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It is important to correctly and efficiently predict the interaction of substrate-enzyme and to predict their product in metabolic
pathway. In this work, a novel approach was introduced to encode substrate/product and enzyme molecules with molecular
descriptors and physicochemical properties, respectively. Based on this encodingmethod, KNNwas adopted to build the substrate-
enzyme-product interaction network. After selecting the optimal features that are able to represent the main factors of substrate-
enzyme-product interaction in our prediction, totally 160 features out of 290 features were attained which can be clustered into
ten categories: elemental analysis, geometry, chemistry, amino acid composition, predicted secondary structure, hydrophobicity,
polarizability, solvent accessibility, normalized van der Waals volume, and polarity. As a result, our predicting model achieved an
MCC of 0.423 and an overall prediction accuracy of 89.1% for 10-fold cross-validation test.

1. Introduction

With the completion of gene sequencing projects, scientific
focus is shifting from the investigation of the proteomics
to metabonomics which is of chemical processes involv-
ing metabolites. Metabolism consists of almost all of the
chemical-chemical reactions or chemical-macromolecules
reactions that generally take place within metabolic pathway
[1]. Above linked individual interactions form the whole
metabolic pathway and interaction network which produce
more new complex and higher order structure [2]. Metabolic
pathways are sequences of metabolic steps forming highly
regulated networks of interacting enzymes and substrates.
In metabolic pathways, the substrate is transformed through
a series of steps into another chemical, by a sequence of
enzymes. Given a substrate and an enzyme, people may

wonder whether they can interact with each other or what
is the product. Herein, network of interaction of substrate-
enzyme-product can provide assistance in R&D of drug. For
example, based on interaction of substrate-enzyme-product,
maybe people can discover some candidate drug from nature
product, and can even predict its potential side effect [3].
Besides this, network of interaction of substrate-enzyme-
product can also be applied in evaluating the safety of
research of Genetically Modified Food (GMF). By using the
network of substrate-enzyme-product, the potential toxicity
of product derived fromGMF could be predicted. Hence, the
interaction network of substrate-enzyme-product will pro-
vide us further knowledge and information beyondmetabolic
pathway.

Due to the complexity of metabolic pathways, it is both
time-consuming and costly to determine the interaction of
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substrate-enzyme-product by experiments. It is in urgent to
develop a quick, reliable, and effective approach to predict the
interactions among substrate, enzyme, and product.

In this study, we reported a computational approach for
predicting the network of substrate-enzyme-product triads
based on K-nearest neighbor (KNN) [4–6] algorithm com-
bined with mRMR-IFS feature selection method.

2. Methods and Materials

2.1. Methods

2.1.1. mRMR. Minimum Redundancy Maximum Relevance
(mRMR), proposed by Peng et al., is an effective feature-
selection method for evaluating the worth of an attribute
by considering the minimum redundancy between attributes
and the maximum relevance between attributes and targets
[7]. More information of mRMR selection algorithm can be
found in [7] and related studies [8–19].

2.1.2. KNN. K-nearest neighbors (KNN) is the most basic
instance-based machine learning technique classifying
objects based on cluster theory [4–6]. KNN recognizes
a sample’s class according to the label on the K-nearest
neighbors. The nearest neighbors of an instance are defined
by the Euclidean distance [4]. KNN has been widely applied
in the field of biological sciences [20–24]. More details about
KNN can be referred to in [25, 26].

2.1.3. Incremental Feature Selection (IFS). First, construct
𝑁 feature subset by incrementally adding features to 𝐷 as
follows:
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(𝑓
𝑖
is the 𝑖th feature added into feature subset𝐷).
Second, use KNN method to build the prediction model

based on subset 𝐷
𝑖
and evaluate the model by cross-

validation. Then, a classification accuracy curve called IFS
curve is attained.

2.2. Materials

2.2.1. Data Preparation. In this study, 14,229 compounds
derived from database KEGG (http://www.genome.jp/kegg/)
(release 42 in 2006) [27] were collected. After removing
the compounds which do not participate in any metabolic
reactions which have been supported by experiments, 1326
compounds and 939 enzyme molecules of the human

genome participating metabolic reaction were obtained
(please refer to Supplemental Material available online at
http://dx.doi.org/10.1155/2013/674215).

In metabolic pathway, each substrate binds to one or
more enzymes, but the production may not be different.
Therefore, substrates and enzymes are subject to be involved
in a network of interactions. In this study, substrate, enzyme,
and product in each interaction are defined as a positive
sample; and those that cannot interact with each other
or those interactions that cannot attain the product are
defined as negative samples. Triads in the positive set are
termed as networking triads, and those in the negative set as
nonnetworking triads.These networking triads are supported
by solid experiments with 100% credibility by KEGG. As a
result, 14,592 networking triads were obtained. To generate
the negative datasets, firstly, we built a dataset by randomly
combining two small molecules and an enzyme together;
then, we removed the 14,592 networking triads. It should be
mentioned that although some nonnetworking triads may
not be true nonnetworking triads by chance in negative
database set, the chance is small. Therefore, the credibility
of the negative dataset is also very high. To reflect that the
number of networking triads is much less than that of the
nonnetworking triads, the negative samples of training set
were generated 50 times as many as the positive ones. As a
result, the final training dataset contains 14,592 networking
triads and 729,600 nonnetworking triads (please refer to
supplemental material II and III for the data).

2.2.2. Representation of Compounds. In developing a method
for predicting drug-protein interaction, the first problem is
how to describe this networking triad correctly as input for
the prediction program. It is obvious that the performances
of prediction model depend mostly on the features used to
describe the molecular structures. In this study, molecular
descriptors were applied to reflect the physicochemical and
geometric properties of substrates and products which have
been applied in our previous studies [28–30]. The values
of these molecular descriptors were calculated by program
ChemAxon which is available for computing the molecular
descriptors [31, 32] (see supplemental material IV). As some
molecular descriptors cannot be calculated for some com-
pounds, finally totally 79 molecular descriptors are used in
building the model. Before calculating molecule descriptors,
the compounds’ three-dimensional structures were opti-
mized by using MM+ force field with the Polak-Ribiere
algorithm until the root-mean-square gradient became less
than 0.1 Kcal/mol. Then, the descriptors were calculated
under stable conformation of each molecule based on AM1
semiempirical molecular orbital method at the restricted
Hartree-Fock level with no configuration interaction.

2.2.3. Representation of Enzymes. As each protein has its own
physicochemical properties, like hydrophobicity, polarizabil-
ity, and so vent accessibility, it is a good method to describe
a protein sequence, and it has been employed for predicting
various protein attributes. In this paper, the enzymes are
encoded by 132 physicochemical descriptors (amino acid
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composition, predicted secondary structure, hydrophobicity,
polarizability, solvent accessibility, normalized van derWaals
volume, and polarity) [33–38] (see supplemental material V)
due to its effective and selective ability in the prediction of
protein characteristics. More details can be seen in reference
[33–38] or our previous study [39].

2.3. Accuracy Measure. Generally speaking, the prediction
performance of different discriminative methods is com-
monly evaluated by the function of true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN).
In this study, we employed sensitivity (SN = TP/[TP + FN]),
specificity (SP = TN/[TN + FP]), overall accuracy (ACC =
[TP+TN]/[TP+TN+ FP+ FN]), and Matthew’s correlation
coefficient (MCC) to measure the prediction. The MCC can
be represented as

MCC

=
TP × TN − FP × FN

√(TN + FN) × (TN + FP) × (TP + FN) × (TP + FP)
.

(2)

3. Results

In the recent years, many efforts have been made in feature
selection [40–46]. In this study, mRMR method was applied
to search for a subset with optimal features. After mRMR cal-
culation, two tables are attained (see supplemental material
VI). One is calledMaxRel feature table that ranks the features
based on their relevance to the class of samples and the other
is called mRMR feature table that lists the ranked features
by the maximum relevance andminimum redundancy to the
class of samples.

Then, IFS method is applied based on mRMR feature
table. From Figure 1, it can be found that while adding new
feature continually, the value of MCC increased, although
during this process, the value of MCC decreased at some
point. While the number of features reaches 160, the value
of MCC is 0.423, the highest point. Then, the value of MCC
begins to decrease. Hence, the subset containing these 160
features is considered as an optimal subset which is derived
from original data set containing 290 features. These features
selected are irrelevant to each other but relevant to the target.

Based on the 160 features, predictingmodel of network of
substrate-enzyme-production interaction could be built.

Ten folds cross-validation test, which is applied in many
other applications [36, 47–52], is adopted in this study to
validate the model’s prediction accuracy. During 10-fold
cross-validation test, the datasets are divided into 10-folds, a
model is built with N-1 fold samples and the 10th fold data
are treated as unseen data, which is used for the prediction as
the testing data. Each fold is left out from building the model
and predicted in turn. The predictive ability is evaluated by
averaging the correct prediction rates of the 10-fold data.
Table 1 lists the prediction results while using KNNmethod.

To evaluate our feature selection method, we compared
the prediction results generated by final optimal subset and
the original data set with 10-folds cross validation test (see
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Figure 1: The curve of the 290 prediction models using IFS.

Table 1: Prediction accuracies of different dataset with KNN.

Dataset
10-folds cross-
validation test

SN (%) SP (%) ACC (%) MCC
Original dataset 53.71 92.4 88.9 0.412
Optimal dataset 55.2 92.4 89.1 0.423

Table 1). Table 1 shows that the prediction results of the 10-
folds cross-validation test improved after applying feature
selection. This demonstrates that maybe some features are
redundant and interfering to each other in the original
dataset; hence, it is better to remove some of them. Further-
more, the number of features in the final subsets is 55% of the
original feature set. This result suggests that mRMR feature
selection approach could make a good optimization and
improve the accuracy of prediction for substrate-enzyme-
product interaction.

4. Discussion

The selected 160 features in the final subset can be clus-
tered into the following ten categories: elemental analysis,
geometry, chemistry, amino acid composition, predicted
secondary structure, hydrophobicity, polarizability, solvent
accessibility, normalized van der Waals volume, and polarity
(see Figure 2). The former three kind features are molecular
descriptors which are of substrate and product, and the left
seven kind features are of enzyme.

According to the distribution of features of compounds
(substrate and product) and enzymes, it shows that enzymes
contribute more to the interaction process. Further calculat-
ing the proposition of the selected features to the original
features, it is found that the proposition of enzyme feature
(92/132 = 0.70) is higher than the proposition of compound
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Table 2: Top 80 features rank according to their correlation to target.

No. Name Categories No. Name Categories

1 Polarity Polarity 41 Amino Acids Composition
Cys Amino acids composition

2 Substrate
Polarizability Chemical 42 Polarizability Polarizability

3 Solvent accessibility Solvent accessibility 43 Polarizability Polarizability

4 Solvent accessibility Solvent accessibility 44 Amino Acids Composition
Ile Amino acids composition

5 Secondary structure Secondary structure 45 Hydrophobicity Hydrophobicity

6 Normalized Van Der Waals
volume

Normalized Van Der Waals
volume 46 Secondary structure Secondary structure

7 Normalized Van Der Waals
volume

Normalized Van Der Waals
volume 47 Substrate Stereo

DoubleBondCount Geometry

8 Secondary structure Secondary structure 48 Normalized Van Der Waals
volume

Normalized Van Der Waals
volume

9 Secondary structure Secondary structure 49 Substrate Smallest
RingSystemSize Geometry

10 Substrate
Log𝑃 Chemical 50 Substrate Smallest

RingSize Geometry

11 Substrate
CComposition Elemental analysis 51 Substrate Rotatable

BondCount Geometry

12 Amino Acids Composition
Asn Amino acids composition 52 Substrate H

Composition Elemental analysis

13 Polarity Polarity 53 Amino Acids Composition
Thr Amino acids composition

14 Hydrophobicity Hydrophobicity 54 Polarizability Polarizability

15 Substrate MinZ Geometry 55 Amino Acids Composition
Leu Amino acids composition

16 Solvent accessibility Solvent accessibility 56 Amino Acids Composition
His Amino acids composition

17 Polarity Polarity 57 Substrate CarboAliphatic
RingCount Geometry

18 Hydrophobicity Hydrophobicity 58 Product HComposition Elemental analysis

19 Substrate VanDerWaals
SurfaceArea Chemical 59 Polarizability Polarizability

20 Amino Acids Composition
Asp Amino acids composition 60 Normalized Van Der Waals

volume
Normalized Van Der Waals
volume

21 Hydrophobicity Chemical 61 Amino Acids Composition
Gln Amino acids composition

22 Substrate
OComposition Elemental analysis 62 Normalized Van Der Waals

volume
Normalized Van Der Waals
volume

23 Solvent accessibility Solvent accessibility 63 Polarizability Polarizability

24 Secondary structure Secondary structure 64 Amino Acids Composition
Lys Amino acids Composition

25 Amino Acids Composition
Ser Amino acids composition 65 Polarizability Polarizability

26
Substrate Water
AccessibleSurface
Area Negative

Chemical 66 Amino Acids Composition
Tyr Amino acids composition

27 Secondary structure Secondary structure 67 Amino Acids Composition
Arg Amino acids composition

28 Hydrophobicity Hydrophobicity 68 Secondary structure Secondary structure
29 Substrate FusedRingCount Geometry 69 Polarizability Polarizability

30 Substrate Carbo
RingCount Geometry 70 Normalized Van Der Waals

volume
Normalized Van Der Waals
volume
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Table 2: Continued.

No. Name Categories No. Name Categories

31 Amino Acids Composition
Glu Amino acids composition 71 Polarity Polarity

32 Hydrophobicity Hydrophobicity 72 Normalized Van Der Waals
volume

Normalized Van Der Waals
volume

33 Polarizability Polarizability 73 Product NComposition Elemental analysis
34 Polarity Polarity 74 Solvent accessibility Solvent accessibility

35 Normalized Van Der Waals
volume

Normalized Van Der Waals
volume 75 Product Hetero

AliphaticRingCount Geometry

36
Substrate Fused
Aliphatic
RingCount

Geometry 76 Substrate CarboAromatic
RingCount Geometry

37 Polarizability Polarizability 77 Substrate PComposition Elemental analysis
38 Secondary structure Secondary structure 78 Hydrophobicity Hydrophobicity
39 Substrate RingCount Geometry 79 Product CComposition Elemental analysis

40 Amino Acids Composition
Pro Amino acids composition 80 Normalized Van Der Waals

volume
Normalized Van Der Waals
volume
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Figure 2: Feature distribution.

feature (70/158 = 0.44). Table 2 also shows that several
enzyme features are in the top ten and top twenty fea-
tures. This result suggests that enzyme-centric features make
more contributions to our proposed interactions network of
substrate-enzyme-product.

From Table 2, it can be further found that for compound
features, there are much less features of product than features

of substrate and enzyme in the top fifty features. This is
because during the interaction of substrate-enzyme-product,
substrate and enzyme determine the products, and changing
substrate or enzyme could result in a different product.

According to the distribution of features in Figure 2,
it can be found that the number of geometry features is
more than that of the other kind features. In this regard,
geometry features have great effect and contribute to the
substrate-enzyme-product interaction not only in substrate
features but also in product features. However, from MaxRel
feature table, it can be found that there are not many geom-
etry features appearing in the top ten features. Therefore,
we feel interesting of this problem. Actually, the order of
geometry features is not incompatible with its distribution.
Geometry features contain information of the structure of
a molecule like the volume, size, and shape which leads to
steric hindrance and steric resistance. These factors are of
great importance in substrate-enzyme-product interaction.
Only correctly three-dimensional size and shape molecule
can interact with enzyme according to the Lock and Key
Theory. Meanwhile, steric hindrance or steric resistance
affect the substrate-enzyme-products’ interaction as some
big functional groups like aromatic ring prevent interaction.
On the other hand, these functional groups also provide
key interactive force to enzyme like heteroaromatics ring’s
𝜋-𝜋 stacking interaction to enzyme’s functional site. The
substrates and products are varied and diverse greatly in
structure. And it is difficult to describe their structure with
only one or two descriptors. Hence, more geometry features
could better extract the information of compounds’ structure.
This is why though single geometry feature has no strong
relevance to the interaction, the overall contribution of the
forty-four geometry feature can often be crucial to the
interaction.

Figure 2 also shows that amino acid compositions and
second structure occupied important propositions among the
ten types’ features. Amino acid composition in the binding



6 BioMed Research International

site contributes a lot in substrate-enzyme-product interaction
because it could affect the state energy. Some experiments
have verified the importance for amino acid compositions
in protein related interaction [53–55]. For example, Tyr265
plays a central role in enzyme alanine racemase’s binding to L-
alanine and pyridoxal 5-phosphate [54]. Hence, for a unique
structure, the amino acid composition plays the essential role
in the interactions. Secondary structure is considered as an
important property in many protein related problems, since
the shape and biological function of a protein are mainly
determined by its secondary structures. Secondary structure
features reflect the steric structure of protein. According to
the Lock and Key Theory, the size and shape of substrate
were rigid and restricted by enzyme. Accordingly, secondary
structure has relatively more impact on the determination of
substrate and product.

5. Conclusion

In this paper, a feature selection method called mRMR
combined with IFS was applied to dataset of substrate-
enzyme-product interaction which is encoded with molec-
ular descriptors of substrate/product and 132 physicochem-
ical protein descriptors. As a result, we find that enzymes
are essential in substrate-enzyme-product interaction; 160
important features were abstracted from 290 features. Based
on the above findings, we also used KNN method to build
a prediction model of substrate-enzyme product interaction.
Based on the prediction results, it is expected that molecular
descriptors and 132 physicochemical protein descriptors can
be served as an efficient coding method for network of
substrate-enzyme-product interaction.
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