
Effect of phloretin on growth performance, serum biochemical parameters
and antioxidant profile in heat-stressed broilers
Hong Hu,*,y,1 Xi Bai,y,1 Kexing Xu,y Cheng Zhang,z and Liang Chen*,2

*State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences,
Beijing 100193, China; yCollege of Animal Science, Anhui Science and Technology University, Chuzhou 233100,
China; and zCollege of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
ABSTRACT The objective of this work was to evalu-
ate the effect of phloretin on growth performance, serum
biochemical parameters, antioxidant profile, glutathione
(GSH)-related enzymes, nuclear factor erythroid 2
−related 2 (Nrf2) and heat shock protein 70 (HSP70)
in heat-stressed broilers. A total of 240, 22-day-old
Arbor Acres broilers were divided into 4 groups. The
control group was housed at 23.0 § 0.61°C and fed with
basal diet, while the 3 heat-stressed groups (A, B, and C
groups) were housed at 30.5 § 0.69°C and fed with basal
diet containing 0, 100, and 200 mg/kg phloretin, respec-
tively. Serum was taken form 42-day-old broilers.
Results showed that heat stress decreased (P < 0.05) the
final body weight (FBW), body weight gain (BWG),
feed intake (FI), serum total protein (TP), triglyceride
(TG), triiodothyronine (T3), thyroxine (T4), GSH, cat-
alase (CAT), and total antioxidant capacity (T-AOC)
levels, but increased (P < 0.05) the feed-to-gain ratio
(FGR) and serum malondialdehyde (MDA) levels in
broilers compared with that in the control group.
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BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

Received August 20, 2020.
Accepted April 15, 2021.
1These authors contributed equally to the experimentations.
2Corresponding author: chenliang01@caas.cn

1

Among the heat-stressed groups, supplementary
200 mg/kg phloretin increased (P < 0.05) the FBW,
BWG, FI, serum TP, TG, T4, GSH, CAT, and T-AOC
levels, and decreased (P < 0.05) the FGR and serum
MDA in broilers. There were significant decreases (P <
0.05) in the glutathione peroxidase (GSH-Px), g-gluta-
mylcysteine synthetase (g-GCS), and Nrf2, but signifi-
cant increases (P < 0.05) in the HSP70 of the broiler
serum after heat stress treatment. Among the heat-
stressed groups, supplementary 200 mg/kg phloretin
increased (P < 0.05) the GSH-Px, g-GCS, and Nrf2 lev-
els, but decreased (P < 0.05) the serum HSP70 level in
the heat-stressed broilers. Under high temperature con-
dition, FBW, BWG, FI, FGR, serum TP, TG, T4,
MDA, GSH, CAT, T-AOC, GSH-Px, g-GCS, Nrf2 and
HSP70 were linearly affected by inclusion of phloretin.
These results indicated that phloretin may improve
growth performance, serum parameters, and antioxidant
profiles through regulated GSH-related enzymes, Nrf2
and HSP70 in heat-stressed broilers.
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INTRODUCTION

High summer temperatures have become a universal
problem in high-density and intensive poultry industry
(Farag and Alagawany, 2018; Nawab et al., 2018).
Owing to their fast growth rate, strong metabolism, and
lack of sweat glands, broilers have a low tolerance to
high temperature and humidity environments, which
leads to a significant decrease in growth performance
and increase in mortality (Nawab et al., 2018;
Goo et al., 2019; Shakeri et al., 2019; Slawinska et al.,
2020). Several studies have shown that high tempera-
ture will lead to oxidative stress in broilers
(Akbarian et al., 2016; Ghanima et al., 2020). Therefore,
antioxidants that relieve oxidative damage can improve
thermal stress in broilers.
Phloretin, extracted from fruits (including apples,

pears, and peaches), leaves, trees, and various vegeta-
bles, is a type of bioactive flavonoid (Wang et al., 2018;
Shao et al., 2008). Phloretin has many biological activi-
ties, including antioxidant, hypoglycemic, protecting
blood vessels, improving immunity, and antitumor func-
tions (Chang et al., 2012; Barreca et al., 2014; Lin et al.,
2014). In particular, it can neutralize the active free radi-
cals in the cytoplasm and improve the overall ability of
cells to resist oxidative stress (Zuo et al., 2011;
Mendes et al., 2018). Recent research has shown that
phloretin can enhance the antioxidant activity of the
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Table 2. Ingredients and nutrient analysis of the basal diets (as-
fed basis).1

Ingredients (%) 22−42 d1

Corn 60.0
Soybean meal 31.2
Fish meal 2.0
Soybean oil 3.0
CaHPO4¢2H2O 1.5
Limestone 0.9
Salt 0.3
DL-Met 0.1
Premix2 1.0
Calculation of nutrients
Metabolizable energy (MJ/kg) 12.56
Crude protein (%) 20.26
Calcium (%) 0.87
Total phosphorus (%) 0.41
Analyzed composition
Crude protein (%) 20.10
Calcium (%) 0.91
Total phosphorus (%) 0.49
Phloretin (mg/kg) 4.36

1Broilers in the control and A groups were fed the basal diet, and
broilers in the B and C groups were fed the basal diet supplemented with
100 and 200 mg/kg phloretin.

2Supplying per kilogram of diet: Fe: 60 mg, Cu: 5 mg, Zn: 50 mg, Se:
0.1 mg, I: 0.3 mg, vitamin A: 10, 000 IU, vitamin K: 4.0 mg, cholecalcif-
erol: 2200 IU, vitamin E: 20 mg, vitamin B1: 2.0 mg, vitamin B2: 4.0 mg,
vitamin B6: 4.0 mg, vitamin B12: 0.03 mg, niacin: 20 mg, pantothenic
acid: 10 mg, folic acid: 1.2 mg, biotin 0.12 mg; choline 400 mg.
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body by regulating cells in various pathways
(Behzad et al., 2017). As a new, natural, and high-effi-
cient antioxidant, phloretin has been approved for use in
several fields such as medicine, cosmetics, and food proc-
essing (Behzad et al., 2017; Wang et al., 2020). However,
only few studies have discussed the use of natural sour-
ces of phloretin as a new type of green antioxidant feed
additive in broiler production.

Serum metabolites are important indicators of metab-
olism and changes in specific tissues and organs in
broilers during heat stress (Ghazi et al., 2015). Few stud-
ies have investigated the capacity of phloretin to allevi-
ate the oxidative state in broiler serum and related
mechanisms caused by heat stress. The objective of the
present study was to evaluate the effect of supplemen-
tary phloretin on growth performance, serum biochemi-
cal parameters, and antioxidant profiles in broilers
reared in a hot environment (Chinese summer condi-
tions). Furthermore, we aimed to evaluate the regula-
tion of the glutathione (GSH)-related enzymes, nuclear
factor erythroid 2−related 2 (Nrf2) and heat shock pro-
tein 70 (HSP70), to identify the possible mechanism by
which dietary phloretin protects growth performance,
serum parameters, and oxidative stress in broilers
exposed to hot environments.
MATERIALS AND METHODS

Experimental Birds and Diet

All experiments were approved by the Animal Care
and Use Committee of Anhui Science and Technology
University. Broilers (Arbor Acres) were obtained from
the farm of the Anhui Science and Technology Univer-
sity. A total of 240, 22-day-old broilers (half males and
females) were divided into 4 groups (10 birds/replicate
and 6 replicates/group). Broilers in the control group
were housed in the thermoneutral condition (Table 1),
and broilers in the heat-stressed groups (A, B, and C
groups) were housed in the hot environment (Table 1)
under summer conditions from June 14 to July 4, 2019.
The thermoneutral condition was controlled by auto-
matic temperature control system. The temperature and
humidity of heat-stressed groups were recorded every 2
h (Table 1).

Broilers in the control and A groups were fed the same
basal diet, and broilers in the B and C groups were fed
the basal diet supplemented with 100 and 200 mg/kg
phloretin (purity: ≥98%; Aladdin Reagent Co., Ltd.,
Shanghai, China). The basal diet (Table 2) was designed
to meet the requirements specified by the NRC (1994).
Birds had free access to water and diet, and enjoyed a
Table 1. The treatment of broilers.

Groups Temperature (°C)1 Humidity (%)1

Control group 23.0 § 0.61 50.8 § 5.41
Heat-stressed group 30.5 § 0.69 89.7 § 6.70

1The temperature and humidity were recorded every 2 h. The values of
temperature and humidity were exhibited by mean § standard deviation.
12-h light regimen in this experiment. The size of stereo-
scopic cage was 120 £ 70 £ 40 cm. The content of phlor-
etin was measured by improved HPLC method based on
Li et al., 2013 (Table 2).
Sample Collection

On 42 d of age, 12 birds per group (2 birds from each
replicate) were selected and slaughtered after overnight
fasting in the present study. The birds were killed by
exsanguination. The blood sample of broiler was col-
lected. Individual serum sample was separated by centri-
fuged at 3500 rpm for 12 min under 4°C condition and
then stored at �70°C for detecting serum biochemical
parameters, oxidative state, GSH-related enzymes, Nrf2
and HSP70 levels.
Growth Performance Analysis

The initial body weight, final body weight (FBW),
body weight gain (BWG), feed intake (FI), and feed-
to-gain ratio (FGR) were measured and calculated as
described by Hu et al. (2019). The body weight of the
broilers was measured every week. The FI was measured
by calculating the difference between the supplied and
remaining feed every day. BWG was calculated by the
difference between the weight of 22 and 42 day-old-
broilers. FGR was expressed as FI: BWG.
Serum Biochemical Parameters Analysis

The total protein (TP), glucose, and triglyceride
(TG) levels in the serum were determined using a Total
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Protein Assay Kit (A045-4-2; with standard: BCA
method), Glucose Assay Kit (F006-1-1), and Triglycer-
ide Assay Kit (A110-2-1) which were purchased from
Jiancheng Bioengineering Institute Co., Ltd. (Nanjing,
China), respectively. The triiodothyronine (T3) and
thyroxine (T4) levels in the serum were determined
using Chicken T3 ELISA Kit (JYM0114Ch) and T4
ELISA Kit (JYM010Ch) which were purchased from
Jiyinmei Biotechnology Co. Ltd. (Wuhan, China),
respectively.
Serum Oxidation State Analysis

The serum malondialdehyde (MDA) was determined
by Micro Malondialdehyde Assay Kit (BC0025; Solarbio
Technology Co. Ltd, Beijing, China). The serum super-
oxide dismutase (SOD) was determined by Superoxide
Dismutase Assay Kit (SOD-1-Y; Comin Biotechnology
Co. Ltd, Suzhou, China). The serum GSH, catalase
(CAT), and total antioxidant capacity (T-AOC) were
determined by Glutathione Assay Kit (A006-2-1), Cata-
lase Assay Kit (A007-1), and Total Antioxidant Capac-
ity Assay Kit (A015-2-1) from Jiancheng Bioengineering
Institute Co., Ltd (Nanjing, China).
GSH-Related Enzyme Analysis

The glutathione peroxidase (GSH-Px) and g-gluta-
mylcysteine synthetase (g-GCS) were determined by
Glutathione Peroxidase Assay Kit (Colorimetric method)
and g-Glutamylcysteine Synthetase Assay Kit (Jiancheng
Bioengineering Institute Co., Ltd, Nanjing, China).
Nrf2 and HSP70 Analysis

The Nrf2 and HSP70 levels were determined by
Chicken Nrf2 and HSP70 enzyme-linked immunosorbent
assay kit (Jiancheng Bioengineering Institute Co., Ltd,
Nanjing, China).
Table 3. Effect of phloretin on growth performance in broilers (22−42

Heat-stre

Item Control group1 A

IBW (kg) 0.617 § 0.004 0.613 § 0.003 0.614 §
FBW (kg) 2.110 § 0.052* 1.782 § 0.017a 1.894 §
BWG (kg) 1.492 § 0.054* 1.170 § 0.018a 1.280 §
FI (kg) 3.061 § 0.091* 2.605 § 0.025a 2.711 §
FGR 2.054 § 0.025* 2.228 § 0.020a 2.118 §

*There were significant difference (P < 0.05) between the control and A
Value = Means § SEM.

a,b,cWithout same letters in the same line differ significantly (P < 0.05) in A,
were used to determine the differences among the 3 heat-stressed groups. Value

1Control group: Chicken in control group were kept in the normal temperatu
2A, B, and C groups: Chicken in these groups were kept in the hot envir

phloretin.
3The linear and quadratic effects of phloretin were detected by orthogonal

weight; BWG, body weight gain; FI, feed intake; FGR, feed-to-gain ratio.
Statistical Analysis

The data in the present study were analyzed using
SPSS 18.0 software (SPSS Inc., IL). The t test was per-
formed to compare the control and A groups. A one-way
analysis of variation and Tukey’s test were used to
determine the differences among the A, B, C groups.
The linear and quadratic effects of phloretin were
detected by orthogonal polynomials. Values are
expressed as means § SEM and P < 0.05 was regarded
as significant.
RESULTS

Growth Performance

There were no significant differences in initial body
weight among 4 groups (Table 3). Heat stress (A group)
decreased (P < 0.05) the FBW, BWG and FI, but
increased (P < 0.05) the FGR in broilers compared with
that in the control group (Table 3). As shown in Table 3,
broilers in the B group (heat stress + 100 mg/kg phlore-
tin treatment) exhibited higher FBW and BWG, but
lower FGR than those in the A group (heat stress treat-
ment); broilers in the C group (heat stress + 200 mg/kg
phloretin treatment) exhibited higher FBW, BWG and
FI, but lower FGR than those in the A group (heat
stress treatment). Under high temperature condition,
FBW, BWG, FI, and FGR were linearly affected by
inclusion of phloretin (Table 3).
Serum Biochemical Parameters

Heat stress (A group) decreased (P < 0.05) the serum
TP, TG, T3, and T4 levels in broilers compared with
that in the control group (Table 4). As shown in Table 4,
broilers in the C group (heat stress + 200 mg/kg phlore-
tin treatment) exhibited higher serum TP, TG, and T4
than those in the A group (heat stress treatment). Under
high temperature condition, serum TP, TG, and T4
were linearly affected by inclusion of phloretin (Table 4).
d) exposed to hot environment.

ssed groups2
P-Value

B C Linear3 Quadratic3

0.002 0.611 § 0.004 0.740 0.581
0.034b 1.971 § 0.031b < 0.001 0.624
0.035b 1.360 § 0.031b < 0.001 0.669
0.071ab 2.833 § 0.071b 0.016 0.915
0.018b 2.082 § 0.014b < 0.001 0.102

groups (n = 60). The t test was performed to compare these 2 groups

B, and C groups (n = 60). A one-way analysis of variation and Tukey’s test
= Means § SEM.
re environment and fed a basal diet.
onment and fed a basal diet supplemented with 0, 100, and 200 mg/kg

polynomials. Abbreviations: IBW, initial body weight; FBW, final body



Table 4. Effect of phloretin on serum biochemical parameters in broilers (22−42 d) exposed to hot environment.

Heat stress groups2
P-Value

Item Control1 A B C Linear3 Quadratic3

TP (mg/mL) 31.67 § 1.61* 26.21 § 0.93a 28.44 § 0.99ab 29.00 § 0.72b 0.010 0.727
Glucose (mmol/mL) 12.16 § 0.33 11.75 § 0.21 11.90 § 0.24 11.99 § 0.26 0.490 0.897
TG (mmol/L) 0.58 § 0.02* 0.39 § 0.02a 0.47 § 0.01ab 0.51 § 0.03b 0.007 0.636
T3 (ng/mL) 1.44 § 0.05* 1.07 § 0.08 1.20 § 0.05 1.26 § 0.08 0.084 0.708
T4 (ng/mL) 10.70 § 0.50* 8.20 § 0.42a 9.4 § 0.31ab 9.80 § 0.32b 0.006 0.359

*There were significant difference (P < 0.05) between the control and A groups (n = 12). The t test was performed to compare these 2 groups
Value = Means § SEM.

a,b,cWithout same letters in the same line differ significantly (P < 0.05) in A, B, and C groups (n = 12). A one-way analysis of variation and Tukey’s test
were used to determine the differences among the 3 heat-stressed groups. Value = Means § SEM.

1Control group: Chicken in control group were kept in the normal temperature environment and fed a basal diet.
2A, B, and C groups: Chicken in these groups were kept in the hot environment and fed a basal diet supplemented with 0, 100, and 200 mg/kg

phloretin.
3The linear and quadratic effects of phloretin were detected by orthogonal polynomials. Abbreviations: TP, total protein; TG, triglyceride; T3, triiodo-

thyronine; T4, thyroxine.

Table 5. Effect of phloretin on serum redox state and antioxidants in broilers (22−42 d) exposed to hot environment.

Heat stress groups2
P-Value

Item Control1 A B C Linear3 Quadratic3

MDA (nmol/mL) 2.20 § 0.14* 3.25 § 0.25a 2.83 § 0.14ab 2.47 § 0.18b 0.012 0.893
GSH (mmol/L) 25.17 § 1.23* 20.04 § 0.90a 22.87 § 1.03ab 23.59 § 0.54b 0.010 0.327
SOD (U/mL) 176.63 § 11.97 158.64 § 4.76 170.79 § 5.87 170.99 § 6.46 0.149 0.409
CAT (U/mL) 3.55 §0.11* 2.99 § 0.12a 3.23 § 0.09ab 3.40 § 0.08a 0.009 0.791
T-AOC (mM) 0.44 § 0.01* 0.40 § 0.01a 0.43 § 0.01b 0.44 § 0.01b 0.005 0.279

*There were significant difference (P < 0.05) between the control and A groups (n = 12). The t test was performed to compare these 2 groups
Value = Means § SEM.

a,b,cWithout same letters in the same line differ significantly (P < 0.05) in A, B, and C groups (n = 12). A one-way analysis of variation and Tukey’s test
were used to determine the differences among the 3 heat-stressed groups. Value = Means § SEM.

1Control group: Chicken in control group were kept in the normal temperature environment and fed a basal diet.
2A, B, and C groups: Chicken in these groups were kept in the hot environment and fed a basal diet supplemented with 0, 100, and 200 mg/kg

phloretin.
3The linear and quadratic effects of phloretin were detected by orthogonal polynomials. Abbreviations: SEM, standard error of the mean; MDA, malon-

dialdehyde; GSH, glutathione; SOD, superoxide dismutase; CAT, catalase; T-AOC, total antioxidant capacity.
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Serum Oxidation State

Heat stress (A group) increased (P < 0.05) serum
MDA level, but decreased (P < 0.05) serum GSH, CAT
and T-AOC levels in broilers compared with that in the
control group (Table 5). As shown in Table 5, broilers in
the B group (heat stress + 100 mg/kg phloretin treat-
ment) exhibited higher serum T-AOC than those in the
A group (heat stress treatment); broilers in the C group
(heat stress + 200 mg/kg phloretin treatment) exhibited
lower serum MDA, but higher serum GSH, CAT and T-
Table 6. Effect of phloretin on serum GSH-related enzymes in broiler

He

Item Control1 A

GSH-Px (nm(U/mL) 667.08 § 6.38* 625.63 § 6.42a 647
g-GCS (U/mL) 0.64 § 0.05* 0.48 § 0.03a 0

*There were significant difference (P < 0.05) between the control and A
Value = Means § SEM.

a,b,cWithout same letters in the same line differ significantly (P < 0.05) in A,
were used to determine the differences among the 3 heat-stressed groups. Value

1Control group: Chicken in control group were kept in the normal temperatu
2A, B, and C groups: Chicken in these groups were kept in the hot envir

phloretin.
3The linear and quadratic effects of phloretin were detected by orthogonal po

tamylcysteine synthetase.
AOC than those in the A group (heat stress treatment).
Under high temperature condition, MDA, GSH, CAT
and T-AOC were linearly affected by inclusion of phlore-
tin (Table 5).
GSH-Related Enzyme

Heat stress (A group) decreased (P < 0.05) the serum
GSH-Px and g-GCS levels in broilers compared with
that in the control group (Table 6). As shown in Table 6,
broilers in the C group (heat stress + 200 mg/kg
s (22−42 d) exposed to hot environment.

at stress groups2
P-Value

B C Linear3 Quadratic3

.08 § 6.36ab 643.33 § 1.87b 0.033 0.073

.53 § 0.03ab 061 § 0.04b 0.019 0.816

groups (n = 12). The t test was performed to compare these 2 groups

B, and C groups (n = 12). A one-way analysis of variation and Tukey’s test
= Means § SEM.
re environment and fed a basal diet.
onment and fed a basal diet supplemented with 0, 100, and 200 mg/kg

lynomials. Abbreviations: GSH-Px, glutathione peroxidase; g-GCS, g-glu-



Table 7. Effect of phloretin on serum Nrf2 and HSP70 in broilers (22−42 d) exposed to hot environment.

Heat stress groups2
P-Value

Item Control1 A B C Linear3 Quadratic3

Nrf2 (nm(ng/mL) 0.63 § 0.03* 0.50 § 0.01a 0.56 § 0.03ab 0.59 § 0.02b 0.007 0.518
HSP70 (ng/mL) 4.06 § 0.19* 4.89 § 0.09a 4.35 § 0.20ab 4.26 § 0.17b 0.012 0.265

*There were significant difference (P < 0.05) between the control and A groups (n = 12). The t test was performed to compare these 2 groups
Value = Means § SEM.

a,b,cWithout same letters in the same line differ significantly (P < 0.05) in A, B, and C groups (n = 12). A one-way analysis of variation and Tukey’s test
were used to determine the differences among the 3 heat-stressed groups. Value = Means § SEM.

1Control group: Chicken in control group were kept in the normal temperature environment and fed a basal diet.
2A, B, and C groups: Chicken in these groups were kept in the hot environment and fed a basal diet supplemented with 0, 100, and 200 mg/kg

phloretin.
3The linear and quadratic effects of phloretin were detected by orthogonal polynomials. Abbreviations: Nrf2, nuclear Factor Erythroid 2−Related 2;

HSP70, Heat Shock Protein 70.
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phloretin treatment) exhibited higher serum GSH-Px
and g-GCS than those in the A group (heat stress treat-
ment). Under high temperature condition, serum GSH-
Px and g-GCS were linearly affected by inclusion of
phloretin (Table 6).
Nrf2 and HSP70

Heat stress (A group) decreased (P < 0.05) the serum
Nrf2 level, and increased HSP70 levels in broilers com-
pared with that in the control group (Table 7). As
shown in Table 7, broilers in the C group (heat
stress + 200 mg/kg phloretin treatment) exhibited
higher serum Nrf2, and lower HSP70 than those in the A
group (heat stress treatment). Under high temperature
condition, serum Nrf2 and HSP70 were linearly affected
by inclusion of phloretin (Table 7).
DISCUSSION

High summer temperatures seriously affect broiler
production (Lu et al., 2019; Humam et al., 2019). Feed-
ing is an essential life activity to ensure survival and pro-
duction of animals. Adequate FI is important for
improving animal survival and production potential. In
high temperature environments, the physiological func-
tions of the body will change, and with the increase in
stress intensity, metabolism will become disordered and
FI will decrease, which will result in the loss of body
weight (or even negative growth), reducing immune
function and causing death. Liu et al. (2019) showed
that a decreased FI led directly to the decline in body
weight and feed utilization in heat-stressed broilers.
Consistent with the results of previous studies, we
showed that continuous heat stress significantly reduced
the FBW, BWG, and FI, proving that continuous heat
stress reduces the growth rate and feed utilization effi-
ciency of broilers. Several studies have shown that add-
ing antioxidants such as vitamin E, epigallocatechin
gallate, and curcumin to the diet can alleviate heat
stress and maintain broiler performance (Zhang et al.,
2015a; Mazur-Ku�snirek et al., 2019; Xue et al., 2017).
Similarly, phloretin can reverse the negative effects of
growth performance in broilers exposed to hot
environments in this study. Zhang et al. (2015b) showed
that the plant antioxidant, curcumin, can also improve
the growth performance of heat-stressed broilers.
Blood indicators are widely used to study the effects of

heat stress on the body (Chand et al., 2018). The com-
monly used serum glucose, TG, and TP contents reflect
sugar, protein, and fat metabolism, and serum T3 and
T4 contents reflect the expression of thyroxine in ani-
mals (Willemsen et al., 2011; Luo et al., 2018;
Ghasemi and Nari, 2020). Generally, heat stress leading
to a decrease in broiler FI, and insufficient nutritional
intake will inevitably cause the body to accelerate the
catabolism of reserves to ensure sufficient energy supply,
thus, reducing the blood protein and lipid levels
(Luo et al., 2018). In addition, long-term high tempera-
ture environment will also interfere with the animal’s
endocrine system, causing disorders of serum hormone
levels. T3 and T4 are important hormones that regulate
the metabolic rate and are sensitive indicators of the
state of the stress response (Willemsen et al., 2011). The
results of the present study showed that serum T3 and
T4 hormones were decreased in broilers during heat
stress. However, dietary supplementation of phloretin
can increase the levels of serum TP, TG, T3, and T4 in
heat-stressed broilers. Adding phloretin to the diet can
increase the utilization of TP and TG, effectively inhib-
iting the catabolism of reserve TP and TG, thereby alle-
viating the effect of high temperature stress on serum
biochemical indicators in broilers.
During oxidative stress, cellular reactive oxygen spe-

cies is generated and the by-products of oxidation reac-
tions are accumulated. The endogenous antioxidant
defense system also affects the redox state of the tissue.
The elimination of free radicals in the body depends on
various antioxidant factors in the body, including GSH,
SOD, and CAT (Bai et al., 2019; Zhang et al., 2020).
High temperature environments will significantly
increase the degree of serum peroxidation in broilers,
accelerate the depletion of serum antioxidant factors,
and destroy the body’s antioxidant capacity (Bai et al.,
2019; Wan et al., 2017). Consistent with these results,
the present study showed that heat stress significantly
reduced the expression of serum antioxidant factors in
broilers, while phloretin can increase the concentration
of these factors. The ability of phloretin to relieve the
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body’s oxidative stress is related to its effect on inducing
changes in the redox state of cells (Nithiya and Udaya-
kumar 2016; Han et al., 2020). Huang et al. (2017)
showed that phloretin could significantly increase the
concentration of GSH, and reduce the level of MDA in
oxidative-stressed lungs of asthmatic mice.
Zhang et al. (2019) also suggested that phloretin have
improvement of oxidative stress in the colon of mice
with ulcerative colitis through the regulation of MDA,
SOD, and GSH levels. Thus, the possible reason how
phloretin can alleviate heat stress damage is that it
enhances the body’s antioxidant effect.

GSH-related enzymes also participate in the regula-
tion of natural plant antioxidants during cell oxidative
stress (Zhang et al. 2018a). Under normal physiological
conditions, the synthesis and decomposition of GSH in
cells are in equilibrium. The enzyme, g-GCS, is the key
rate-limiting enzyme for GSH synthesis, which catalyzes
the acceleration of GSH synthesis and increases the cell
GSH concentration (Zhang et al. 2018a). GSH-Px (per-
oxidase decomposing enzyme) is an important antioxi-
dant enzyme in the cell (Zhang et al. 2018a). It is mainly
responsible for catalyzing reduced GSH to oxidized glu-
tathione in the turnover metabolism of GSH; in this pro-
cess (toxic peroxidation) the substance is finally
transformed into a nontoxic or more stable hydroxy
compound. In the present study, we showed that phlore-
tin can indeed regulate the level of GSH by intervening
in the metabolic pathway of GSH. Based on this, we
speculated that the antioxidant activity of phloretin is
closely related to the regulation of GSH level, and this
regulation is likely to be achieved by coordinating the
synthesis and decomposition pathways of GSH.
Huang et al. (2017) and Zhang et al. (2019) both showed
that the GSH was raised in the oxidative -stressed lung
and colon of mice by phloretin addition.

Nrf2 factor plays an important role in the antioxidant
effect of tissue cells (Zhang et al., 2015b; Hu et al.,
2020a). During oxidative stress, Nrf2 binds to antioxi-
dant response element, activates the promoter, and
increases the expression of downstream related antioxi-
dant enzyme genes (Hu et al., 2020a). Natural plant
antioxidants such as curcumin, resveratrol, and epigallo-
catechin gallate can increase the expression of antioxi-
dant enzyme genes by activating the Nrf2 protein
(Zhang et al., 2015b; Xue et al., 2017; Zhang et al.,
2018b). Ying et al. (2018) revealed that phloretin atten-
uated the serum oxidative stress damage and pathologi-
cal parameters via Nrf2 pathway in diabetic mice.
Liu et al. (2015) reported that phloretin improved neu-
ronal oxidative stress via activation of the Nrf2 defense
pathway in cerebral ischemia/reperfusion rats. In the
current study, phloretin also increased the expression
level of serum antioxidant factors in heat-stressed
broilers may through the Nrf2 activation. In addition,
HSP70 is an important response protein to heat stress
and oxygen stress (Hu et al., 2020b). HSP70 is a heat
shock protein that is widely distributed in various cells
and tissues. When the body encounters an unfavorable
environment or physiological stimuli, the expression of
HSP70 will increase significantly (Gu et al., 2012;
Zhang et al., 2015a). In the present study, the expression
of HSP70 increased significantly during the continuous
high temperatures of summer, and the dietary supple-
mentation of phloretin significantly inhibited the pro-
duction of HSP70, indicating that the antioxidant
properties of phloretin alleviate heat stress damage in
broilers. This is consistent with the results of other stud-
ies that plant antioxidants alleviate the negative effects
(such as low growth performance) of heat stress in ani-
mal (Zhang et al., 2015a; Liu et al., 2016).
In conclusion, heat stress significantly impaired

growth performance, serum biochemical parameters and
antioxidant system of broilers. Dietary supplementation
of phloretin could increase the level of antioxidant fac-
tors by activating Nrf2 protein expression and GSH-
related enzyme activities, which reduce oxidative dam-
age in heat-stressed broilers. Our results suggested that
phloretin, as a natural plant antioxidant, may amelio-
rate the heat-stress-impaired production performance
and serum indicators through the improved redox status
in broilers.
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