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Abstract

The Chinese Imaging Genetics (CHIMGEN) study establishes the largest Chinese neuroimaging genetics cohort and aims to
identify genetic and environmental factors and their interactions that are associated with neuroimaging and behavioral
phenotypes. This study prospectively collected genomic, neuroimaging, environmental, and behavioral data from more than
7000 healthy Chinese Han participants aged 18-30 years. As a pioneer of large-sample neuroimaging genetics cohorts of
non-Caucasian populations, this cohort can provide new insights into ethnic differences in genetic-neuroimaging
associations by being compared with Caucasian cohorts. In addition to micro-environmental measurements, this study also
collects hundreds of quantitative macro-environmental measurements from remote sensing and national survey databases
based on the locations of each participant from birth to present, which will facilitate discoveries of new environmental
factors associated with neuroimaging phenotypes. With lifespan environmental measurements, this study can also provide
insights on the macro-environmental exposures that affect the human brain as well as their timing and mechanisms of action.

Introduction

Neuroimaging (intermediate) phenotypes reflecting the
structural and functional properties of the human brain have
been linked to human cognitive abilities and neu-
ropsychiatric disorders (external phenotypes), and both
intermediate and external phenotypes are precisely modu-
lated by genetics, environments and their complex interac-
tions [1, 2]. However, we know little about pathways from
genetics and environments to neuroimaging phenotypes and
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then to external phenotypes. The associations between
genetic factors and neuroimaging phenotypes have been
investigated using neuroimaging genetics [3], initially by
exploring the effects of a single nucleotide polymorphism
(SNP) in small samples and eventually by identifying reli-
able genetic effects using genome-wide association studies
(GWAS) in large samples [4, 5]. However, almost all
available neuroimaging genetics cohorts include only Cau-
casian populations (Table 1), preventing us from identifying
ethnic differences in genetic-neuroimaging associations.
Although previous cohorts have included many micro-
environmental factors, such as social economic status, early
life events and lifestyle, few cohorts have included macro-
environmental factors derived from remote sensing and
national survey databases, such as climate, air pollution,
population density, and gross domestic product (GDP) per
capita. The joint analyses of micro- and macro-
environmental variables will provide more information
about environmental-neuroimaging associations and gene-
environment interactions on neuroimaging phenotypes
[6, 7]. Moreover, China has the largest populations in
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Table 1 Comparisons of major neuroimaging genetics cohorts (N >2000 with both genetic and neuroimaging data).

Project name Number of Ethnic
subjects populations

Age

range (year)

Diagnosis

Prominent features

Assessments of data
quality®

CHIMGEN N>7000  Chinese

Han only

UK Biobank N>30,000 Most

Caucasian

ENIGMA N>50,000 Most

Caucasian

ABCD N=11,875 Most
American
African and

Caucasian

IMAGEN N=2000 Most

Caucasian

ADNI N>2000  Most

Caucasian

18-30

40-69 at
baseline

3.3-91

9-10 at
baseline

14-22

55-90

Healthy

Mixed

Mixed

Relatively
healthy

Relatively
healthy

AD, MCI
and normal
controls

The largest prospective neuroimaging genetics cohort of
Chinese Han adults with lifespan natural and socioeconomic
environmental measurements obtained from remote sensing
and national survey databases

The largest prospective longitudinal imaging genetics
cohort of adults in the world

The largest imaging genetics pooling dataset included more
than 50 currently available datasets with both imaging and
genetic data

The largest prospective longitudinal imaging genetics
cohort of children to explore adolescent brain development

The first prospective longitudinal imaging genetics cohort
of adolescence to investigate the risk for mental disorders

The largest prospective longitudinal imaging genetics
cohort of elderly people to define the progression of AD

Brain imaging data (+-++):
3 modalities for all subjects;
2 for 2/3 subjects

Genetic data (++++):
genomic data

Environment data (+++
+): more than a hundred of
quantitative measures
Behavioral data (+++-+):
dozens of measures

Brain imaging (4+-++-+): 5
imaging modalities for most
subjects

Genetic data (++-++):
genomic data

Environment data (++):
dozens of measures
Behavioral data (++-+-+):
dozens of measures

Brain imaging (4+): only
structural imaging for all
subjects

Genetic data (++++):
genomic data

Environment data (—): no
measure

Behavioral data (++): no
measure but with diagnostic
information

Brain imaging (4+-++-+): 4
modalities for most subjects
Genetic data (++++):
genomic data

Environment data (++):
dozens of measures
Behavioral data (+++-+):
dozens of measures

Brain imaging (4-++-+): 4
modalities for most subjects
Genetic data (++++):
genomic data

Environment data (++):
dozens of measures
Behavioral data (++-+-+):
dozens of measures

Brain imaging (+++): 5
modalities but not collected
from all subjects

Genetic data (++-++):
genomic data

Environment data (+): a
few measures

Behavioral data (+++-+):
dozens of measures

ABCD Adolescent Brain Cognitive Development, AD Alzheimer’s disease, ADNI Alzheimer's Disease Neuroimaging Initiative, CHIMGEN
Chinese Imaging Genetics, ENIGMA Enhancing Neuro Imaging Genetics Through Meta-Analysis, IMAGEN imaging genetics, MCI mild cognitive

impairment

“Notes: The seven major imaging modalities included structural imaging, susceptibility weighted imaging (SWI), diffusion tensor imaging (DTI),
artery spin labeling (ASL), task fMRI, resting-state fMRI, and positron emission tomography (PET). For each kind of data, the number of +signs
indicates the subjective data availability, which includes two factors: the richness of the variables and the number of participants with data on these

variables

the world and has experienced dramatic changes in
its macro-environments in recent decades, making the
Chinese population more suitable for identifying macro-
associated with neuroimaging

environmental factors

phenotypes.

SPRINGER NATURE

Although the China Brain Project, which covers basic
neuroscience, translational research, and brain-inspired
intelligence, is being developed [8], there are no available
large-scale Chinese neuroimaging genetics data. In this

context, the Chinese Imaging Genetics (CHIMGEN) study
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was designed to collect genomic, environmental, neuroi-
maging, and behavioral data from a large number of Chi-
nese participants to enhance neuroimaging genetics research
in different ethnic populations and geographic locations.
Compared with currently available large-scale neuroima-
ging genetics studies (Table 1), the CHIMGEN study
includes the only cohort of non-Caucasian participants and
has collected hundreds of macro-environmental measure-
ments in addition to micro-environmental measurements.
These comprehensive multiscale data can fill the gap in our
understanding of how environmental factors, and their
interaction with genetic factors can affect the human brain
and consequently affect behavior by using -effective
dimension reduction or feature selection techniques [9-11].

The CHIMGEN study

The CHIMGEN study (chimgen.tmu.edu.cn) was approved
by the local ethics committee, and written informed consent
was obtained from each participant. The aim of this study
was to collect genomic, neuroimaging, environmental, and
behavioral data from 10,000 healthy Chinese Han partici-
pants aged 18-30 years in 30 research centers from 21
mainland cities in China. To date, we have recruited more
than 7000 participants, becoming the largest and most
integrative Chinese neuroimaging genetics cohort. The
detailed inclusion and exclusion criteria as well as the
methods and procedures for screening; genotyping; blood
sample collection; and behavioral, environmental, and
neuroimaging data acquisition are described in the stan-
dardized operation procedures (SOPs) of the CHIMGEN
study (Supplementary file 2). The detailed quality control
procedures for personal information; blood samples;
GWAS; and behavioral, environmental, and neuroimaging
assessments are elaborated in the quality control manual of
the CHIMGEN study (Supplementary file 3). Since the
CHIMGEN study is ongoing, the following description of
the CHIMGEN cohort was based on the data of only 5819
participants who had undergone comprehensive quality
assessments.

Sampling strategies

All participants were recruited by advisements posted in
colleges and communities. The number of participants in
each center depends on the available resources (researchers,
funds, scanners, etc.) of the center. The recruited partici-
pants were not solely from the city or province of the par-
ticipating centers. These samples are not used to represent
populations (epidemiological samples), but to investigate
biological mechanisms. Their epidemiological relevance
needs to be investigated in subsequent studies.

Recruitment distribution

The 5819 participants were recruited from 29 centers. The
recruitment distribution of these participants across centers
is shown in Fig. la. Eighteen of the 29 centers recruited
more than 100 participants. The largest center recruited
1307 participants and the smallest center recruited 54
participants.

Quality control for MR scanners

For each MR scanner, two phantoms were used to assess the
imaging quality of the scanner. Specifically, an American
College of Radiology MRI phantom was used to assess the
functioning of the MR scanner, including geometric dis-
tortion, slice positioning and thickness accuracy, high
contrast spatial resolution, intensity uniformity, ghosting
artefacts and low contrast object detectability. A custom
phantom [12, 13] was used to evaluate temporal stability
during a functional MRI acquisition. Moreover, two healthy
volunteers were scanned at all centers to assess the con-
sistency of the MRI data acquired by different MR scanners.
The effects of scanners on common MRI measures (gray
matter volume (GMV), regional homogeneity (ReHo) and
fractional anisotropy (FA)) are shown in Supplementary
Fig. 1. These measures showed high consistency for MRI
data acquired by the same type of MR scanner with the
same scan parameters; however, there were visible differ-
ences for MRI data acquired by different types of MR
scanners. For the latter, a meta-analysis of the results
derived from MR data from different scanners may be a
practical method to reduce the bias caused by MR
scanner types.

First-step quality assessments of the neuroimaging
data

All 5819 participants were included in the first-step quality
assessments of the neuroimaging data: 23 participants were
excluded for metal artefacts, 1 for brain atrophy and 1 for
excessively large ventricle. The remaining 5794 participants
were included in the following quality control and statistics.

Genotyping and quality control

A high-throughput genotyping chip designed for the Asian
population (Illumina Asian screening array chip) with
700,000 sampling SNPs was used for genome-wide geno-
typing. Although all 5794 participants had blood samples,
only 4885 participants have been genotyped thus far. After
excluding two sex mismatching samples, nine duplicated or
related samples, 29 samples with extreme heterozygosity
and one sample with divergent ancestry (Supplementary

SPRINGER NATURE



520 Q. Xu et al.
1500
1307
4000
5
£ 3000
2
5 1000 £
2 82000
E s
i 1000
s
a2
2 " I e e ——
o
S 5+
o s «‘9 qf,s“ a\‘\“ IR W S
A ¥ <
200 199 196 194
Illllllmmmmmmm“w% TP
g NN
12 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
! . D
38 - K]
Euo B E
3 3 3
2 £ 2 200} P 6000
“E200 £ €
© s «©
& 2 gy 5 =
Lo .}E’m K g 3
£
I & $ il H § oo g
o o o e, £ 2 Status
N T [ T S T ® = &
State anexity TPQ-RD CVLTILTotal score H £ I Normal
o N N 2 2 Trauma
z 8 : 5 f £ £
Ewo € ! Eaw | s H
3 S a0 i 5 1 o o
= £ : Sl I ]
8 ] : ]
g S g — - w = ’
%m E. J‘A_mm W 'E"W wll H { Urbanization score EA EN PA PN SA
I I i (1
o a £ 4 m\]ﬂm“ |k
x W 0m i 0% 10

H 0w 3 T
N-back-CR No-Go-CR ROC FT-DR score

Fig. 1 Recruitment and neuroimaging, behavioral, and environ-
mental characteristics. a The main graph shows the numbers of
participants recruited by each of the 29 centers. The insertion shows
the numbers of participants recruited using each type of scanner. b The
mean parameter maps of the gray matter volume (GMV), regional
homogeneity (ReHo), fractional anisotropy (FA), mean diffusivity
(MD), mean kurtosis (MK), and cerebral blood flow (CBF). ¢ Data
distribution of the representative behavioral assessments. CVLT II-
Total score, the total number of correct recalls over the five learning

Fig. 2), 4844 participants (99.16%) passed the quality
control for the genetic data. It should be noted that the
following quality assessments (n = 5753) also included 909
participants without genotyping results.

Neuroimaging data and quality control

Neuroimaging data were acquired by nine types of 3.0-
Tesla MRI scanner (Supplementary Fig. 3). Structural
MRI (sMRI), diffusion tensor imaging (DTI) and resting-
state functional MRI (rs-fMRI) data were acquired in all
centers, and diffusion kurtosis imaging (DKI) and arterial
spin labeling (ASL) data were acquired in 16 centers. The
numbers of participants whose MRI data were acquired by
each type of MRI scanner are shown in the insertion of
Fig. 1a. The MRI data of 4045 (70.31%) of the 5753
participants were acquired by the MR 750 scanners. For
each type of MRI scanner, the voxel-level maps of GMV
calculated based on sMRI data, ReHo calculated based on
rs-fMRI data, and FA and mean diffusivity (MD) calcu-
lated based on DTI data averaged across all qualified

SPRINGER NATURE

trials of the word list A in the version 2 of the California verbal
learning test; N-back-CR, the correct rate of the 3-back task in the N-
back task; No-Go-CR, the correct rate of the No-Go task in the Go/
No-Go task; ROCFT-DR score, the score of delayed recall of the Rey-
Osterrieth complex figure test; TPQ-RD, reward dependence of tridi-
mensional personality questionnaire. d Data distribution of the repre-
sentative paper-based environmental assessments. EA emotional
abuse, EN emotional neglect, PA physical abuse, PN physical neglect,
and SA sexual abuse.

participants are shown in Supplementary Fig. 4. All types
of scanner showed similar and symmetrical spatial dis-
tribution of the GMV, FA and MD, and 8/9 types of
scanner showed similar and symmetrical spatial distribu-
tion of ReHo with the GE Signa HDx which showed
asymmetric spatial distribution of the ReHo map, espe-
cially in posterior brain regions, being the only exception
(Supplementary Fig. 4C). Therefore, the rs-fMRI data of
the 97 participants acquired by the GE Signa HDx were
excluded from this study.

The quality control results of the neuroimaging data
(n=5753) are shown in Supplementary Fig. 5. In the
5753 participants, there were 5743 (99.83%) participants
with qualified sMRI data, 5507 (95.72%) with qualified
rs-fMRI data, and 5750 (99.95%) with qualified DTT data.
In the 3619 participants with DKI data, 3610 (99.75%)
participants passed the quality control. In the 4108 parti-
cipants with ASL data, all participants passed the quality
control. Based on these MRI data, thousands of neuroi-
maging variables could be calculated. For example, the
average maps of the GMV of the 5743 participants, the
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ReHo of the 5507 participants, the FA and MD of the
5750 participants, the mean kurtosis (MK) calculated
based on DKI data of the 3610 participants, and the cer-
ebral blood flow (CBF) calculated based on ASL data of
the 4108 participants are shown in Fig. 1b. All of these
parameter maps showed a symmetrical spatial distribution
in the brain.

Quality control for behavioral and paper-based
environmental data

The preliminary quality control results for behavioral and
paper-based environmental data of the 5753 participants are
shown in Supplementary Fig. 6. In the 5753 participants, 8
participants were excluded for the loss of almost all beha-
vioral and paper-based environmental data. In the remaining
5745 participants, 5723 (99.48%) participants with qualified
Beck depression inventory (BDI- II) data, 5722 (99.46%)
with qualified state and trait anxiety inventory (STAI) data,
5728 (99.57%) with qualified tridimensional personality
questionnaire (TPQ) data, 5688 (98.87%) with qualified
California verbal learning test (CVLT-II) data, 5619
(97.67%) with qualified symbol digit modalities test
(SDMT) data, 5640 (98.04%) with qualified Rey-Osterrieth
complex figure test (ROCFT) data, 5578 (96.96%) with
qualified N-back task data, 5536 (96.23%) with qualified
Go/No-Go task data, 5616 (97.62%) with qualified ball-
tossing game data, 5639 (98.02%) with qualified ultimatum
game (UG) data, 5733 (99.65%) with qualified urbanization
score data, and 5728 (99.57%) with qualified childhood
trauma questionnaire (CTQ) data.

The data distributions of the representative behavioral
variables are demonstrated in Fig. 1c and those of the
representative paper-based environmental variables are
shown in Fig. 1d. Although some variables do not follow a
normal distribution, the relatively wide range of values
indicates good discriminative power across participants.

Sample characteristics

The demographic characteristics of the 5745 participants
with relatively complete assessments are shown in Table 2.
This study included 3718 females and 2027 males. Their
ages ranged from 18 to 30 years, with a mean + standard
deviation (SD) of 23.7 + 2.4 years. Their years of education
ranged from 9 to 24 years, with a mean = SD of 16.8 +1.9
years. Their heights ranged from 146 to 197 cm, with a
mean + SD of 166.4 + 7.9 cm. Their weights ranged from 23
to 114 kg, with a mean = SD of 58.8 + 10.7 kg. Their body
mass indices (BMI) ranged from 10.8 to 38.5, with a
mean + SD of 58.8 +10.7. Most of these participants were
unmarried (n = 5550), with only 195 married.

Sex-specific demographic, behavioral, and paper-
based environmental statistics

The sex-specific demographic, behavioral and paper-based
environmental statistics of the 5745 participants with rela-
tively complete assessments are shown in Table 2. Although
most of these variables show significant differences (P <
0.05) between male and female participants, the effect sizes
were generally very small except for sex differences in
height (Irl=0.74, large effect), weight (Irl=0.67, large
effect), and BMI (Irl =0.39, medium effect).

Quantitative environmental variables derived from
remote sensing and national survey databases

In this study, we recorded the precise residential location
of each participant in each year from birth to present. In
the 5745 participants who passed the initial quality con-
trols for the neuroimaging, behavioral and genetic data,
5723 participants (99.62%) provided both current and
birthplace (Fig. 2a) residential locations; however, only
3979 participants (69.26%) provided lifetime migration
information (Fig. 2b). Based on remote sensing and
national survey databases, we obtained hundreds of
macro-environmental measurements for each participant.
Some representative macro-environmental variables at
birth (Fig. 2¢) and their lifetime changes are shown in
Fig. 2d.

Future plans of the CHIMGEN study

In the future, the CHIMGEN consortium will complete the
following tasks: (a) further recruit at least 3000 participants
to reach the goal of 10,000 qualified participants; (b)
simultaneously obtain the genomic, epigenomic, and tran-
scriptomic data of ~700 participants; (c) collect 2000-3000
patients with major mental disorders; and (d) develop the
CHIMGEN cohort into a longitudinal cohort by recalling
the participants at a later time.

Data sharing policy

We would like to share all CHIMGEN data (including the
genetic, environmental, neuroimaging and behavioral data)
with other scientific communities according to the laws and
regulations of the Chinese government. All the raw data of
the CHIMGEN study can be accessed via collaboration with
the CHIMGEN consortium. The summary statistics of the
CHIMGEN data can be freely accessed via a formal
application. A detailed scheme for sharing the CHIMGEN
data can be found on our website (chimgen.tmu.edu.cn) and
in Supplementary file 4.

SPRINGER NATURE
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Table 2 Sex-specific demographic, behavioral and environmental data (n = 5745).

Items Total (mean + SD) Males (mean + SD) Females (mean + SD) Gender differences
Z/y* value  P-value Effect size

Age (years) 23.7+24 (n=5745) 23.6+2.6 (n=2027) 23.7+2.3 (n=3718) —2.77 5.58x 1073 —0.04
Years of education 16.8+1.9 (n=5745) 16.5+1.9 (n=2027) 169+ 1.9 (n=3718) —8.18 274x10710 —0.11
Marital status (No/Yes) 5550/195 (n=15745) 1941/86 (n =2027) 3609/109 (n=3718) 6.88 8.73x 1073 0.03
Height (cm) 166.4+7.9 (n=5745) 1745+5.7 (n=2027) 162.0£5.0 (n=3718) —56.35 <1.15x 10710 —-0.74
Weight (Kg) 58.8+10.7 (n=5745) 68.5+10.1 n=2027) 53.6+6.6 (n=3718) —51.12 <1.15%x 10710 —0.67
BMI 21.1+£2.6 (m=5745) 225+£28 m=2027) 204+22 n=3718) —29.45 1.15x 10710 -0.39
TPQ-NS 13.8+4.5 (n=5728) 13.0£4.3 (n=2019) 14.2+4.5 (n=3709) —9.48 2.66x1072! —0.13
BDI-II 3.37+4.41 (n=5723) 3.01+4.06 (n=2017) 3.56+4.58 (n=23706) —4.25 2.19%1073 —0.06
State anxiety 30.8+7.6 (n=5722) 30.2+7.5 (n=2018) 31.2+£7.6 (n=3704) —-5.39 7.20% 1078 —0.07
CVLT II-total score 55.6+£88 m=5703) 54.1+£9.1 n=2014) 56.4+8.6 (n=3689) —9.06 1.32x107" —0.12
ROCFT-DR score 24750 (n=5643) 24850 (n=1989) 24.6+5.0 (n=23654) —1.46 0.15 —0.02
SDMT score 69.6+£12.7 (n=5619) 68.8+13.1 (n=1989) 70.0+12.5 (n=23630) —4.12 3.76x107° —0.05
N-back-CR 0.73+0.16 (n=5578) 0.74+0.15 (n=1973) 0.72+0.16 (n=3605) —5.88 4.18x107° —0.079
No-Go-CR 0.55+0.19 (n=5536) 0.58+0.19 (n=1957) 0.53+0.18 (n=3579) —10.05 9.48x 1072 —0.14
UG-AR 0.76£0.32 (n=5639) 0.78+0.31 (n=1989) 0.74 +£0.33 (n =3650) —4.08 454%1073 —0.05
BTG-ACC 0.80+0.19 (n=5616) 0.81+0.19 (n=1977) 0.79+0.19 (n =3639) —3.82 1.34x107* —0.05
Urbanization score 347139 (n=5733) 352+14.0 (®m=2022) 345+13.9 (n=3711) —1.91 0.06 —0.03
CTQ-EN 8.19+£4.17 (n=5728) 8.01+3.98 (n=2022) 8.28+4.26 (n=3706) —1.45 0.15 —0.02

Notes: Only one representative measure of each behavioral or environmental assessment is shown in this table. The sample sizes of the behavioral
and environmental assessments are different across measures because only qualified participants are included in the statistical analysis. The effect
sizes for categorical variables are evaluated by & and those for continuous variables are evaludated with Mann—Whitney and Wilcoxon
nonparametric tests using r. Cohen’s guidelines for effect size are that a large effect is >0.5, a medium effect is between 0.3 and 0.5, and a small
effect is between 0.1 and 0.3

BDI-II beck depression inventory 1, BMI body mass index, BTG-ACC the total correct rate in the ball-tossing game, CTQ-EN the emotional
neglect score of childhood trauma questionnaire, CVLT II-Total score the total number of correct recalls over the five learning trials of the word list
A in the version 2 of the California verbal learning test, N-back-CR the correct rate of the 3-back task in the N-back task, No-Go-CR the correct rate
of the No-Go task in the Go/ No-Go task, ROCFT-DR score the score of delayed recall of the Rey-Osterrieth complex figure test, SDMT symbol
digit modalities test, TPQ-NS novelty-seeking of tridimensional personality questionnaire, UG-AR the ratio of participants who accept the 1:9
allocation schemes in situation 1 of the ultimate game. In this situation, if the participant accepts the plan, the proposer and the participant will
divide the money according to this plan. If the participant rejects the plan, neither of them gets the money

Discussion

With genomic, environmental, neuroimaging, and beha-
vioral data, the CHIMGEN study will help answer the
following scientific questions about the associations
between genetic and environmental factors on one hand and
brain and cognitive phenotypes on the other hand.

Cross-ethnic differences in genetic-neuroimaging
associations

Although GWAS analyses have identified many genetic
variants associated with cognitive and neuropsychiatric
phenotypes [14-16], we know little about the genetic var-
iants associated with neuroimaging phenotypes. The most
substantial obstacle for neuroimaging genetics studies is the
time and economic cost of collecting high-quality neuroi-
maging data in a large sample (e.g., 10,000 participants).

SPRINGER NATURE

Fortunately, European and American countries have laun-
ched several large-scale neuroimaging genetics studies (n >
2000) (Table 1), such as the Alzheimer Disease Neuroi-
maging Initiative (ADNI) [17, 18], Imaging Genetics
(IMAGEN) [19], Enhancing Neuroimaging Genetics
through Meta-analysis (ENIGMA) [20], UK Biobank
(UKBB) [21], and Adolescent Brain Cognitive Develop-
ment (ABCD) [22]. These studies aim to identify reliable
genetic variants associated with neuroimaging phenotypes
and to discover new biomarkers for neuropsychiatric dis-
orders. However, the majority of the participants included in
these cohorts are Caucasian.

Ethnic differences have been reported in the allele fre-
quencies of SNPs [23-25], linkage disequilibrium and
polygenic risk scores [26], genetic susceptibilities for neu-
ropsychiatric disorders [27], and neuroimaging phenotypes
[28-30]. In addition to environmental factors, genetic
factors are the main causes for ethnic differences in
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Fig. 2 Environmental variables derived from remote sensing and
national survey data. a Geographic location of each participant’s
birthplace (n = 5723). Blue dots indicate rural area, green dots indicate
towns, and red dots indicate cities. b The migration map of participants
(n=3979). Red dots indicate current places of residence, and green
dots indicate birthplaces. Gray lines connect the birthplaces and cur-
rent places of residence of a given participant. ¢ Data distribution of

neuroimaging phenotypes because of their high heritability
[31-33]. However, the common and specific genetic var-
iants associated with neuroimaging phenotypes of different
ethnic populations remain unknown, because there is no
available large-scale neuroimaging genetics cohort of non-
Caucasian individuals. From this perspective, the CHIM-
GEN data will provide an opportunity to discover ethnic
differences in neuroimaging-related genetic variants
between Chinese and Caucasian participants.

Although it is clinically important to identify genetic
associations with neuroimaging markers of neuropsychiatric
disorders [34-38], it is also critical to identify genetic-
neuroimaging associations in normal populations to better
understand how genetic variants cause brain structural and
functional impairments in neuropsychiatric disorders.
However, none of the large-scale neuroimaging genetics
studies (n>2000) have included a sufficient number of
healthy adults aged 18-30 years (Table 1), an age window
during which human brains and their functions are mini-
mally influenced by the confounding factors of

e 1993 W05 Z008 2015 2017 o8 1983 99 2005 208 2095 2017

the representative environmental variables in the birth year or the year
nearest to the birth year. Certified doctors is the number of certified
doctors per 10,000 persons. NDVI, normalized difference vegetation
index, and GDP, gross domestic product. d Longitudinal changes of
the representative environmental variables in selected years. The value
in each column is shown as the mean * SE.

development and ageing [39]. Thus, the CHIMGEN study
of 7000 healthy adults between 18-30 years is suitable for
investigating genetic-neuroimaging associations in unaged
mature brains.

Environmental factors associated with
neuroimaging phenotypes

One unique aspect of the CHIMGEN study is the collection
of hundreds of macro-environmental measurements from
satellite images and national survey databases. Compared
with micro-environmental assessments based on ques-
tionnaire and self-report data, remote sensing, and national
survey data can provide many new quantitative macro-
environmental assessments. For example, we can obtain
quantitative environmental measurements of landform and
topography, urbanization, climate, and air quality of the
living places of each participant based on remote sensing
data [40—43], and those of economy, urbanization, living
condition, healthcare, and education of the living places of
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the participant based on national survey databases (data.
stats.gov.cn/english/). Associations between neuroimaging
phenotypes and most of these macro-environmental mea-
surements have not been explored, and they may provide us
with an opportunity to discover new environmental factors
related to neuroimaging phenotypes. The feasibility of using
macro-environmental measurements derived from remote
sensing and national survey databases to discover new
environmental factors associated with the human brain and
behavioral phenotypes has been tested in pilot studies. For
example, the green space assessed by the normalized dif-
ference vegetation index (NDVI) based on remote sensing
data has been linked to human health [44, 45], and the
lifelong exposure to greenness has been associated with
GMV differences in children [7]. In addition, several
macro-environmental measurements derived from national
survey databases, such as population density, local GDP per
capita, medical supply, and educational resources have also
been associated with human health [46—48].

More importantly, with the precise lifelong residential
locations of each participant, we can obtain the macro-
environmental measurements of each participant in each
year from birth to present, from which we can estimate the
cumulative exposure of environmental risk factors
throughout the lifespan or during a period of interest. The
detailed lifelong environmental data of the CHIMGEN
study will help determine the macro-environmental expo-
sures that affect the structural and functional properties of
the human brain as well as their timing and mechanisms of
action.

Genome-wide by environment interactions on
neuroimaging phenotypes

Most neuropsychiatric disorders have a multifactorial
etiology and emerge through the interplay of genetic and
environmental factors [49]. Similarly, the structural and
functional architectures of the human brain are also
modulated by both factors [50], and gene-environment
interactions may explain the missing heritability of certain
phenotypes [51]. Candidate-gene approaches have been
used extensively to explore gene-environment interac-
tions. For example, the serotonin transporter promoter
polymorphism interacts with stressful life events to
increase the risk of depression [52]. However, candidate-
gene approaches are criticized for oversimplifying the
genetic substrates of these complex phenotypes since a
single genetic variant minimally contributes to these
phenotypes. The PRS integrates many genetic variants of
the genome and is a better representation of genetic risk
than single variants by having a much larger effect
[53, 54]. Indeed, considering the combination of PRS and
childhood trauma can improve the ability to predict
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depression [55, 56]. Genome-wide by environment inter-
actions have been used to unbiasedly explore the effects
of gene-environment interactions on depression [57].
However, the lack of large dataset simultaneously with
genome-wide genetic data, objective environmental
assessments and neuroimaging data has prevented inves-
tigations of genome-wide by environment interactions on
neuroimaging phenotypes. In this context, the CHIMGEN
study has rich genomic, environmental, and neuroimaging
measurements of 7000 participants, and is particularly
suited to investigate genome-wide by environment inter-
actions on human neuroimaging phenotypes.

Gene (environment)-brain-behavior pathways

In contrast to many studies focusing on pairwise correla-
tions of genetic variants, environmental factors, neuroima-
ging measures, and cognitive or neuropsychiatric
phenotypes, only a few studies have explored biological
pathways from genes and environment to brain structure
and function and ultimately to cognition and symptoms
[58-60]. These studies have been primarily conducted using
candidate-gene approaches and small samples, and they
have been criticized based on the minimal effect size of a
single variant and their lack of statistical power. In view of
polygenic profiles of neuroimaging and cognitive pheno-
types [61, 62], genomic data should be integrated to identify
normal and abnormal gene-brain-behavior pathways. Since
environmental factors alone and gene-environment interac-
tions affect neuroimaging and cognitive phenotypes
[6, 63, 64], it is important to identify the environmental
factors associated with these phenotypes, which would help
better guide clinical practice to address these adverse
environmental factors. Furthermore, it is also critical to
investigate how gene-environment interactions affect brain
structure and function and then influence normal cognitive
functions and brain disorders. By gathering genomic,
environmental, neuroimaging, and cognitive data, the
CHIMGEN project is ideally suited to explore the normal
pathways of gene (environment)-brain-cognition.

Comprehensive understanding of human cognitive
functions with multiscale data

The human brain is the most complex system in the world,
and even the simplest cognitive task requires an efficient
cooperation of multiscale neural elements [65, 66]. Thus,
human cognitive function can be understood only by inte-
grating multimodal data at different scales, e.g., genomic,
epigenomic, transcriptomic, and proteomic data at the
microscale, neural circuit, and neuronal activity data at the
mesoscale, and neuroimaging data at the macroscale. In
addition to establishing reliable correlations between
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multiscale features and cognitive functions, it is also critical
to identify causal linkages between these features to dis-
cover the causal pathways from the microscale to the
mesoscale then to the macroscale and ultimately to cogni-
tion [8]. With genomic, transcriptomic, epigenomic, neu-
roimaging, and cognitive data obtained from 700
participants, the CHIMGEN study can be used to establish
associations between microscale genetic variants and mac-
roscale neuroimaging phenotypes, and then the functions of
the identified genetic variants can be explored and validated
at the cellular level [67] and in animal models [68] using
gene editing techniques. One can also try to identify causal
links among findings from different scales by integrating
currently available multiscale neurobiological datasets and
state-of-the-art bioinformatics.

Associations with major neuropsychiatric disorders

Many neuropsychiatric disorders are associated with genetic
and environmental factors and their interactions [69]. We
have identified many risk factors for major neuropsychiatric
disorders, but the underlying mechanisms remain largely
unknown. Taking neuroimaging measures as intermediate
phenotypes, researchers could explore how these factors
increase the risk for neuropsychiatric disorders by investi-
gating the effects of these factors on neuroimaging mea-
sures in healthy subjects. For example, the CHIMGEN data
can be used to investigate the effects of a single or inte-
grated genetic and/or environmental risk factor(s) for neu-
ropsychiatric disorders on neuroimaging phenotypes in
healthy individuals. Moreover, we can identify new genetic
or environmental risk factors that significantly affect neu-
roimaging markers of neuropsychiatric disorders.

Potential models, methods or strategies for
analyzing the CHIMGEN data

Many models, methods and strategies can be used to ana-
lyze the CHIMGEN data. For example, GWAS can identify
genetic variants associated with neuroimaging phenotypes
[4, 70, 71], multifactor dimensionality reduction and deri-
vatives can investigate genome-wide gene-gene interactions
on these phenotypes [72—74], and canonical correlation and
partial least square regression analyses can uncover envir-
onmental factors associated with these phenotypes [75, 76].
Although genome-wide gene-environment interaction stu-
dies theoretically need more samples than GWAS, the
CHIMGEN data can be wused to investigate gene-
environment interactions on neuroimaging phenotypes
with effective dimension reduction or feature selection
techniques [77-79]. For example, a structured linear mixed
model was recently proposed to identify candidate loci that
interact with environmental variables [80]. The linkage

disequilibrium score regression can estimate genetic corre-
lations of neuroimaging phenotypes with disease-, person-
ality- or cognition-related phenotypes [81]. Mendelian
randomization and mediation analysis [82] can identify
potential pathways from genes to brain to cognition. Arti-
ficial intelligence techniques, such as deep learning algo-
rithms [83], can disclose meaningful relationships between
measures from different scales.

Conclusion

As an important supplement to the research field of neu-
roimaging genetics, the CHIMGEN cohort can be integrated
with cohorts of different ethnicities, geographic locations
and socioeconomic conditions to facilitate a cross-ethnic
and cross-geographic understanding of the human brain. By
integrating these cohorts, we can identify the effect of
ethnic factors on the brain by controlling for or stratifying
by geographic and socioeconomic factors. With the same
strategies, we can identify common and specific genetic-
neuroimaging associations in various ethnic populations.
More importantly, we can identify brain-related macro- and
micro-environmental factors that are common to all ethnic
populations or specific to a certain ethnic population.
Therefore, cross-ethnic and cross-geographic studies based
on integrated cohorts would enhance our understanding of
how human brains differ from each other.
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