Texture
Coding during Whisker Contact”). As few contacts are longer
than 75 ms (see Figure 4), the 75-ms time window would be
expected to approximately capture the last touch before the
animal’s choice.

For T in Figure 8A, we considered only correct trials, but
we then examined whether neuronal coding differed in
incorrect trials. Figure 7 suggests a difference between

i), PLoS Biology | www.plosbiology.org
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Figure 8. Texture Coding Before Choice

(A) Upper panel: texture index T calculated for backwards-growing
windows from 0 ms (moment of choice) to —t, averaged across correct
trials only; Black trace: average across all clusters; green trace: single
neurons only; Lower panel: significance of T > 0 for all clusters. The
dashed line shows the 5% limit.

(B) Texture index T on correct trials only (black trace, carried over from
[A]) versus random trials (gray trace); Lower panel: significance of the
difference between correct and random trials.
doi:10.1371/journal.pbio.0050305.g008

correct and incorrect trials, but to statistically show its
significance, it was inappropriate to compare their values
directly; the set of incorrect trials in a given session
sometimes included only one stimulus category, rough or
smooth, making it impossible to calculate any statistic based
on their difference. Therefore, we chose to first calculate T
for correct trials only and compare it to the index calculated
on a random subset of trials containing a mix of correct and
incorrect trials; the fully correct and random subsets
contained the same number of trials. Figure 8B, upper panel,
shows that the texture index 7 on correct trials was higher
than on random trials, meaning that on incorrect trials, the
neuronal clusters carried a degraded texture signal. The
difference was significant in time windows equal to or longer
than 75 ms (Figure 8B, lower panel; permutation test).
Texture Coding in Population Measures. Rat 10, as
mentioned above, had all whiskers intact. This allowed the
rat to use a different set of whiskers from trial to trial.
Responses in a single barrel would be expected to transmit an
inconsistent signal because on a given trial, the principal
whisker of the neuronal cluster of interest might or might not
palpate the surface. In other words, whereas the texture
signal in whisker-trimmed rats would be “channeled”
through the same small set of cortical barrels on each trial,
in rat 10, the signal would be dispersed across a large and
varying set of barrels. Consistent with this reasoning, the
texture index 7T was not significant when rat 10 was
considered alone (unpublished data). However, the above
interpretation suggested that a measure of broader popula-
tion activity might uncover a clearer texture-related signal.

November 2007 | Volume 5 | Issue 11 | €305



A Average LFP C  Rough vs Smooth
g — Correct
s a Random
S 5
o ||= Rough =~
% [|— smooth

0
-1500 -500 0 500 -200 -100 0
B Time to Choice [ms]
o)
g 0 0.4
o ©
> >

0.2

& &

LTINS
-1000 0 1000 -200 -100 0

Time to First Contact [ms] Integrated Time

to Choice [ms]

Figure 9. Texture Coding in Local Field Potential (LFP)

(A) LFP curves aligned on moment of choice and averaged across trials.
(B) LFP curves aligned on moment of first touch of any whisker.

(C) Upper panel: LFP Texture Index T,g» on correct trials only compared
to random trials, integrated across backwards-growing windows from
the moment of choice to —t. Lower panel: significance of T,z being
greater than chance on correct trials (black trace) and significance of T;zp
being greater on correct trials compared to random trials (gray trace). For
both, p < 0.05 for t =—75 ms.

doi:10.1371/journal.pbio.0050305.9g009

For this reason, we recorded a local field potential (LFP) from
barrel C2/3 at a depth of 700 to 850 pm in this rat, thereby
sampling the activity of many neurons across a wide territory.
Previous studies [14] have estimated the diameter of the
catchment volume to be around 1 mm, which could sample
from many of the barrels surrounding the recording site.

Figure 9A shows LFP curves from six sessions of rat 10, with
a total of 493 trials. The voltage-traces were resampled at 20
Hz, averaged across trials, and aligned to the moment of
choice. The sharp peak around the moment of choice
indicates that the LFP signal represented activity relevant
to the task for either texture. Similarly, LFP traces aligned on
first contact (of any whisker) showed a clear contact response
(Figure 9B; data from one session only, 97 trials) consistent
with previous reports [15].

Figure 9A suggests that, for a time window of 100 ms before
choice, the rough trace was above the smooth trace.

To quantify this difference, we defined an LFP texture
index Ty pp similar to the spiking texture index 7 used above:

0
Tirp = / LFP,(t) — LFP(1)dt (4)
—t
where LFP, and LFP; are the average LFP traces, resampled at
250 Hz, on rough and smooth trials, and ¢ = 0 the moment of
choice.

In Figure 9C, top panel, the black trace shows T;pp for
correct trials. It is greater than zero and significantly greater
than expected by chance for time windows from 0 to around
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Figure 10. Texture Information Carried by Firing Rate

Upper panel: information about the two stimuli transmitted by firing
rate, averaged across clusters, using backwards-growing windows as in
Figure 8A, for correct only and random trials. Lower panel: significance of
the information on correct trials being greater than chance (black trace)
and significance of the information on correct trials being greater than
on random trials (gray trace); p < 0.05 for time windows from —75 to 0
ms. The dashed line shows the 5% limit.
doi:10.1371/journal.pbio.0050305.9g010

—75 ms (Figure 9C, bottom panel). Thus, the LFP traces
differed significantly between rough and smooth trials.

The gray trace in Figure 9C, top panel, shows T;zp for a
random subset of trials, including incorrect ones. Ty zp was
lower on random trials than on correct trials, and the
difference becomes significant for time windows from choice
to around —75 ms.

Texture information. Averaging across trials allowed us to
identify firing rate as a clear correlate of the texture
discriminanda on correct trials and to show that on trials
when the rat made an error, firing rate deviated from the
cardinal “correct” values. Average LFP findings in rat 10 were
analogous. The rat, however, cannot average firing rates
across trials, but must make an immediate decision using the
signals generated on each single trial. In this final section, we
examine single-trial signals.

Shannon’s Mutual Information [16,17], hereafter referred
to simply as information, can be used to measure how much a
neural response reports about a stimulus, on a single trial
[18].

Because rats showed a clear difference in firing rate
between rough and smooth trials in the analysis of Figure 8,
we applied information analysis to spike rates integrated
across the same backwards-growing windows. Information
was calculated for each cluster individually, classifying the
spike count on each trial into one of two categories: greater
or less than median.

In Figure 10A, upper panel, the black trace shows the
information carried about the stimulus on correct trials,
averaged across all neuronal clusters. The information was
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Table 1. Whisker Contact Fraction f

Trial Correct Incorrect
Rough 0.52 + 0.04 0.34 + 0.06
Smooth 0.50 = 0.04 0.47 = 0.09

Intervals are standard error of the mean.
doi:10.1371/journal.pbio.0050305.t001

significantly greater than chance (p < 0.05 around —75 ms, see
lower panel; permutation test). The gray trace shows the
information on random trials, which was consistently lower,
and the correct-random difference was significant around
—75 ms (permutation test).

The peak amount of information was reached for a time
window from —75 to 0 ms, where 0 ms was the observed
moment of choice. In this window, the average multiunit
cluster’s spike count carried 0.03 bits of information about
the stimuli—3% of the information the rat would require in
order to perfectly identify the stimulus (two stimuli corre-
spond to 1-bit entropy). When calculated using all trials,
including those with incorrect rat choices, the maximum
information was lower, 0.021 bits (significantly greater than
chance, p < 0.05, permutation test). However, the informa-
tion about the stimulus extracted by the rat, estimated by the
mutual information between the stimulus and the rat’s
choice, was 0.46 bits (88% correct trials). Thus, the informa-
tion carried by the average neuronal cluster was about 0.021/
0.46 (=4.6%) of the information actually used by the rat.

To summarize, neuronal clusters carried significant single-
trial texture information by firing rate, and this information
was degraded when incorrect trials were included in the
analysis, in line with the collapse of the texture index on
random trials (Figure 8). This suggests that the recorded
neuronal signals were part of the flow of information leading
to the rat’s decision.

Origin of Degraded Signal on Incorrect Trials

In all choice-triggered analyses, there was a significant
correct-incorrect difference, as revealed by the correct
versus random statistics. The spiking texture index T,
Shannon’s information calculated on these same spikes, and
the LFP, all showed a degradation of the rough/smooth
distinction on incorrect trials (Figures 8, 9, and 10).

In all the measures of touch-evoked spiking reported in
Figures 5 and 6, no significant difference existed between
correct and incorrect trials. In other words, on incorrect
trials, whisker touch elicited the same rough and smooth
firing rates as on correct trials (unpublished data). However,
examination of firing rates aligned to the animal’s choice,
rather than to touch times, showed an inversion of the
texture-related firing-rate difference on incorrect trials, with
more spikes on smooth trials than on rough trials (Figure 8).
As the touch-evoked firing rate was not altered on incorrect
trials, what caused the inversion of choice-aligned firing rates?

We hypothesized that a change in contact duration and/or
number of whisker contacts was the determining factor. To
test this, we computed the contact fraction f, defined as the
cumulative duration of all whisker contacts during a 75-ms
prechoice window, divided by the duration of that window. A

iE). PLos Biology | www.plosbiology.org

Cortical Representation of Texture

value of zero means no touch, and n whiskers touching for a
fraction x of the whole duration yield a value of nx. Table 1
shows average values for rough, smooth, correct, and
incorrect trials.

Although for smooth trials, there was no significant
difference between correct and incorrect trials (p = 0.46),
for rough trials, the touch fraction was significantly reduced
on incorrect trials (p < 0.05, permutation test). This matches
the findings of Figure 7, where on rough trials, the firing rate
was substantially lower on incorrect trials compared to
correct trials, whereas on smooth trials, there was no striking
difference. Thus, it seems, when the rats mistook a rough
texture for a smooth one, they did so by “decoding” a
mistakenly low firing rate in barrel cortex, which in turn was
a consequence of missed whisker contacts.

Discussion

Neuronal Signals Representing Texture

We trained rats to make texture discriminations with their
long facial vibrissae and investigated how barrel cortex
neuronal clusters carried the sensory signal. Rats perched at
the edge of an elevated platform to project their whiskers
across a gap and touch a textured surface mounted on a
second platform [4,19]. To receive a reward, they had to make
a choice dictated by the identity of the texture, rough or
smooth.

On a typical trial, the rat made 1-3 touches of 24-62-ms
duration each (interquartile ranges) before making its choice.
The first analysis was based on barrel cortex activity aligned
to these precise whisker contact times. Neuronal clusters
showed a sharp rise in firing rate whenever a whisker in their
receptive field contacted the textured plate, with a latency of
about 4 ms. Contact responses are consistent with previous
studies reporting responses to active touch in terms of spikes
[15,20] and membrane potential [12,21]. Whereas the early
contact response showed no sensitivity to texture, a texture-
specific difference in firing rate emerged around 11 ms after
response onset, with a higher rate for rough textures.

Thus, firing rates during contact discriminated the two
textures; but rats may not have precise knowledge of whisker
contact times. Is firing rate a plausible code for texture in the
absence of such knowledge? To answer this, our second
analysis determined whether firing rate in the period leading
up to the rat’s observed choice distinguished the two textures
even with touch times unmarked. In practice, we measured
firing rate in a window growing backwards in time from the
moment of choice for up to 200 ms. Across this window—and
especially during the 75-ms window preceding the animal’s
choice—firing rates were higher on rough than on smooth
trials, confirming this as a valid coding mechanism whether
or not the rat has access to exact touch-time information.

In this choice-triggered analysis, we quantified the texture
information transmitted by firing rate using Shannon’s
Mutual Information [16,17]. The average neuronal cluster
carried 0.03 bits, 3% of the information (1 bit) necessary to
provide full knowledge of stimulus identity. In relation to the
knowledge of stimulus identity expressed by the rats’
behavior (0.46 bits), the average neuronal cluster carried
4.6% of information.

From results obtained in anesthetized rats [8,9], we
expected that roughness would be encoded by firing rate in
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the awake, behaving animal as well; roughness coding by
firing rate has also been suggested in primates [22-24]. In
particular, we predicted a higher firing rate during whisker
contact with the rough surface. The current results match
that prediction and show that the information carried by
firing rates is significant. Additional information may be
available from spike patterns and correlations among
neurons [9,25-27], and this supplementary coding mechanism
could be particularly important in supporting discrimination
between textures that are more similar in coarseness than the
rough versus smooth stimulus pair used here [4].

The measured texture-related response difference in
multiunit activity was more reliable in rats that had all but
a few whiskers trimmed (rats 1 and 16). On the other hand, in
a rat whose full whisker array was left intact, the texture
difference was highly significant in the LFP (rat 10). In other
sensory systems, the cortical LFP has been found to reflect
activity distributed across a spatially wider territory as
compared to spiking activity. For instance, in cat auditory
cortex, receptive fields measured by LFP signals were twice as
wide as those measured by spiking activity [28]; similarly, in
monkey striate cortex, the spatial decay constant of an LFP
was 0.5 mm [14], compared to 0.05 mm for multiunit spiking
activity [29]. The difference in spatial sampling could explain
the apparent discrepancy between LFP and neuronal clusters
in our data. Possessing many vibrissae, rat 10 touched the
texture with combinations of whiskers that, on many trials,
did not include the whisker projecting to the barrel in which
the electrode was positioned. Whereas the neuronal cluster
activity on such trials would not contain any texture signals,
the LFP could pick up activity from neighboring barrels
whose whiskers did touch.

For the LFP as well as for the multiunit spike data, the most
reliable texture-related signal was found for a time window of
only 75 ms preceding choice; this window length would
typically contain the last whisker contact before the
execution of the choice. As time windows reached progres-
sively farther back, the trial-to-trial variability in the number
of touches may have acted as noise, masking the texture-
related difference. An alternative interpretation is that the
large amount of information contained in this final interval is
exactly what led the rats to make their choice.

From Whiskers to Cortex

A complete understanding of texture coding will require a
detailed analysis of how the sense organ interacts with
different surfaces. In earlier work, we noted that movement
of a whisker across a given texture gave rise to a vibration at
the whisker base with a “kinetic signature” characteristic of
the contacted surface [8,30]. Textures of similar coarseness
induced kinetic signatures distinct from each other by the
temporal pattern of high-velocity events, whereas textures of
differing coarseness, like those utilized here, induced kinetic
signatures distinguished by total energy. In the trigeminal
ganglion and barrel cortex, the temporal pattern of kinetic
events was translated into a temporally aligned pattern of
spikes, whereas the energy of whisker vibration was translated
into the neuronal firing rate [9]. The power spectrum of
multifiber discharge from the vibrissal sensory nerve in
anesthetized rats also shows texture-specific features [31]. By
temporal correlation techniques, we also determined that
texture signals were relayed rapidly from subcortical struc-
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tures to barrel cortex, as opposed to emerging more slowly
from within intracortical circuits (Figure 3C of [9]).

Whisker resonance has been proposed as a texture
discrimination mechanism; the amplitude of oscillation could
vary according to the relation between a texture’s spatial
features and the whisker mechanical properties [32]. Our
analysis of whisker movement focused on the onset and offset
of contact with the texture and did not attempt to measure
whisker vibration. Thus, our data neither confirm nor refute
the resonance hypothesis. However, during examination of
high-speed films, we did not observe vibrations suggesting
whisker resonance. Identifying exactly which kinetic features
cause a texture-specific difference in firing rate is a question
of current interest.

Barrel cortex is critical to texture discrimination. After rats
were trained to discriminate between sandpapers with grain
sizes of 0.4 mm in diameter (200 grains/ch) and 2 mm in
diameter (25 grains/cm2), their performance was abolished by
a lesion of barrel cortex [33]. The deficit was selective to
whisker capacities, since the rats with lesions adopted a
strategy of using their forepaw to touch and identify the
textures. Although barrel cortex is known to be an essential
processing step in texture judgment, the underlying neuronal
representation has been difficult to uncover in behaving rats.
When rats were trained to discriminate between a smooth
surface and one containing grooves of width, depth, and
spacing of 250 um, barrel cortical activity recorded during
texture contact showed no robust correlate of texture,
measured either by overall firing rates or temporal discharge
patterns [34]. This negative finding can be reconciled with
our results by noting that the rat described in that study had
all whiskers intact (like our “LFP rat”), and that precise
whisker contact information was not available due to the low
time resolution of the video analysis (60 frames/s as opposed
to 1,000 frames/s in the present experiments).

Active Tactile Sensation

It seems clear from our results that the quantity of texture
information carried by neuronal cluster firing rate in the
behaving animal is smaller than that in anesthetized animals
[8,9]. In anesthetized rats, cortical clusters on average carried,
for smooth surface versus P100 sandpaper (which may be
likened to the smooth and rough discriminanda used in the
present experiments; however, it should be noted that the
rough surface in the present experiments was a mold of P100
and was not as coarse as the surface from which it was
pressed), about 0.25 bits of information per 125-ms whisk
(Figure 8 in [9]). This is eight times greater than the 0.03 bits,
on average, contained in the spike count in the final 75 ms
prior to the moment of choice measured in the present work
(Figure 10). This discrepancy can be explained by the
fundamentally different experimental conditions. In the
anesthetized rat, the animal’s head was immobile, the textures
were always positioned at a fixed distance from the base of
the whiskers, and there was little whisk-to-whisk variability—
movement was evoked by controlled electrical stimulation of
the facial nerve. Within one category of texture, there was
only minimal trial-to-trial stimulus variability. Low stimulus
variability led to correspondingly low response variability
which, in turn, increased the rate of information trans-
mission. In contrast, in the behaving rat, the angle of
approach and the distance from snout to texture varied from
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trial to trial. Moreover, the amplitude, frequency, and speed
of whisker motion were all under the rat’s own control. All of
this caused higher response variability and reduced texture
information.

However, the variability that appears as noise to the
experimenter may be interpretable to the animal if it can
access information about its distance from the plate and its
self-generated whisking motion. Evidence has been accumu-
lating both for a distance signal [35] and for a whisking signal
in barrel cortex [2,12,36-38]. The distance signal is relayed by
the sensory afferents. The whisking signal, in contrast, could
originate either as an efferent copy relayed from the motor
system to the sensory system [39] or as a sensory signal from
the whisker follicle [40]. In summary, the rat’s knowledge of
spatial coordinates and of its own motor output could make
the sensory input more reliably decodable.

Knowledge of motor output could be used as follows.
Intentionally or not, the rat may generate “motor noise” by
whisking with more or less force from trial to trial. Stronger
whisks are likely to provoke more afferent spikes, but if barrel
cortex or a later processing station collects information
about the strength of each whisk, it can recalibrate the
sensory input and avoid errors (e.g., mistaking the smooth
texture for rough on trials when strong whisks cause a firing
rate greater than the smooth average). This mechanism may
reconcile the rat’s high behavioral performance with the low
single-trial reliability of the observed sensory signal.

Information in This and Other Discrimination Tasks

Many studies have measured mutual information between
neuronal firing rates and stimuli; here, we considered only
those in which, like in our experiments, the animal was
performing a discrimination task.

When monkeys discriminated the frequency of flutter-
vibration stimuli applied to the fingertips [41], cortical
neurons carried in their firing rates 0.28 bits (in primary
somatosensory cortex [SI]) and 0.14 bits (in secondary
somatosensory cortex, [SII]) of information about the
frequency, on average. There were eight frequencies, so this
information corresponds to 9.3% (SI) and 4.6% (SII) of the
stimulus entropy (loge8 = 3 bits). Information carried by SI
neurons was significantly lower when the animal was not
doing the discrimination task but merely passively attending
the stimulus.

In an olfactory discrimination task in monkeys [42],
neurons in orbitofrontal cortex carried, in their firing rates,
0.06 bits of information on average about the identity of eight
odors, equivalent to 2% of available information.

In monkeys performing a visual discrimination task with
five different objects [43], neurons in the inferior temporal
gyrus carried, on average, 0.26 bits in their firing rate,
equivalent to 11.2% of the stimulus entropy.

Neurons in the monkey lateral intraparietal area (LIA) [44]
carried 0.1 bits (10% of the entropy) about the location of a
sound stimulus and 0.3 bits (10% of the entropy) about the
location of a visual cue.

Thus, across the various cortical areas probed, neurons
carried in their firing rate between 2% and 11% of the
available stimulus entropy. The barrel cortex neurons in our
recordings carried 2.1% of the available stimulus entropy
(3% on correct trials only), which is within the range of
information values reported in a wide range of cortical
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sensory areas. The fact that, in most of the experiments cited
above, the animals passively received experimenter-con-
trolled stimuli—as opposed to stimuli generated by our
actively whisking rats—could account for the moderately
higher information rates.

Behavioral Relevance of Texture Signals

In spite of extensive training, in some rats, performance
did not exceed 80%. An incorrect choice on the remaining
trials could occur because the neurons in barrel cortex held a
poor stimulus representation on those trials; alternatively,
barrel cortex could generate an equally accurate representa-
tion on each trial, but this representation could be
inaccurately “read out” by the downstream brain systems
that generate a behavioral response. A comparison of the
signals (firing rate and LFP) carried in the correct and
incorrect trials helped to distinguish between the two
alternatives. On correct trials, average firing rate immediately
before choice was higher for rough than for smooth; on
incorrect trials, this was reversed. As a consequence, the
texture information carried by neuronal firing in correct
trials was greater than that of a random subset of trials,
showing that incorrect trials occurred at least partially due to
low stimulus signal quality. In other words, when barrel
cortex neurons carried the “wrong” signal, the rat was likely
to make a wrong choice, and when they carried the “correct”
signal, the rat was likely to make a correct choice.

What, then, was the origin of the inappropriate stimulus
representation on incorrect trials? The cause could be an
errant afferent signal: the rat may have palpated the texture
more or less forcefully than intended or, by positioning itself
incorrectly, might have missed it altogether. Alternatively,
central modulatory inputs could cause stimulus-independent
fluctuations in barrel cortex firing rate. Although our data do
not allow evaluation of the latter scenario, the analysis of
touch times in the last part of Results, “Origin of Degraded
Signal on Incorrect Trials,” suggested that missed touches are
one of the causes of incorrect trials. Although the texture
signal T during successful whisker contacts did not differ
between correct and incorrect trials, the amount of whisker
contact did: on rough incorrect trials, the whiskers were on
the texture for significantly less time during the last 75 ms
before choice than on correct trials. As rats whisked
continuously, the non-touches must have been missed
attempts to contact the plate due to inappropriate posture
or positioning. Instead of recalibrating its choice according
to knowledge of the missed contact, the animal may have
interpreted the low firing rate as an indication of a smooth
texture.

Even though the same reasoning cannot apply to smooth
incorrect trials, these results strongly suggest that the rat was
not able to decode firing rate according to knowledge of
individual contacts: some amount of variability in afferent
signals (successful or unsuccessful touches) was beyond the
control of the animal and therefore acted as a source of
behavioral error.

Additional study is required to understand how whisker
dynamics evoke cortical spikes and why spiking signals vary
across trials. However, our data strongly suggest that, in the
present texture discrimination task, barrel cortex firing rate
is directly involved in the process that leads from sensation to
behavior.
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Materials and Methods

Subjects. Wistar rats (Harlan Italy, S. Pietro al Natisone, Italy)
weighing about 300 g were housed individually and maintained on a
13/11-h light/dark cycle. Food was restricted to 15 g of rat chow
(Harlan) per day; throughout the experiment, rats continued to gain
weight. Water was given during training as a reward and was also
available ad lib for 1 h after training. All experiments were conducted
in accordance with National Institutes of Health, international, and
institutional standards for the care and use of animals in research and
were supervised by a consulting veterinarian.

Apparatus. The arena was situated in a Faraday cage and was
illuminated by light-emitting diodes (LEDs) emitting infrared light
(wavelength >880 nm) in which albino rats have negligible visual
function. The apparatus was constructed in aluminum and consisted
of three rectangular platforms (36 X 11 cm) distributed radially about
a central hexagonal platform (side length, 10 cm). Each rectangle’s
shorter edge faced the hexagon across a gap of adjustable width.
Platforms were elevated 30 cm above a table.

Discriminanda were fabricated in two ways.

For the 3-arm task, a 3 X 10 cm sheet of P100 sandpaper (mean
grain size, 162 pum) was glued onto an acrylic glass plate. This was used
to form a mold to cast true copies of the sandpaper texture with a
bicomponent resin. This yielded a 0.3 X 3 X 10 cm plate of resin, one
side of which had a P100-like surface. To build a smooth discrim-
inandum, the mold was made of the acrylic glass plate without
sandpaper. These discriminanda were mounted vertically.

For the 1-arm task, P100 sandpaper was pressed onto a heated 3 X
10 cm acrylic glass plate. This procedure left each plate with a smooth
side and a rough side (a negative mold of P100). These discriminanda
were mounted at a 45° angle with the vertical, for some sessions facing
up, for some facing down.

Both methods yielded pairs of objects of the same size, overall
shape, and odor. The performance of subjects was equivalent for
discrimination of both types of discriminanda and all mounting
angles.

Texture discrimination task. For one week, each rat was handled
and habituated to the training arena under dim visible light. Then,
the visible light was switched off and only invisible infrared
illumination remained. For the rest of the experiment, training
sessions were held once a day for about 1 h, usually during the dark
phase of the light/dark cycle. The goal of training was for the rat to
learn to discriminate between the smooth and rough textures using
the long whiskers of its snout.

In some rats, most of the whiskers were clipped. This was done to
encourage them to use the whiskers that were in the receptive field of
recorded neuronal clusters. Whenever this was done, all long whiskers
(Greek and arcs 1-4; not arcs 5 and beyond, which are difficult to see
and cut in an awake rat) on both sides were clipped, except for the
row of interest, which was C or D.

Potential olfactory cues were removed from textures by washing
them at least once every session. Within and across sessions, different
plates from within one texture category were exchanged to ensure
that rats discriminated by the category of texture rather than by cues
(tactile or non-tactile) linked to individual objects.

The 3-arm task. The rat started a trial in one arm of the 3-arm maze.
It had to jump to the central platform (Figure 1B (i)) crossing the gap
of 12-15 cm. From the central platform, the rat could choose one of
the two remaining arms by crossing another gap. On the entrance of
each arm, below the platform, a texture was attached. One texture
indicated the presence of a water reward in the arm behind it, with
the other texture indicating its absence. Thus, rats learned to perch at
the edge of the gap in order to touch the texture with their long
whiskers. The target behavior was to turn away on contact with a non-
reward texture (Figure 1B (ii)) and to cross for a reward texture
(Figure 1B (iii)). The trial ended when the rat entered one of the arms
(Figure 1B (iv)). The entered arm was the start arm for the next trial.
A computer pseudo-randomly chose the new reward arm, and the
texture positions were changed accordingly.

On trials when the rat touched and then rejected the first texture,
its encounter with the second texture was potentially prejudiced by
prior knowledge. Therefore, on each trial, we examined behavioral
and neuronal data only from primary encounters.

In this task, eight rats reached a stable performance (>75% correct
on three successive sessions).

The 1-arm task. In this task, the rat remained in one arm of the maze,
and on a given trial, only one texture was present, mounted on the
central platform across the gap. The rat perched on the front edge of
the rectangular platform and extended itself forward to contact the
discriminandum with its whiskers (Figure 1A (i)). After palpating the
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texture, the rat withdrew and approached either the left or right
drinking spout mounted near the platform (Figure 1A (ii)). The
texture identity indicated the correct side to choose. Rats were
trained with a fixed association (e.g., turn left on rough, right on
smooth). Only if it approached the correct drinking spout was the rat
given a water reward (0.2 ml); for an incorrect choice, it received no
water. The next trial started as soon as the high-speed video was saved
on the computer, a delay of about 10 s. Between trials, the
discriminanda’s mount was turned about its vertical axis by a
computer-controlled stepping motor. This allowed for quick,
randomized, and automated switching between discriminanda.

The session lasted until the rat failed to return to the discrim-
inandum, signifying it was saturated.

In this task, six rats reached stable (>75%) performance.

Video recording and analysis. Recording of films. An overhead
camera (Panasonic) recorded the rat’s movements at 25 frames/s.
Vibrissal motion and contact was recorded by high-speed (1,000 fps,
512 X 512 pixels) digital video cameras (Motionpro 2000; Redlake)
triggered by a light sensor positioned near the discriminanda.
Backlight illumination for the high-speed films came from a 12 X
12 array of LEDs emitting IR light at wavelength 880 nm (AOS
technologies) which strobed in synchrony with individual video
frames. Films were usually 1 s long.

Analysis of films. Films were analyzed off-line. For touch analysis, we
extracted touch times (onset-offset) of the whiskers that were in the
recorded neuronal clusters’ receptive field. For a touch to be counted,
the whisker had to be in contact with the texture plate and show a
visible bending due to contact.

Moreover, we extracted the moment of choice. This was the time
when the rat’s behavior changed in a way indicating to the observer
that it was about to cross or withdraw or otherwise stop examining
the texture.

Independent analysis by different observers showed choice time
deviations of just a few milliseconds.

Trials in which whisker touches could not be discerned were
excluded from touch-based analysis, and trials in which the moment
of choice could not be extracted were discarded.

Surgery. After reaching a performance of more than 75% correct
on three consecutive sessions, rats were anaesthetized with a mixture
of Zoletil (30 mglkg) and Xylazine (5 mg/kg) delivered intraperito-
neally. Small screws were fixed in the skull as a support for dental
cement. One of the screws served as a ground electrode. A
craniotomy was then made over barrel cortex, centered 2.8 mm
posterior to bregma and 5.8 mm lateral to the midline [45]. Dura
mater was left intact and covered with biocompatible silicon (KwikSil;
World Precision Instruments). An eight-electrode drive (Neuralynx)
or a 14-electrode drive (Kopf) was positioned above the craniotomy
and attached by phosphate dental cement. Rats were given the
antibiotic enrofloxacin (Baytril; 5 mg/kg delivered through the water
bottle) and the analgesic caprofen (Rimadyl; 2.5 mglkg, subcutaneous
injection) for a week after surgery. For 10 d after surgery, they had
unlimited access to water and food. Recording sessions in the
apparatus began thereafter.

Electrophysiological recordings. Tungsten microelectrodes (Fred-
erick Haer) were of 76-pm shaft diameter and impedance of 1-4 MQ;
they were advanced individually by rotation of a screw in the drive. At
a depth of about 600 um, it became possible to distinguish action
potential waveforms evoked by manual whisker stimulation. Data
reported here came from recordings at depths of 600-850 pm, as
measured by the microdrive. The depth reading, together with the
short response latencies (around 5 ms, see Figure 6) and the small
receptive fields (1-2 whiskers; see [46,47]), indicate an electrode
position in layer 4. After passing through a unity-gain head stage
(Neuralynx), signals were transmitted through a cable to digitally
programmable amplifiers (Cheetah Data Acquisition system; Neu-
ralynx). The spike signals were amplified by a factor of 1,000-5,000,
bandpass filtered between 600 Hz and 6 kHz, and digitized at 32 kHz;
events that reached a user-set threshold were recorded for 1 ms (250
us before voltage peak and 750 ps after peak). Spikes were sorted off-
line on the basis of the amplitude and principal components by
means of semiautomatic clustering algorithms (BBClust, written by P.
Lipa, University of Arizona, Tucson, Arizona; and KlustaKwik, written
by K. D. Harris, Rutgers University, Newark, New Jersey). The
resulting classification was corrected and refined manually with
MClust software (written by A. D. Redish, University of Minnesota,
Minneapolis, Minnesota). Most electrodes yielded a multiunit neuro-
nal cluster (n="77), but in some cases (n = 8), we could isolate single
units with a pronounced refractory period. Only neuronal clusters
with stable waveform and firing rate over the course of a session were
considered in the analysis.
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For each cluster, the receptive field was mapped by manual
stimulation of vibrissae. Nonresponsive clusters or clusters whose
receptive field contained whiskers that were cut or were not used by
the rat in the task were discarded.

To measure local field potentials in rat 10, a copy of the signal
from an electrode that was used for the recording of spikes was
amplified by a factor of 1,000, bandpass filtered between 1 Hz and 400
Hz, and digitized at 8 kHz. The receptive field of the neuronal clusters
that were recorded from this electrode contained the whiskers C2
and C3. The reference electrode for these recordings was the bundle
of steel guide tubes resting on the brain, above the recording site.

Electrode positions were frequently adjusted from one day to the
next. Data recorded in different recording sessions from the same
electrode, even if it was not moved, were always analyzed as separate
clusters. This is because there was no proof that the same neuronal
clusters were present at one electrode from day to day. This is a
conservative assumption because, in the event that one cluster
recorded on separate days was incorrectly evaluated as two clusters
(two data points), this is equivalent to weighting a cluster by the
number of days on which it was observed. Thus the differences in
overall firing rate between rough and smooth texture contacts could
not be created by the fracturing of data.

Analysis of neuronal responses. Quantitative analysis of neuronal
coding of texture required the conjunction of many conditions:
quality of the recorded neuronal activity, the rat’s use of the whiskers
that comprised the receptive fields of the neuronal clusters, reliable
behavioral performance, and a sufficient number of trials per session
and sessions per rat. Out of 14 rats trained in the tasks described
above, electrodes were implanted successfully in ten animals.
However, only one in the 3-arm task and two in the 1-arm task were
able to satisfy the set of conditions stated above. These data are
presented in Results. No selection of data was made a posteriori
based on the strength or presence of texture coding.

Weighted averaging of whisker contact responses. To calculate the texture
index T during whisker contact (see Equation 2), for each neuronal
cluster, average firing rates were calculated from all contacts that the
whisker(s) in the receptive fields of that cluster made in a session. As
the total cumulative time of whisker contact varied significantly
between clusters, the global average T across clusters was calculated
with weights derived from each cluster’s cumulative contact time. To
accurately reflect the influence of rough and smooth contact time,
the weight w,,. used was the inverse sum of the cumulative rough
and smooth contact times w, andw,:

1

1/w, + 1/ws (%)

Weluster =
Analysis of mutual information. Three variables were of interest on
each trial: discriminandum texture (rough or smooth), neuronal
activity, and behavior of the animal. Mutual information proved to be
a concise method for exploring their correlations. In general, the
information that the neuronal response conveys about the stimulus
can be quantified by Shannon’s Mutual Information [16,17], hereafter
simplified as “information,” as follows:

1= S PPGlion ©

where [ is the information, P(s) is the probability of presentation of
stimulus s (rough or smooth), P(s|r) is the posterior probability of s,
given observation of response 7, and P(r) is the probability of response
runconditional on the stimulus. Information measured by Equation 6
quantifies how well an ideal observer can discriminate between
members of a stimulus set based on the neuronal responses of a single
trial [18].

For each trial, neuronal response was defined as the number of
spikes during variable time windows prior to the moment of choice.

The conditional probabilities in the above formulas are not known
a priori and must be estimated empirically from a limited number, N,
of experimental trials for each stimulus. For some recordings in our
dataset, N could be as low as 12. Limited sampling of response
probabilities can lead to an upward bias in the estimate of mutual
information [48-52]. The bias magnitude depends on the number of
trials per stimulus or behavior: as N increases, the estimated
probabilities become more accurate, and the bias decreases. An
approximate expression for the bias has been formulated [49] and
can be subtracted from the raw information of Equation 6, provided
that N is at least two to four times greater than the number of
different possible response classes, R [49,53]. To reduce bias, we
therefore reduced the dimensionality of the response space R by
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subdividing the firing rates into only two classes, high firing rate and
low firing rate, separated by the median value. This meant that there
were the same number of observations of each of the two response
classes. We then applied the bias subtraction procedure.

Analysis of incorrect trials. When analyzing trials in which the animal’s
behavior was incorrect, the goal was to find whether the stimulus
signal was altered with respect to correct trials; it could be weakened,
at random, reversed, or unchanged. As explained in Results, this was
done indirectly by comparing correct trials to a randomly chosen,
repetitively sampled subset of the same size, potentially containing
incorrect trials. Any way in which the incorrect trials differed from
the correct trials was reflected in the random trials. Without proof,
we conjecture that the statistical power of a test aimed at detecting a
correct-incorrect difference in this indirect way is equal to the direct
way, where applicable.

Statistical tests of significance. To test an effect of texture on a given
statistic (texture index, information, etc.), a permutation test was
used. Thus, no assumptions were made on the kind of distributions
involved. The null hypothesis Hj, was that texture had no influence on
the statistic. Thus, for any given recording session, the trials’ texture
labels were scrambled, leaving the total number of rough and smooth
trials unchanged. The statistic was calculated using the scrambled
labels. This procedure was repeated 1,000 times, and the real value of
the statistic was ranked in the distribution of scrambled values,
yielding a p-value.

To prove an effect of the rat’s behavior, i.e., of trials being correct
or incorrect, an analogous procedure was used, scrambling the
correctness labels instead of the texture labels. As explained in the
previous section, correct trials were not compared directly to
incorrect trials, but rather to randomly chosen, mixed subsets of
the same size as the correct trials. For the p-value, the statistic was
calculated on all subsets, and the correct-only value ranked in the
values of 1,000 random sets.

For non-negative statistics (information), all tests were one-tailed.

For statistics taking on negative and positive values, tests were two-
tailed. An exception was the texture index T, because previous studies
[9] indicated that 7"> 0, i.e., there would be more spikes during rough
than during smooth trials.

When averaging across neuronal clusters that were recorded
simultaneously, care was taken to apply the same texture permutation
to them, thus preserving noise correlation [54].

Supporting Information

Video S1. High-Speed Film, Top View

Filmed at 1,000 frames/s, shown slowed down by a factor of 20. Clicks in
the soundtrack correspond to spikes of a neuronal cluster responsive
to whisker C2, the third long whisker counting from the top.

Found at doi:10.1371/journal.pbio.0050305.sv001 (695 KB WMV).
Video S2. High-Speed Film, Side View

Same as Video S1, but with a different angle of view.
Found at doi:10.1371/journal.pbio.0050305.sv002 (1.03 MB WMYV).

Video S3. Overhead View of 1-Arm Task

Three trials of the 1-arm task. The film is slowed down by a factor of
4. Note the two mobile parts: on the rotating platform facing the rat,
the textures are mounted. The rotating object in front of the rat’s
platform is a paw support. It is retracted when the texture is changed
to ensure that the rat cannot touch the discriminandum until it
reaches its final position. The drinking wells are near the bright LED
spots, on either side of the platform. The bright squares that are
visible in the top left of the frame are LED matrices for the high
speed cameras.

Found at doi:10.1371/journal.pbio.0050305.sv003 (270 KB WMV).
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