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The secretion of Interleukin-4 (IL4) is the characteristic of T-helper 2 responses. IL4 is a cytokine produced by CD4+ T cells in
response to helminthes and other extracellular parasites. It has a critical role in guiding antibody class switching, hematopoiesis
and inflammation, and the development of appropriate effector T-cell responses. In this study, it is the first time an attempt has
been made to understand whether it is possible to predict IL4 inducing peptides. The data set used in this study comprises 904
experimentally validated IL4 inducing and 742 noninducing MHC class II binders. Our analysis revealed that certain types of
residues are preferred at certain positions in IL4 inducing peptides. It was also observed that IL4 inducing and noninducing epitopes
differ in compositional and motif pattern. Based on our analysis we developed classification models where the hybrid method of
amino acid pairs and motif information performed the best with maximum accuracy of 75.76% and MCC of 0.51. These results
indicate that it is possible to predict IL4 inducing peptides with reasonable precession. These models would be useful in designing

the peptides that may induce desired Th2 response.

1. Introduction

Cellular immune response to a pathogen is mediated through
the processing and presentation of antigen on the surface
via major histocompatibility complex (MHC). The exogenous
antigens are processed through lysosome and presented by
MHC class II. The loaded peptide on MHC class II interacts
with CD4+ T cells and a pattern of cytokine is synthesized
and secreted. Depending upon the cytokines secreted, the T-
helper cells polarize into diverse T-cell populations like Thl,
Th2, Thl7, or iTregs [1]. In Th2 cell population, interleukin-4
is the major cytokine secreted. IL4 had been shown to play
a critical role in diverse biological activities. This cytokine
promotes the proliferation and differentiation of antigen
presenting cells [2]. IL4 also plays a pivotal role in antibody
isotype switching and stimulates the production of IgE. This
cytokine has been applied in the treatment of autoimmune
disorder like multiple myeloma [3], cancer [4], psoriasis [5],
and arthritis [6]. IL4 has also been extensively applied to
inhibit detrimental effect of Thl [7]. Hence, for the rational
development of better immunotherapy/vaccines to provide
protection against infection, it is pivotal to assess the immune
response generated by these antigens.

Although this identification demands experimentally val-
idating the immune response generated by each antigen, this
investigation is time-consuming, cumbersome, and expen-
sive task since the possible antigens and corresponding frag-
ments range in millions [8-11]. Thus, the initial screening of
whole of pathogen’s proteome for potential antigens/regions
demands systematic computational approach. Over the last
decade, tremendous efforts has been made for identifying
antigenic regions or epitopes within antigens that can activate
desired arm of immune responses against a number of
pathogens. This has resulted into development of a number
of software applications, databases, and webservers that assist
researchers to design and select antigens to activate various
arms of the host immune system like humoral, cellular, and
innate immunity. In order to facilitate users, in the past a
number of methods have been developed to predict antigenic
regions/peptides or different types of epitopes such as MHC
class I/1I binders, TAP binders, linear/conformational B-cell
epitopes, and pathogen associated molecular patterns [12-15].

In the past, several methods have been developed for
identification of MHC class II binders that may activate
T-helper cells. These T-helper cells induce different types
of cytokines like IL-4 and IFN-gamma. Presently, available
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methods provide no information about the type of cytokine
a MHC II binding peptide will induce. In order to address
this issue, an attempt has been made to develop a method for
predicting IL-4 inducing MHC II binding peptides.

2. Methodology

2.1. Datasets Source and Processing

2.1.1. Main Dataset. It is important to select the right dataset
for developing a prediction method. The performance of the
method is largely dependent on the datasets used for training
a model. In this study datasets were generated from publicly
avaijlable immune epitope database (IEDB) [16]. We extracted
experimentally validated MHC class II binding T-helper
epitopes; peptides having length shorter than 8 residues
and longer than 22 residues were removed. Finally, we got
unique 904 IL4 inducing and 742 noninducing MHC class II
peptide sequences; we called these peptide sets as positive and
negative sets, respectively. This dataset was created without
any restrictions of host and source of epitopes.

2.1.2. Alternative Dataset. Since the main dataset includes
only MHC class-II binders, the prediction algorithm (based
on the above dataset) can only predict IL4 inducing peptides
from MHC class-1I binders. We are also interested in discrim-
inating the IL4 inducing peptide from the random peptides.
Thus, we created an alternate dataset for building prediction
models that can be used for mapping IL4-inducing peptides
in antigens. Our alternate dataset has random peptides as
negative set instead of non-IL4-inducing peptides. We gen-
erated IL4 noninducing (negative examples), from SwissProt
proteins.

2.2. Peptide Length and Amino Acid Position Analysis. We
first analyzed the IL4 inducing positive and noninducing
negative sequences, to comprehend the preferred peptide
length for both positive and negative peptides, by using R-
package for creating boxplot [17]. We also tried to understand
the preference of specific amino acids at a specific position.
For this, we created a two-sample logo from first 15 amino
acids from N-terminal of all the peptides, using the two-
sample logo software [18].

2.3. Motif Analysis. The recognition of functional motifs in
peptide or proteins constitutes an important element in func-
tional annotation of sequences [19]. In the present study, we
have employed publicly available software MERCI for selec-
tion of exclusive motifs in IL4 inducing and noninducing
MHC class II binding peptides [20]. MERCI compares both
the positive and negative input sequences and selects the
specific motifs in the positive datasets. Thus, in our analysis,
to understand specific motifs for both IL4 inducing and
noninducing peptides, we analyzed our datasets using two-
step strategy. In this approach, we first provided MERCI with
IL4 inducing peptides as positive input and IL4 noninducing
peptides as negative input and extracted the motifs for
IL4 inducing peptides. In the next step, we reversed the
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datasets; that is, we provided MERCI with IL4 noninducing
peptides as positive datasets and IL4 inducing peptides as
negative datasets and obtained the motifs important for IL4
noninducing peptides.

We further explored 100 degenerate motifs using three
kinds of classification: (i) none, (ii) Koolman-Rohm [21], and
(iii) Betts-Russell [22]. Top 10 motifs were extracted based on
their unique sequence coverage. These different classification
methods were employed to further discover different motifs
in positive and negative peptides. Finally, unique motif con-
taining peptides from both IL4 inducing positive dataset and
IL4 noninducing negative dataset were selected, to calculate
overall motif coverage in these sequences.

2.4. Amino Acid and Dipeptide Compositions. We next ana-
lyzed the residue composition of these IL4 inducer and
noninducer peptides. For this, we used in-house Perl scripts
to calculate the amino acid composition of the peptide and
summarize the intact epitope information in a fixed vector
length. The algorithm calculates amino acid composition
(AAC) using the following formula and a vector of dimension
20 is used to represent amino acid composition of a peptide:

composition of amino acid (i)

total number of amino acid (i) x 100 M

~ total number of all amino acids in epitope’

where i can be any amino acid.

Likewise, the algorithm calculates dipeptide composition
(DPC) and a vector of dimension 400, representing a peptide,
using the following formula:

composition of dipeptide (i+ 1)

total number of dipeptide (i + 1) x 100

~ total number of all possible dipeptides in epitope’
)

where i can be any amino acid and (i + 1) is dipeptide pair
with next residue in epitope.

2.5. Amino Acid Pairs. Amino acids pairs (AAP) based
method represents the input epitope by a vector of fixed
vector length (400) by incorporating the information from
each amino acid pair and their propensity in the given dataset.
This approach had shown its potential in past for predicting
B-cell epitope [23].

2.6. Calculation of Binary Patterns. Here, we converted posi-
tive and negative examples into binary codes, where each
amino acid is represented by a vector of dimension 20 (e.g.
Ala by 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0; Cys by 0,1,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0). Using these binary vectors, differ-
ent peptides were represented, such as a 15-amino acid long
peptide which is represented by a vector of dimension 300
(15 x 20).

2.7 Support Vector Machine Learning Approach. In this study,
classification models have been developed using machine
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learning technique support vector machine (SVM). In order
to implement or develop SVM models, we used software
SVMlight [24]. SVM models were developed using different
features such as amino acid composition and amino acid
pairs. In order to train or optimize the performance, we tuned
all SVM parameters including three types of kernels (linear,
polynomial, and radial bias).

2.8. Hybrid Approach. We further employed a hybrid ap-
proach, where we combined the predictions from both
motif and model based methods. In a hybrid approach, the
weight of +1 was given to the peptide having IL4 motif
(exclusively found in IL4 inducing peptides) and —1 was given
to peptide having a non-IL4-motif (exclusively found in non-
IL4-inducing peptides). We developed several hybrid models
depending on the type of vector inputs used for SVM based
prediction.

2.9. Evaluating the Performance of Models Validation. In
order to develop reliable prediction models, we trained and
tested our models using fivefold cross-validation technique.
In this analysis, the whole dataset is divided randomly into
five equal parts, and each time four sets are used for training
our models and remaining set is used for testing. This pro-
cedure is repeated five times so that each set is tested once
and four times it is used for training. The final performance
of the model is evaluated by averaging the performance of
models on each set. The performance of models was mea-
sured using the following standard parameters, that is, sen-
sitivity, specificity, accuracy, and Matthew’s correlation coef-
ficient (MCCQC).

2.10. Data Analysis. In order to understand the properties of
the IL4 inducers, we analyzed both IL4 inducer (IL4+) and
noninducer (IL4—) MHC class II binding epitopes extracted
from IEDB. There are several studies where authors have
exploited physiochemical properties (PCPs) of peptides to
discriminate one class of peptide from other classes [25].
We examine various PCPs (such as hydrophilicity, hydropho-
bicity, charge, steric effect, side bulk, pI, hydropathy, and
amphipathy) of IL4+ and IL4— peptides [26]. In our analysis,
we calculated the average of PCP in three different manners:
(i) Average of that PCP at a particular position of 15 N-ter-
minal or C-terminal residues; (ii) average of the sum of
PCP of all the peptides; for example, hydrophilicity of every
peptide was calculated by the sum of hydrophilicity of every
residue and average of all IL4+ peptides was taken; (iii)
average of the sum of PCP of selected residues of N’ and C’
terminals, after analysis of discriminating residue positions;
for example, 1, 2, 3, 5, and 12 positions of N’ terminal
were selected for hydrophilicity (see Figure 1S in Supple-
mentary Material avialable online at http://dx.doi.org/10.1155/
2013/263952).

3. Results

3.1. Peptide Length Analysis. We first compared the length of
the two types of peptides and observed that average length
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FIGURE 1: Box plot to represent the variation of peptide length in IL4
inducing and non-IL4-inducing dataset.
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FIGURE 2: Bar plot representing the average percentage composition
of residue in IL4 inducing and non-IL4-inducing datasets. * here
represents the significantly different residues at P value <0.05.

of 114 inducing and noninducing peptides is not significantly
different. We could not find any significant relation between
length of sequence and its potential to induce IL4 production
(Figure 1).

3.2. Amino Acid Composition. We also compared amino
acid composition of IL4+ and IL4- peptides and found
compositional biasness between two types of peptides. It was
observed that residues E, E, K, and I are more abundant in IL4
inducing peptides, while IL4 noninducing sequences majorly
include G, D, and L (Figure 2).

3.3. MHC Alleles Skewness. We have analyzed the role of
MHC alleles to skew the immune response to induce IL4
cytokine. The dataset that comprises 1759 epitopes was
derived from 2845 IL4 assays and MHC alleles were unde-
termined in 1901 (66.8%) assays. The rest of assays (33.2%)
were restricted to 91 MHC alleles. Out of these 91 alleles, 34
alleles were observed in IL4 positive as well as IL4 negative
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FIGURE 3: Representing the percentage bar plot of IL4 positive and IL4 negative epitope with corresponding MHC alleles.
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FIGURE 4: Two-sample logo displaying the positional conservation
of amino acid for NI5 residue among positive and negative dataset.

assays (Figure 2S). We have also found 10 alleles for which IL4
assays were returned as exclusively negative and 47 alleles for
which all the IL4 assays were resulted as exclusively positive
(Figure 3). The most promiscuous MHC allele for exclusive
IL4 positive assays was HLA-DR7, which could bind to 9
different epitopes and induce IL4 cytokine.

3.4. Positional Preference of Residues. The amino acid com-
positional analysis described the overall dominant residues
in IL4 inducing and noninducing peptides. However, this
information does not specify the positional preference of
specific amino acid residues at specific positions. In order to
know the preference of a particular amino acid at different
positions or at N- or C-terminals, we created the two-sample
logo for our positive and negative IL4 peptides. Two-sample
logo as depicted in Figure 4 showed that certain residues
are preferred at specific positions; in IL4 inducers charged
residues are preferred at 2nd, 5th, 9th, 10th, and 15th positions
while leucine or proline residues are abundant in non-IL4-
inducing at Ist, 2nd, 5th, 6th, 7th, 12th, and 13th positions.
These results clearly suggest that the IL4 inducing and IL4

noninducing MHC class II binders can be discriminated on
the basis of residues preferences.

In order to look at position specific proclivity of different
PCPs as mentioned in the method section, we calculated
the average of every PCP, at every position of N’ and C’
terminal as mentioned in the method section. For every PCP,
we found various positions showing discriminating values in
plot (Figure 1S); for example, 1, 2, 3, 5, and 12 positions of
N’ terminal show high hydrophilicity in IL4+ peptides. Based
on these observations we selected discriminating residues for
PCP as mentioned in Table 1S. We selected some of the dis-
criminating PCP and looked at the average of the sum of PCP
of IL4+, IL4—, 114 + Nt, IL4 — Nt, IL4 + Ct, and IL — Ct amino
acid sequences (Figure 3S) (see the Method section). We
found hydrophilicity, pI, amphipathicity, steric, and charge
properties, discriminating between IL4+ and IL4— data. On
the other hand, the sum of PCP of selected residue positions
(see the Method section) showed a significant difference in all
the PCPs (Figure 4S).

3.5. Motif Search. We next tried to determine exclusive
motifs or patterns in IL4 inducing peptides by using MERCI
software. We used three types of classification, that is, none,
Koolman-Rohm, and Betts-Russell, to determine 100 motifs
in peptides. It was observed that Betts-Russell classification
significantly discriminated 205 IL4 inducers from noninduc-
ers and Koolman-Rohm was significantly distinguished 150
non-IL4-inducers from IL4 inducers (Table 1).

Collectively, motifs generated from all types of classifi-
cation discriminated 333 positive and 237 negative peptides.
The best motifs generated from each classification are listed in
Table 2. The most recurring motif in 51 positive peptides was
“[hydrophobic]K[hydrophobic] [small][polar]-P[charged]”
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TaBLE 1: Exclusive motifs of different class found in IL4 inducing and
non-inducing peptides. These motifs were discovered using MERCI
software.

No. of exclusive No. of exclusive

Serial Class of

. IL4 inducing non-IL4-inducing
no. motifs . .
peptide peptide
1 None 103 137
Koolman-
2 Rohm 167 150
3 Betts-Russell 205 128
4 Total unique 333 237

Similarly, “[aliphatic][hydrophobic][aliphatic] [hydrophobic]
[aliphatic]-L-[aliphatic]” motif was repeated in 41 IL4 non-
inducing sequences. Both of these motifs were found to be
absent from the alternative datasets.

3.6. SVM Based Prediction Model. We developed prediction
models using SVM that is widely used in the past for
classification models [27-30]. In the present work, we first
developed a SVM based model using amino acid and dipep-
tide composition of the IL4 inducers and noninducers. With
this model, we attained a maximum MCC of 0.29 and 0.3],
respectively (Table 3). As we have initially observed that the
length of the sequence is not contributing to the IL4 inducing
or noninducing potential of the peptide, we also developed
a SVM model based on amino acid composition, dipeptide
composition with length of the peptide, and observed no
significant improvement in the performance (Table 2S).

We further developed another SVM model based on
binary profile of amino acids of the peptides, where a vector
of dimension 20 represents each residue. The compositional
variation plot for each residue in IL4 inducing and noninduc-
ing peptides and the performance of SVM model based on
binary profile of N-/C-terminal residues were also analyzed
(depicted in Table 3S).

3.7 Hybrid Prediction Model. We adopted a hybrid approach
for prediction of IL4 peptides by combining the prediction
based on SVM model and motif search. The datasets were first
sorted based on the exclusive motifs searched in positive and
negative peptides using MERCI. The initial search identified
333 IL4 inducing and 237 IL4 noninducing MHC class II
binding peptides, and these sequences were given weightage
by adding +1 and -1, respectively, in SVM score in the hybrid
method. Additionally, in this hybrid approach, we developed
four different models using different input features each time
(Table 4). This technique resulted in better performance of
each of the four hybrid models over motif or SVM model
alone. In the hybrid model, while combining amino acid pairs
and motif search, we obtained a maximum MCC of 0.51.
Furthermore, fivefold cross-validation technique was used to
test the robustness of all prediction models.

3.8. Models for Discovering 1L4 Inducing Peptides. All the
models described above has been developed on main dataset
that contain experimentally validated IL4 inducing and

noninducing MHC class II binders. These models only can
be used for predicting IL4 inducing peptides if users know
that their query peptide is MHC class II binders. In order to
provide service to the community we developed models on
alternate dataset that can be used to discover IL4 peptides in
proteins/antigens. As described in Materials and the Methods
section our alternate dataset contains negative set/examples
random peptide. We developed models on alternate dataset
and achieved maximum accuracy of 70% (Table 5).

3.9. Model Validation. Performance on independent dataset
is one of the best ways to validate a prediction model. As
the IEDB database is continuously updated, we extracted the
71-peptide novel entries (deposited after extraction of our
dataset) from IEDB for MHC class II binders for which IL4
assay was positive. Out of 71 peptides our best model correctly
predicted 49 epitopes at default threshold.

4. Discussion

With the advent of the next generation sequencing tech-
niques, the designing of rational vaccines based on the
immunogenic features of peptides has become a need of
the modern era. Identification of peptides or antigenic that
can activate all arms of the immune system is important for
designing effective immunotherapy or epitope/subunit vac-
cine. It means vaccine candidates (peptide/antigen) should
have antigenic regions that can activate both B-cell and T-
cell epitopes (MHC Class I or II peptides). The Th2 response
is very important in vaccine or immunotherapy design
against extracellular pathogen. IL4 is the principal cytokine
that directs commitment of T cells to Th2 phenotype [31].
Therefore, in this study an attempt had been made to predict
the IL4 inducing MHC class II binders.

We extracted experimentally validated MHC class II
binding peptides from IEDB with and without IL4 inducing
potential. We initially analyzed both these datasets to select
important features that could lay the basis for the IL4
inducing capability of the peptide. It is well documented that
the binding of peptides to MHC complex is largely dependent
on the length of the peptides [32]; thus we also examine the
length of both IL4 inducing and noninducing peptides. We
observed that the length of both IL4 inducing and noninduc-
ing is in the same range. This is the reason that our peptide
composition based SVM models developed with peptide
length as an additional feature have not resulted in improve-
ment of the performance (Table 2S). Likewise, the length
of the peptide and the conservation of amino acid resid-
ues at a specific position also play a crucial role in describing
the IL4 inducing properties of peptides.

MHC alleles are well documented in literature for thier
capability to skew the immune response [33-35]. Our analysis
also supports this notion and we have observed 47 MHC
alleles that are shown to induce IL4 cytokine. On comparison
of IL4 inducing and noninducing reference sequences, it was
observed that charged residues preferentially occupy 2nd,
5th, 9th, 10th, and 15th positions in IL4 inducing sequence,
while aliphatic and aromatic residues largely reside at 1st, 2nd,
5th, 6th, 7th, 12th, and 13th positions in IL4 noninducing



Clinical and Developmental Immunology

TABLE 2: Frequency of best motifs discovered using MERCI software in IL4 inducers and IL4 noninducers.

Class of motifs Found in IL4 inducers Frequency Found in IL4 noninducers Frequency
None I-N-KI P-D-D-P 22
Koolman-Rohm [acidic][aliphatic]-K-[aromatic][neutral]-K Ll[aliphatic][aliphatic]-L [aliphatic]-L[aliphatic] 29
Betts-Russell [hydrophobic]K[hydrophobic][small][polar]- [aliphatic] [hydrophobic][aliphatic] [hydrophobic] 41

P[charged]

[aliphatic]-L-[aliphatic]

Negative sign (—) represents the gaps with the length of 1-5 residues at that position.

TaBLE 3: The performances of SVM models developed using various compositional features of peptides on rbf-kernel. The optimized

parameters have been given in the brackets.

AAC (g:0.001; ¢: 3; j: 1)

DPC (g: 0.001; c: 3; j: 1)

AAP (g: 01 ¢c:1; j: 1)

Thres. Sen. Spec. Acc. MCC. Sen. Spec. Acc. MCC. Sen. Spec. Acc. MCC.
-1 9723 14.56 59.96 0.22 98.67 8.22 57.9 0.17 99.78 0.81 55.16 0.04
-0.9 96.57 18.06 61.18 0.24 97.68 12.26 59.17 0.2 99 4.85 56.56 0.12
-0.8 95.46 20.75 61.79 0.25 97.01 17.25 61.06 0.24 98.89 7.01 57.47 0.15
-0.7 94.03 24.39 62.64 0.26 95.69 217 62.33 0.26 98.56 9.7 58.51 0.19
-0.6 92.37 2736 63.06 0.26 94.47 25.88 63.55 0.29 979 12.94 59.6 0.21
-0.5 90.49 30.59 63.49 0.27 92.26 28.71 63.61 0.28 96.46 16.04 60.21 0.22
-0.4 88.38 33.83 63.79 0.27 90.15 33.56 64.64 0.29 95.69 19.68 61.42 0.24
-0.3 85.62 372 63.79 0.26 86.17 38.27 64.58 0.28 94.25 23.85 62.52 0.26
-0.2 82.41 41.24 63.85 0.26 83.3 43.53 65.37 0.29 91.92 28.98 63.55 0.27
-0.1 78.87 45.82 63.97 0.26 80.09 48.65 65.92 0.3 88.38 34.23 63.97 0.27
0 75.77 49.6 63.97 0.26 75.44 54.45 65.98 0.31 83.74 42.59 65.19 0.29
0.1 73.12 54.04 64.52 0.28 70.24 59.7 65.49 0.3 77.99 54.85 67.56 0.34
0.2 69.14 59.43 64.76 0.29 65.49 65.9 65.67 0.31 70.58 67.25 69.08 0.38
0.3 63.94 63.88 63.91 0.28 60.4 70.62 65.01 0.31 49.12 79.11 62.64 0.29
0.4 58.3 67.79 62.58 0.26 54.76 74.53 63.67 0.3 30.97 88.01 56.68 0.23
0.5 53.1 73.18 62.15 0.27 4779 78.44 61.6 0.27 21.13 91.64 52.92 0.18
0.6 48.01 76.55 60.87 0.25 39.27 82.35 58.69 0.24 15.27 94.47 50.97 0.16
0.7 40.82 80.19 58.57 0.23 32.08 86.25 56.5 0.21 11.06 96.23 49.45 0.14
0.8 34.85 84.1 57.05 0.21 26.55 89.62 54.98 0.2 7.3 97.84 48.12 0.12
0.9 28.87 87.06 55.1 0.19 19.91 92.18 52.49 0.17 4.65 98.79 47.08 0.1

1 23.45 90.03 53.46 0.18 12.94 95.01 49.94 0.14 2.21 99.46 46.05 0.07

peptides. It is thoughtful that such a differential preference
of amino acids might be responsible for activating different
factors for downstream signaling. Here, it is important to
mention that these positional preferences could not be related
to MHC groove as the information was extracted from the
sequential comparison of epitopes.

Distinction of different immune epitopes has already
been reported with different PCPs in the past [36]. In our ana-
lysis, PCPs like hydrophilicity, amphipathy, charge, pl, and
so forth (Figures 3S and 4S) showed difference in IL4+ and
IL4- peptides both in full length and N/C' terminal residues.
The study with selected residues showed that hydrophilicity,
pl, amphipathicity, steric, and charge properties are more
profound in IL4+ peptides (Table 1S). We, next, analyzed the
IL4 inducing and noninducing reference sequences for the
presence of exclusive motifs that may distinguish both these
types of sequences, by using MERCI software. Using MERCI,
the exclusive motifs could be hunted by employing different
classification of amino acids as proposed in the literature.
We analyzed our reference IL4 inducing and noninducing

dataset on these classifications and found that best results
were obtained with Betts-Russell classification. The top ten
motifs from each classification, based on the uniqueness
in their sequence coverage, were capable of distinguishing
333 IL4 inducing epitopes and 237 non-IL4-inducing epi-
topes.

Next, we tried to discriminate IL4 inducers and nonin-
ducers by use of machine learning technique. For analysis
of positional feature of a sequence by SVM, binary patterns
of the sequences were used as input. Since binary patterns
of peptides could only be applied at a fixed length, we gen-
erated different binary inputs by varying the length of amino
acids from 9 to 15 through both N and C terminals of a pep-
tide. The performance of SVM model based on these inputs
showed a MCC of 0.18. Further, we analyzed the residue and
dipeptide compositional vector of IL4 inducer and nonin-
ducer sequences. It was observed that the models based on
compositional profile performed better than models trained
on binary patterns, possibly because this attribute of the
sequence does not depend upon the length of the peptide as it
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TABLE 4: The performance of hybrid models that combines motif based approach and SVM models developed using various compositional

features of peptides on rbf-kernel. The optimized parameters have been given in the brackets.

AAC_MOTIF (g: 0.03; ¢: 2; j: 1)

DPC_MOTIF (g: 0.0 c: 3; j: 1)

AAP_MOTIF (g: 0.1; c: 1; j: 1)

Thes. Sen. Spec. Acc. MCC. Sen. Spec. Acc. MCC. Sen. Spec. Acc. MCC.
-1 99.56 17.92 62.76 0.31 98.89 2722 66.59 0.39 99.78  20.62  64.09 0.35
-0.9 99.23 2547 6598 0.38 979 30.05 6731 0.39 99.12 252 65.8 0.37
-0.8 99.23  30.05  68.04 0.42 97.01 3342 6835 0.41 99 29.92 67.86 0.41
-0.7 99.12 31.54 68.65 0.43 95.91 372 69.44 0.42 98.67  33.69  69.38 0.44
-0.6 98.56  33.29 69.14 0.43 94.69  40.03  70.05 0.42 98.12 3652 7035 0.45
-0.5 98.34 341 69.38 0.44 93.14 4326  70.66 0.43 97.01 38.41 70.6 0.45
-0.4 97.9 34.64  69.38 0.43 91.26 4582  70.78 0.42 96.68  39.62  70.96 0.45
-0.3 97.01 36.12 69.56 0.43 89.16 50.27 71.63 0.43 95.46 4218 71.45 0.46
-0.2 96.68 37.33 69.93 0.43 86.17 5633  72.72 0.45 93.58 45.15 71.75 0.45
-0.1 94.58  39.62 69.81 0.42 83.19 60.92 73.15 0.46 91.04 4798 71.63 0.44
0 9126 4528  70.53 0.42 79.09 6496 7272 0.45 88.16 5445  72.96 0.46
0.1 7113 7156  71.32 0.43 76.33  69.41  73.21 0.46 84.07 6321  74.67 0.49
0.2 5343 8895  69.44 0.44 72.23 72.51 72.36 0.45 78.76 72.1 75.76 0.51
0.3 47.9 93.8 68.59 0.46 67.37 76.28 71.39 0.43 66.26 8113 72.96 0.47
0.4 4392  95.69 67.25 0.45 63.83 7857 7047 0.42 5498  89.08  70.35 0.46
0.5 4115 97.84 66.71 0.46 5863  83.02  69.62 0.42 4834 9218 68.1 0.44
0.6 3993 9852  66.34 0.46 53.43 86.25  68.23 0.41 4447  95.01 67.25 0.44
0.7 38.72 99.19 65.98 0.46 49.12 89.49 6731 0.41 41.48 96.5 66.28 0.44
0.8 3717 99.46  65.25 0.45 44.47 91.91 65.86 0.4 38.61 97.84 65.31 0.44
0.9 36.06  99.46  64.64 0.44 40.04 93.8 64.28 0.39 3562 9879  64.09 0.43
1 34.85 99.6 64.03 0.43 35.62  95.69 62.7 0.38 3285 9946  62.88 0.42

TaBLE 5: The performance of SVM models developed on alternate dataset using various compositional features of peptides on rbf-kernel.

Features Param. Threshold Sensitivity Specificity Accuracy MCC ROC
AAC g:0.001; c: 4; j: 1 0 65.48 64.37 64.92 0.3 0.68
DPC g:0.001;¢:9; j: 5 0 68.22 67.61 67.92 0.36 0.75
AAP g:0.055¢: 35 j: 1 0.1 69.44 72.28 70.86 0.42 0.78

has a fixed feature input of 20 and 400 for residue composition
and dipeptide composition vector, respectively.

We have also developed hybrid model, by employing
the information from motif and machine learning. In the
hybrid approach, the weightage has been given to sequences
that could be predicted with exclusive motifs searched using
MERCI. We observed that the performance was improved up
to a value of MCC 0.51 using hybrid of MERCI and amino
acid pair. This could be attributed to the role of propensity
and exclusive motifs in prediction of IL4 inducing epitopes
as it was also publicized for B-cell epitopes [23]. The AAP
feature may have some biasness as they incorporate weightage
information from the whole data.

Performance of our model on independent dataset was
that 69% (49 out of 71) is satisfactory. This performance is
comparable with 78.76% sensitivity at fivefold cross-valida-
tion on training dataset. In summary, we have developed the
in silico prediction method that can aid in understanding
the IL4 inducing potential of the antigens in computer aided
rational vaccine design for better control of diseases.

5. Conclusion

The tendency of an epitope to induce IL4 and skew the
immune response towards Th2 makes it of great significance
in immunotherapy and vaccine designing. Although the
induction of IL4 response is a very complex issue that
depends on a number of factors like cytokine milieu, MHC
haplotype, the costimulatory molecules, and peptide itself,
a peptide is an important factor that could be controlled
easily while designing a vaccine or immunotherapy. However,
Th2 response includes other cytokines like IL5 and IL10; we
only focused on IL4 cytokine. Although the experimental
evidence for Th2 peptides is limited, our computational
analysis appears to support their existence.

Keeping this limitation in mind, we have made an attempt
to predict the peptides that may induce IL4 response. In this
study we evaluate performance of our models using fivefold
cross-validation as well as evaluating performance of our
method on an independent dataset. It was observed that
our model predicts IL4 inducing peptides with reasonable



accuracy. In order to facilitate the scientific community work-
ing in the area of subunit vaccine, we have used the above
models for developing a webserver IL4pred (http://crdd.osdd
.net/raghava/il4pred/).

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Authors’ Contributions

SKD created dataset and developed prediction models. SG
performed the analysis. The paper was written by SKD and SG
and improved by PV and GPSR. GPSR supervised the project.

Acknowledgments

The authors are thankful to the funding agencies: Council of
Scientific and Industrial Research (project OSDD and GEN-
ESIS BSCO0121) and Department of Biotechnology (project
BTISNET), and Government of India. They are thankful
to Mr. Kumardeep for his sincere help in implementation
of “quantitative matrix module” in the webserver. They
also acknowledge the Indian Council of Medical Research
(ICMR) for providing fellowship to Mr. Sandeep.

References

[1] I. Gutcher and B. Becher, “APC-derived cytokines and T cell
polarization in autoimmune inflammation,” Journal of Clinical
Investigation, vol. 117, no. 5, pp- 1119-1127, 2007.

[2] M. A. Brown and J. Hural, “Functions of IL-4 and control of its
expression,” Critical Reviews in Immunology, vol. 17, no. 1, pp.
1-32,1997.

[3] M. Rocken, M. Racke, and E. M. Shevach, “IL-4-induced
immune deviation as antigen-specific therapy for inflammatory
autoimmune disease;” Immunology Today, vol. 17, no. 5, pp. 225-
231, 1996.

[4] A. Kajiwara, H. Doi, J. Eguchi et al., “Interleukin-4 and CpG
oligonucleotide therapy suppresses the outgrowth of tumors by
activating tumor-specific Thl-type immune responses;,” Oncol-
ogy Reports, vol. 27, no. 6, pp. 1765-1771, 2012.

[5] K.Ghoreschi, P. Thomas, S. Breit et al., “Interleukin-4 therapy of
psoriasis induces Th2 responses and improves human autoim-
mune disease;,” Nature Medicine, vol. 9, no. 1, pp. 40-46, 2003.

[6] E.Lubberts, L. A. B. Joosten, M. Chabaud et al., “IL-4 gene ther-
apy for collagen arthritis suppresses synovial IL-17 and osteo-
protegerin ligand and prevents bone erosion,” Journal of Clinical
Investigation, vol. 105, no. 12, pp. 1697-1710, 2000.

[7] T. Biedermann, S. Zimmermann, H. Himmelrich et al., “IL-4
instructs THI responses and resistance to Leishmania major in
susceptible BALB/c mice,” Nature Immunology, vol. 2, no. 11, pp.
1054-1060, 2001.

[8] A.S. De Groot, H. Sbai, C. S. Aubin, J. McMurry, and W. Mar-
tin, “Immuno-informatics: mining genomes for vaccine com-
ponents,” Immunology and Cell Biology, vol. 80, no. 3, pp. 255-
269, 2002.

Clinical and Developmental Immunology

[9] B.N.Sobolev, V. V. Poroikov, L. V. Olenina, E. F. Kolesanova, and
A. 1. Archakov, “Computer-assisted vaccine design,” Biomedical
Chemistry (Moscow), vol. 49, no. 4, pp. 309-332, 2003.

[10] S. Vivona, J. L. Gardy, S. Ramachandran et al., “Computer-
aided biotechnology: from immuno-informatics to reverse vac-
cinology,” Trends in Biotechnology, vol. 26, no. 4, pp. 190-200,
2008.

[11] R.]. Zagursky, S. B. Olmsted, D. P. Russell, and J. L. Wooters,
“Bioinformatics: how it is being used to identify bacterial
vaccine candidates,” Expert Review of Vaccines, vol. 2, no. 3, pp.
417-436, 2003.

[12] H.Singh and G. P. S. Raghava, “ProPred: prediction of HLA-DR
binding sites,” Bioinformatics, vol. 17, no. 12, pp. 1236-1237, 2002.

[13] S. Saha and G. P. S. Raghava, “Prediction of continuous B-cell
epitopes in an antigen using recurrent neural network,” Proteins,
vol. 65, no. 1, pp. 40-48, 2006.

[14] H. R. Ansari and G. P. Raghava, “Identification of conforma-
tional B-cell Epitopes in an antigen from its primary sequence,”
Immunome Research, vol. 6, no. 1, article 6, 2010.

[15] T. Stranzl, M. V. Larsen, C. Lundegaard, and M. Nielsen,
“NetCTLpan: pan-specific MHC class I pathway epitope pre-
dictions,” Immunogenetics, vol. 62, no. 6, pp. 357-368, 2010.

[16] R. Vita, L. Zarebski, J. A. Greenbaum et al., “The immune
epitope database 2.0,” Nucleic Acids Research, vol. 38, no. 1, pp.
D854-D862, 2010.

[17] R Development Core Team, R: A Language and Environment for
Statistical Computing, R Foundation for Statistical Computing,
Vienna, Austria, 2009.

[18] V. Vacic, L. M. Iakoucheva, and P. Radivojac, “Two Sample Logo:
a graphical representation of the differences between two sets of
sequence alignments,” Bioinformatics, vol. 22, no. 12, pp. 1536-
1537, 2006.

[19] E.Redhead and T. L. Bailey, “Discriminative motif discovery in
DNA and protein sequences using the DEME algorithm,” BMC
Bioinformatics, vol. 8, article 385, 2007.

[20] C. Vens, M.-N. Rosso, and E. G. J. Danchin, “Identifying dis-
criminative classification-based motifs in biological sequences,’
Bioinformatics, vol. 27, no. 9, pp. 1231-1238, 2011.

[21] U. Holzgrabe, “Color Atlas of Biochemistry, J. Koolman, K.H.
R6hm, Thieme Verlag Stuttgart, 1996, 433 p, DM 49, 80, ISBN
3-13-100371 -5,” Pharmazie in Unserer Zeit, vol. 26, no. 3, pp. 167
167, 1997.

[22] M.R.Barnesand I. C. Gray, Eds., BioinFormatics for Geneticists,
John Wiley & Sons, Chichester, UK, 2003.

[23] Y. El-Manzalawy, D. Dobbs, and V. Honavar, “Predicting flexible
length linear B-cell epitopes,” Computational Systems Bioinfor-
matics/Life Sciences Society. Computational Systems Bioinfor-
matics Conference, vol. 7, pp. 121-132, 2008.

[24] T. Joachims, “Making large-scale SVM learning practical,”
in Advances in Kernel Methods—Support Vector Learning, B.
Scholkopf, C. Burges, and A. Smola, Eds., MIT-Press, 1999.

[25] M. Torrent, D. Andreu, V. M. Nogués, and E. Boix, “Connecting
peptide physicochemical and antimicrobial properties by a
rational prediction model,” PloS ONE, vol. 6, no. 2, Article ID
€16968, 2011.

[26] S. Kawashima, P. Pokarowski, M. Pokarowska, A. Kolinski, T.
Katayama, and M. Kanehisa, “AAindex: amino acid index data-
base, progress report 2008,” Nucleic Acids Research, vol. 36, no.
1, pp. D202-D205, 2008.

[27] S.Lata, M. Bhasin, and G. P.S. Raghava, “Application of machine
learning techniques in predicting MHC binders,” Methods in
Molecular Biology, vol. 409, pp. 201-215, 2007.


http://crdd.osdd.net/raghava/il4pred/
http://crdd.osdd.net/raghava/il4pred/

Clinical and Developmental Immunology

(28]

(30]

(34]

(36]

M. Bhasin and G. P. S. Raghava, “Pcleavage: an SVM based
method for prediction of constitutive proteasome and immuno-
proteasome cleavage sites in antigenic sequences,” Nucleic Acids
Research, vol. 33, no. 2, pp. W202-W207, 2005.

T. H. Lam, H. Mamitsuka, E. C. Ren, and J. C. Tong, “TAP
Hunter: a SVM-based system for predicting TAP ligands using
local description of amino acid sequence,” Immunome Research,
vol. 6, no. 1, article S6, 2010.

B. Yao, L. Zhang, S. Liang, and C. Zhang, “SVMTriP: a method
to predict antigenic epitopes using support vector machine to
integrate tri-peptide similarity and propensity,” PloS ONE, vol.
7,no. 9, Article ID e45152, 2012.

A.K. Abbas, K. M. Murphy, and A. Sher, “Functional diversity of
helper T lymphocytes,” Nature, vol. 383, no. 6603, pp. 787-793,
1996.

S. T. Chang, D. Ghosh, D. E. Kirschner, and J. J. Linderman,
“Peptide length-based prediction of peptide—MHC class II
binding,” Bioinformatics, vol. 22, no. 22, pp. 2761-2767, 2006.

FE. M. Marincola, P. Shamamian, L. Rivoltini et al., “HLA associ-
ations in the antitumor response against malignant melanoma,”
Journal of Immunotherapy, vol. 18, no. 4, pp. 242-252, 1995.

C. Pfeiffer, J. Stein, S. Southwood, H. Ketelaar, A. Sette, and
K. Bottomly, “Altered peptide ligands can control CD4 T lym-
phocyte differentiation in vivo,” Journal of Experimental Med-
icine, vol. 181, no. 4, pp. 1569-1574, 1995.

I. G. Ovsyannikova, R. A. Vierkant, V. S. Pankratz, M. M.
O’Byrne, R. M. Jacobson, and G. A. Poland, “HLA haplotype
and supertype associations with cellular immune responses and
cytokine production in healthy children after rubella vaccine;”
Vaccine, vol. 27, no. 25-26, pp. 3349-3358, 2009.

S. Saha and G. P. S. Raghava, “Prediction methods for B-cell
epitopes,” Methods in Molecular Biology, vol. 409, pp. 387-394,
2007.



