
TYPE Original Research

PUBLISHED 12 August 2022

DOI 10.3389/frai.2022.952424

OPEN ACCESS

EDITED BY

Aik Choon Tan,

Mo�tt Cancer Center, United States

REVIEWED BY

Nisha Pillai,

Mississippi State University,

United States

Omid Memarian Sorkhabi,

University of Isfahan, Iran

*CORRESPONDENCE

Joshua Xu

Joshua.Xu@fda.hhs.gov

†These authors have contributed

equally to this work and share first

authorship

SPECIALTY SECTION

This article was submitted to

Medicine and Public Health,

a section of the journal

Frontiers in Artificial Intelligence

RECEIVED 25 May 2022

ACCEPTED 22 July 2022

PUBLISHED 12 August 2022

CITATION

Bisgin H, Bera T, Wu L, Ding H,

Bisgin N, Liu Z, Pava-Ripoll M,

Barnes A, Campbell JF, Vyas H,

Furlanello C, Tong W and Xu J (2022)

Accurate species identification of

food-contaminating beetles with

quality-improved elytral images and

deep learning.

Front. Artif. Intell. 5:952424.

doi: 10.3389/frai.2022.952424

COPYRIGHT

© 2022 Bisgin, Bera, Wu, Ding, Bisgin,

Liu, Pava-Ripoll, Barnes, Campbell,

Vyas, Furlanello, Tong and Xu. This is

an open-access article distributed

under the terms of the Creative

Commons Attribution License (CC BY).

The use, distribution or reproduction

in other forums is permitted, provided

the original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Accurate species identification
of food-contaminating beetles
with quality-improved elytral
images and deep learning

Halil Bisgin1†, Tanmay Bera2†, Leihong Wu2, Hongjian Ding3,

Neslihan Bisgin1, Zhichao Liu2, Monica Pava-Ripoll4,

Amy Barnes3, James F. Campbell5, Himansi Vyas3,

Cesare Furlanello6, Weida Tong2 and Joshua Xu2*

1Department of Mathematics and Applied Sciences, University of Michigan-Flint, Flint, MI,

United States, 2Division of Bioinformatics and Biostatistics, National Center for Toxicological

Research, US Food and Drug Administration, Je�erson, AR, United States, 3Food Chemistry Lab 1,

Arkansas Regional Laboratory, O�ce of Regulatory A�airs, US Food and Drug Administration,

Je�erson, AR, United States, 4O�ce for Food Safety, Center for Food Safety and Applied Nutrition,

US Food and Drug Administration, College Park, MD, United States, 5Stored Product Insect and

Engineering Research Unit, US Department of Agriculture, Manhattan, KS, United States, 6HK3 Lab,

Milan, Italy

Food samples are routinely screened for food-contaminating beetles (i.e.,

pantry beetles) due to their adverse impact on the economy, environment,

public health and safety. If found, their remains are subsequently analyzed

to identify the species responsible for the contamination; each species

poses di�erent levels of risk, requiring di�erent regulatory and management

steps. At present, this identification is done through manual microscopic

examination since each species of beetle has a unique pattern on its elytra

(hardened forewing). Our study sought to automate the pattern recognition

process throughmachine learning. Such automation will enable more e�cient

identification of pantry beetle species and could potentially be scaled up

and implemented across various analysis centers in a consistent manner. In

our earlier studies, we demonstrated that automated species identification

of pantry beetles is feasible through elytral pattern recognition. Due to

poor image quality, however, we failed to achieve prediction accuracies of

more than 80%. Subsequently, we modified the traditional imaging technique,

allowing us to acquire high-quality elytral images. In this study, we explored

whether high-quality elytral images can truly achieve near-perfect prediction

accuracies for 27 di�erent species of pantry beetles. To test this hypothesis,

we developed a convolutional neural network (CNN) model and compared

performance between two di�erent image sets for various pantry beetles.

Our study indicates improved image quality indeed leads to better prediction

accuracy; however, it was not the only requirement for achieving good
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accuracy. Also required are many high-quality images, especially for species

with a high number of variations in their elytral patterns. The current study

provided a direction toward achieving our ultimate goal of automated species

identification through elytral pattern recognition.

KEYWORDS

food-contaminating beetle, species identification, deep learning, convolutional

neural networks, machine learning, food safety, image classification

Introduction

A large group of nuisance insects that contaminate grains

and other food items are commonly termed pantry beetles

(Bell, 2013). They are notorious for spoiling stored grain

and processed food products, leading to significant economic

damage (Belluco et al., 2013). Some of these pantry beetles are

aggressively invasive and can cause damage to local agriculture

and ecological insects if they spread through the transportation

of contaminated food products (Heeps, 2016). Some of the pests

also pose a serious threat to public health, as they are active

carriers of pathogens (Olsen et al., 2001).

To counter such adversities, food grains and products

are monitored and routinely screened for pantry beetles or

their remains (Bell, 2013; Belluco et al., 2013). The most

common and widely-used method involves highly-trained

analysts manually screening food samples for insect remains

using optical microscopes. Any insect or insect remains found

are then scrutinized using a comparison optical microscope to

match the patterns from the insect fragments with reference

images to identify the exact insect species, genus, or family.

This identification step is crucial, as each species poses different

threat levels and their contamination may require different

methods of management and regulatory procedures. Currently,

no reliable alternatives to the manual screening method are

available, as spectroscopic or PCR-based detection techniques

have remained challenging for this application. Moreover, due

to the manual nature of the microanalysis, the current method

is highly dependent on the experience and expertise of the

individual analyst, making it more susceptible to human error

and higher variation across institutions. Also, manual methods

are difficult to scale up, hindering the screening of a larger

number of samples in a shorter time frame, especially in the

absence of experienced and dexterous analysts.

Species identification through image analysis has been

explored for efficient taxonomical and environmental

applications for several years (Norouzzadeh et al., 2018;

Terry et al., 2019; Høye et al., 2020). These computer-aided

applications have tried to address a wide range of problems

from food safety to identification of insect pests (Daly et al.,

1982; Weeks et al., 1997; O’Neill et al., 2000; Larios et al.,

2008; Yalcin, 2015). With the advent of machine learning

methods, image-based species identification has gained further

momentum and well-known discriminative models such as

support vector machines (SVM) (Cortes and Vapnik, 1995)

and generative models have been widely adopted for insect

classification (Martineau et al., 2017). Examples of these models

include, but are not limited to: insect or pest identification

using SVM (Qing et al., 2012; Wang et al., 2012; Yang et al.,

2015), honeybee and moth identification with decision trees

(Mayo and Watson, 2007; da Silva et al., 2015), and red

palm weevil and insect recognition systems through neural

networks (Al-Saqer and Hassan, 2011; Wang et al., 2012).

With increasing computational power, more complex neural

network architectures, i.e., deep learning (DL) approaches have

recently helped in tackling more challenging tasks in the field

of food and agricultural science (Lee et al., 2015; DeChant

et al., 2017; Lu et al., 2017; Zhang et al., 2018). Although there

have been relatively fewer DL studies to identify filth elements

for food contamination (Reinholds et al., 2015; Bansal et al.,

2017), variations of DL designs such as Region-based Fully

Convolutional Network (R-FCN), convolutional block attention

module (CBAM), convolutional neural network (CNN) and

pre-trained models have shown promising performances for

pest, stored-grain insect, and fly classification (Chen et al., 2020;

Kuzuhara et al., 2020; Shi et al., 2020). The DL models have not

only achieved high classification accuracies, but also offered a

new way of feature extraction embedded in the process as an

alternative to conventional features such as domain-dependent,

global, local, and mid-level features (Martineau et al., 2017).

We have also investigated similar approaches, i.e.,

machine learning techniques, with the aim of automating the

identification process of pantry beetles whose elytra (hardened

forewing) have unique patterns that can be considered as

fingerprints or features. In a previous study, we demonstrated

that a specific pantry beetle species could indeed be identified

through elytral pattern recognition using machine learning

(Martin et al., 2016). In our subsequent study, we observed that

classical machine learning techniques such as artificial neural

network (ANN) and SVM could be used for this application

(Bisgin et al., 2018). However, optimized ANN and SVMmodels

yielded about 80 and 85% of average accuracies, respectively.

We observed that some species consistently performed less than

others; which could be attributed to their misidentification with
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another species from the same genus or family with similar

or near-identical elytral patterns. We further studied more

advanced machine learning techniques such as CNN, which also

performed similarly (Wu et al., 2019).

Our findings in our earlier studies led us to scrutinize the

image set and observe that images lacking visual clarity due

to the reflective glare of the elytra surface were more prone

to misidentification. To remedy this, we amended the optical

and imaging settings and optimized the imaging conditions

to obtain a high-quality image set unaffected by artifacts and

showing the finer details of an elytron (Bera et al., 2021). We

hypothesized that using such a high-quality image set would

help us achieve a near-perfect prediction accuracy in identifying

each pantry beetle species. In the current study, therefore, we

tested this hypothesis by using a CNN model on an extended

dataset which consisted of high-quality images of 27 species.

We further shed light on the impact of enhanced images of 12

species in the same dataset that were previously studied. Our

experiments showed both the utility of the prediction framework

and the improvement in species identification due to image

quality which could potentially guide any future efforts for

auto-detection tools.

The rest of the paper is organized as follows: SectionMaterial

and methods details the dataset for 27 species and introduces

our approach, Section Results and discussion presents our

results, Section Discussion discusses our findings, and Section

Conclusion concludes our work.

Materials and methods

Beetle sample collection and image
acquisition

We elaborated on the details of sample collection,

preparation, and imaging technique in our previous publications

on imaging optimization (Bisgin et al., 2018; Wu et al., 2019;

Bera et al., 2021). Briefly, we used 12 different pantry beetle

species harvested from our in-house collection. We chose

these species due to their prevalence and significance in food

contamination, especially in North American food samples.

Another 15 different species were collected from the U.S.

Department of Agriculture’s (USDA) Animal and Plant Health

Inspection Service (APHIS) laboratory. Elytra from each

beetle specimen were harvested, thoroughly cleaned through

sonication in an ethanol solution, and subsequently preserved

in 70% ethanol prior to imaging. Table 1 shows the full list of 27

species which include both our in-house collection (12 species)

and additional 15 species.

The harvested elytra were then air-dried and imaged using

stereo microscopes (Leica M205, Allendale, New Jersey). Unlike

the older image set, which was subjected to varied magnification

(in the 75–100× range) and two-point reflected light, we used a

fixed magnification of 100× and transmitted light for this study.

These amendments significantly reduced glare spots and other

imaging artifacts, and drastically improved the clarity of elytral

patterns (Bera et al., 2021). We used a Leica MC170HD camera

to acquire the images with an image resolution set to 2,592 ×

1,944 dpi (dots per inch, the highest resolution available). In

this study, only images from the ventral side (underside) of

the elytra were used. The concave shape of the elytra naturally

preserves the ventral side elytral patterns. This selection allowed

us to focus our attention on only the pattern recognition aspect

without having to worry about such artifacts as variation or

loss of setae (surface hair) or other sample damages that often

occur on the frontal side of the elytra during food or sample

preparation steps.

We used 20 elytral images per species. Each image

subsequently was divided into smaller subimages (tiles)

to simulate physical fragmentation of the elytra that are

often observed in contaminated samples. This simulated

fragmentation step was critical to our application, as it allowed

us to increase the sample size and to validate our algorithms

in close to real-life scenarios, in which elytral fragments are the

only viable remains found in contaminated food samples.

Image preprocessing

Each image frame (captured at 100× magnification) had

the elytra at the center of the white background. Thus, in the

first step of preprocessing, we removed the white background

by determining the elytral border (line of maximum change in

contrast). Next, we randomly split images belonging to the same

species to construct training and test sets by observing a 4:1

ratio, as shown schematically in Supplementary Figure 1, which

was the same practice we used in our previous studies. Since

an early study showed the utility of images with a size of 448

× 448 (Wu et al., 2019), we randomly cropped 100 regions so

that each image was the same size. These sub-images guaranteed

they would be inside the borders detected in the previous step

and allowed to have overlap. This resulted in 46,300 training and

10,800 test images. By following such an exercise, we ensured

that all sub-images of a particular image were put either in the

training or test set in order to prevent information leak. This

“blind” cross-validation strategy reduced bias andminimized the

possibility of overfitting.

Convolutional neural network and the
model structure

For the classification task here, we adopted CNNs, which

have been widely used in the research community for image

classification and segmentation in recent years (Lawrence et al.,

1997; Krizhevsky et al., 2012; LeCun, 2021). The ability of
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TABLE 1 The complete list of pantry beetles used in this study, listed alphabetically by their family, genus, species and common names, with

abbreviations.

Family Genus Species Common Name SP Id new

1 Anthribidae Araecerus fasciculatus Coffee Bean Weevil AAF

2 Anobiidae Lasioderma serricorne Cigarette Beetle ALS

3 Anobiidae Stegobium paniceum Drugstore Beetle ASP

4 Bostrichidae Rhyzopthera dominica Lesser Grain Borer BRD

5 Chrysomelidae Callosobruchus maculatus Cowpea Weevil CCM

6 Curculionidae Sitophilus granarius Granary Weevil CSG

7 Curculionidae Sitophilus oryzae Rice Weevil CSO

8 Curculionidae Sitophilus zeamaise Maize Weevil CSZ

9 Dermestidae Attagenus Unicolor Black Carpet Beetle DAU

10 Dermestidae Trogoderma inclusum Cabinet Beetle DTI

11 Laemophloeidae Cryptolestes ferrugineus Rusty Grain Beetle LCF

12 Laemophloeidae Cryptolestes pusillus Flat Grain Beetle LCP

13 Laemophloeidae Cryptolestes turcicus Flour Mill Beetle LCT

14 Silvanidae Ahasverus advena Foreign Grain Beetle SAA

15 Silvanidae Ahasverus species Fungus Beetle SAS

16 Silvanidae Cathartus quadricollis Squarenecked Grain Beetle SCQ

17 Silvanidae Oryzaephilus mercator Merchant Grain Beetle SOM

18 Silvanidae Oryzaephilus surinamensis Saw-toothed Grain Beetle SOS

19 Tenebrionidae Cynaeus angustus Larger Black Flour Beetle TCA

20 Tenebrionidae Gnatocerus cornutus Broad-horned Flour Beetle TGC

21 Tenebrionidae Latheticus oryzae Longheaded Flour Beetle TLO

22 Tenebrionidae Lophocateres pusillus Siamese Grain Beetle TLP

23 Tenebrionidae Palorus ratzeburgii Smalleyed Flour Beetle TPR

24 Tenebrionidae Tribolium castaneum Red Flour Beetle TTCa

25 Tenebrionidae Tribolium confusum Confused Flour Beetle TTCo

26 Tenebrionidae Tribolium Destructor Dark Flour Beetle TTD

27 Tenebrionidae Tribolium madens Black Flour Beetle TTM

CNN to learn features while applying convolutional filters

during the training stage makes it appealing and different

from conventional image classification methods (Zheng et al.,

2006). These types of deep neural network structures comprise

cascaded convolutional and pooling layers in which filters

are utilized to attain the most informative features that

eventually provide significantly reduced image sizes. The CNN

final output is then passed to a dense layer in a flattened

representation, allowing passage to subsequent dense layers that

finally terminate in another fully-connected layer with a number

of neurons equal to the number of classes (i.e., species, in

our case).

We constructed a CNN by using Keras (Chollet, 2015),

which is an application programming interface (API) that

runs the Tensorflow machine learning platform (Abadi et al.,

2016) in the backend and offers further image preprocessing

utilities for more generalizable models. Specifically, our network

architecture consists of four convolutional layers along with

corresponding pooling layers. These perform downsampling,

usually by either choosing the maximum or average value in a

given region, and two additional dense layers. We employed 3×

3 filters in the convolutional layers that were followed by max

pooling layers using 2 × 2 windows to choose the maximum

value. In order to avoid overfitting, we further adapted the

dropout approach that randomly ignores some units at a desired

level to prevent coadapting (Srivastava et al., 2014). In Figure 1,

we illustrate the details of our network structure, listing all six

layers and the number of nodes for each layer. We used Rectified

Linear Unit (ReLU) activation function in the first five layers. In

the final layer, we used a softmax function due to the multi-class

nature of our predictions. For the optimizer, we used the Adam

algorithm because of its efficient management of larger datasets

and parameters (Kingma and Ba, 2014).

Keras’s data augmentation features enabled us to artificially

increase the sample size (i.e., number of subimages).

Additionally, it helped generalize the model by applying image

processing functions to the existing training samples. These

functions perform image manipulations, such as rotations, that
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FIGURE 1

Overview of the CNN architecture.

TABLE 2 List of augmentation options and parameter values used in our study.

Option Explanation Value

rotation_range Creates images with random rotations up to N degrees. 40

width_shift_range Handles off-center objects by artificially creating shifted versions of the training data 0.2

height_shift_range 0.2

shear_range Shear angle in counterclockwise direction in degrees 0.2

zoom_range Random zoom range 0.2

horizontal_flip Creates random flips of the image (supposes you feed a mirror image) True

fill_mode Helps in filling values outside the boundaries of an image nearest

lead to a more diverse and larger set of images derived from

the original set. We list details about the augmentation options

and parameter values used in our study in Table 2. From the

details shown in Table 2, we derived an augmented training set

which could include additional images that might be shifted

20%, rotated 30 degrees, magnified 15%, sheared 10%, and

horizontally flipped. If any pixels were lost due to the operations

and needed to be filled to keep the image integrity, the nearest

pixels could be used.

Model training and validation

Keras offers a user-friendly interface for data

augmentation and experimental design, including the

arrangement of training and test sets consisting of image

folders maintained by the ImageDataGenerator module

of the keras_preprocessing library. In our case, for 27

species we created a training directory that included

27 folders, from which class labels were inherited.
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Similarly, we created a validation directory using the

flow_from_directory function.

We passed these settings to the fit_generator function, along

with the compiled neural network detailed above, with the

categorical_crossentropy loss function, adam optimizer, and the

default batch size (Bisgin et al., 2018). We trained our model for

100 epochs and tested its performance on the validation images

after each epoch.

Model evaluation

As in our previous studies, we first computed the accuracy

values for each species by computing the mean and standard

deviation for each round of validation (Bisgin et al., 2018; Wu

et al., 2019). This yielded a confusion matrix after the cross-

validation fromwhich true positive (TP), false positive (FP), true

negative (TN), and false negative (FN) were computed. These

were subsequently used to calculate the prediction parameters,

namely Precision, Sensitivity (Recall), Specificity, Matthews

Correlation Coefficient (MCC) using the standard formula,

which can also be found in our previous report (Bisgin et al.,

2018). Average prediction accuracy was also calculated by

averaging species-wise accuracies.

Code and experimental environment

Given the significantly increased image size (average 14mb

per full elytra image and 600 kb per sub-images), we used the

NCTR/FDA High-Performance Computing Cluster containing

approximately 1100 CPU cores. The script used in this study can

be found in github1.

Results

Beetle species and the classifier

We initiated the studywith 15 species of food-contaminating

beetles most prevalent to North America. In the later part of

the study, this number was expanded to 27 species. Table 1

contains a list of test species alphabetized by their family names

with details on their nomenclature; namely, family, genus,

species, and common names, along with their abbreviations.

Those abbreviations were used to refer to each tested species.

Supplementary Figure 2 shows some of the representative elytra

images. For comparison, we provided images obtained though

both the traditional and optimized methods. It was quite evident

that imaging optimization significantly improved image quality

and clarity of the elytral patterns. Compared to the traditionally

1 https://github.com/hbisgin/beetleCNN

acquired image set, the optimized image set was devoid of such

artifacts as glare spots and other surface anomalies. Details on

the imaging improvements, described elsewhere, are beyond

the scope of this discussion (Bera et al., 2021). This image set

subsequently was processed to obtain the set of sub-images used

for our model.

Model summary

The analysis of training and validation progress of the

27 classes along epochs is reported in Figure 2. We observed

that the training loss (i.e., categorical cross-entropy) began to

stabilize after ∼50 epochs, beyond which the decrease was

much more gradual. Also, we observed that testing accuracy

approached saturation after ∼50 epochs. Both observations

might indicate that the model had reached nearly optimal

accuracy, and that 50 epochs would have been enough, which

was close to our earlier observations. However, the loss function

for the testing (validation loss) fluctuated, but tended to stay in

a limited bandwidth around the value at 50 epochs.

Species-wise performance
and comparison

To test the hypothesis that a high-quality image set

may increase prediction accuracy, we made a head-to-head

comparison of the prediction results (Recall and Precision)

for the same 12 species for earlier and current image sets,

as shown in Figure 3. Evidently, the newer high-quality image

set improves the prediction performance for most species,

with an average prediction accuracy increasing from 80% to

above 90%. The improvements were particularly notable for

such species as ALS and ASP, SOM and SOS, and TTCa

and TTCo; these had previously been difficult to accurately

identify, however, can now be identified with >90% accuracy.

These 12 species, especially, SOM, SOS, TTCa and TTCo,

are some of most commonly encountered pantry beetles in

North America. Therefore, improving the accuracy of their

prediction identification will have regulatory significance. The

traditionally-obtained images with higher artifacts and lower

quality lacked the pattern clarity to distinguish one species

from another. This was particularly true for species with near-

identical elytral patterns (due to their genetic similarity) and

belonging to the same genus and/or family [referred to as

“difficult pairs” in our previous works (Bisgin et al., 2018; Wu

et al., 2019)]. The high-quality images significantly improved

the pattern clarity, allowing for distinct identification of each

species, even within the difficult pairs. To our surprise, we

observed exceptions to this general trend, especially for the

species CSO. Of all 12 species, this one performed the poorest

and showed a significant decrease in prediction accuracy
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FIGURE 2

Model optimization showing the model achieving optimal performance after about 50 epochs.

FIGURE 3

Comparison of model performances on validation sets of traditionally- and optimally-acquired images.

compared to the traditionally-acquired images. The image set for

this particular species possibly contained an anomaly, resulting

in this decrease.

Expansion to more
species—performance parameters

Expanding the number of species to 27 enabled us to verify

the observations made with the initial 12 species with our

newly built model in this study. Four prediction parameters,

namely Precision, Recall (or Sensitivity), Specificity and MCC,

for these species are presented in Figure 4. The general trend

of improved prediction is evident from this figure. Specificity

values for all the species validate our hypothesis that high-

quality images can improve prediction accuracy. However, there

were exceptions to the general trend; as some species, such as

CSO and LCP, performed quite poorly. Several other species,

namely AAF, CSG, LCF, SAA, SOM, SOS, and TCA, performed

below average, i.e., 90%. This suggests poor performance is not a
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FIGURE 4

Performance metrics for the 27-class model.

singular anomaly in the image set of one species. Instead, there

may be underlying factors that play a crucial role in a species’

prediction performance and these need further research. One

possibility, as we observed previously, is that species with similar

elytral patterns (belonging to the same genus and/or family)

were confused with one another during the prediction.

Confusion matrix

Figure 5 shows the confusion matrix for all the species, with

horizontal rows showing the True class and vertical rows the

Predicted class. It is evident that overall performance of the

model is quite accurate, as the red diagonal entities are clearly

prominent. Although the model is far from perfect, as one can

observe several non-diagonal entities in yellow, it is a good

working model since the deviations were fairly low (mostly

yellow and not orange non-diagonal entities) as indicated by

the color scale. A closer look at the matrix, especially for the

poorly-performing species (marked with red arrows) such as

CSO, indicated that its low prediction performance was not

due to the similarity of elytral patterns with a species from the

same genus or family (marked by dotted squares). Rather, it

was being predicted for several different species across various

families. For instance TTCo was predicted as SOM and SOS

for 9 and 6 times, respectively, compared to TGC, which

is in the same family. This suggests that the image quality

that showed distinction (or resulted in confusion) between
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FIGURE 5

Confusion Matrix for 27-class task (computed on test set) showing the level of agreement between true and predicted classes. Red colored tiles

(diagonal) represent correct classification of each species and represent values between 67% and 100%. Yellow tiles represent incorrect

classification ratios that are non-zero and go up to 28%. Finally, green tiles represent zero values which means targeted species is not confused

with the corresponding species.

similar elytral patterns is not the major factor at play on our

data. We made a similar observation for the second-lowest

performer, LCF, which was also predicted beyond its own

genus and/or family. Other low-performing species, such as

AAF, SAA, SCQ, SOM, SOS, and TCA, showed comparable

trends. The two-dimensional UMAP representation of all classes

based on their extracted 128 features from the last layer of the

network (Supplementary Figure 3) also illustrates misclassified

species. This observation further bolstered our speculation that

something other than pattern clarity may be affecting the

prediction performance, and deserved detailed discussion.

Discussion

In most academic and research settings, the architecture

of the model often receives more attention than does the

quality of the data, possibly because cleaning the dataset

often is beyond the scope of many researchers. This has been

found to be true, particularly in image classification for species

identification applications. Users of prediction models, even

models with the best-known architecture, have found achieving

good accuracy for noisy datasets challenging as quality of the

data has impact on the classifier performance (Sáez et al., 2016).

Our study also highlights this fact in the context of species

identification and food safety, as the prediction performance

showed improvement when a better-quality dataset was used to

build the model.

Furthermore, our results indicated the importance

and relevance of other factors beyond data quality. As

discussed previously, we observed that species performing

below average were not being inaccurately predicted or

confused with another species from their own genus and/or

family due to elytral pattern similarity, but were being

misclassified into various different and unrelated species.

To better understand this problem, we delved deeper and

looked through the images of those species. Figure 6A shows

three different elytral images of the same species, CSO. The

difference in elytral patterns are obvious, and believed to

be mostly due to age of the beetle. However, differences
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FIGURE 6

Representative images of elytral variation. (A) Intraspecies pattern variation in CSO (possibly due to the di�erence in maturity), (B) pattern

variation due to background interference in LCP and LCF, and (C) regional variation in elytral patterns in AAF.

could also be due to sex and/or individual variation, as

the older beetles tend to develop a darker elytral color

and prominent pattern, possibly to attract a mate. These

variations are not uncommon and were found in such other

species as SAA and SOS (Supplementary Figure 4), which also

performed poorly.

Surprisingly, these species did not perform so poorly in our

previous models using ANN and SVM. Supplementary Figure 5

shows the Recall and Precision comparisons for ANN, SVM,

and CNN models using a conventionally-obtained (lower

quality) image set than that of the present model (CNN,

using a higher-quality image set). In comparison to ANN

and SVM models, the performances of CSO dropped in both

CNN models (using conventional and high-quality image sets),

even though the CNN model is known to, in most cases,

outperform ANN and SVM (Shin and Balasingham, 2017;

Senyurek et al., 2019). We argue that this anomaly is due to

the difference between explicitly defining features or trusting

the CNN to develop its own feature extraction internally. In

both ANN and SVM, the image features (such as size, shape,

distribution, and color of the elytral pattern), were preprocessed

before being used for training and testing the model. It

is during this feature selection process that the intraspecies

variations in elytral patterns probably did not get selected in

the top-ranked features, as they appeared in only a handful

of species. Subsequently, they remained unused in the ANN

and SVM models and showed no influence in performance.

On the other hand, output of convolutional layers served as

the feature set in the current model, which could not take

advantage of earlier select features, possibly causing a decrease

in performance.

Unlike CSO, the species LCP (the second-lowest performer)

did not show significant intraspecies variation. On minute

observation, we found they contained imaging artifacts. LCP

belongs to the family Laemophloeidae, which is one of the

smallest species of pantry beetles. They also have extremely

thin elytra and faint patterns, which when imaged on filter

papers (a common practice in food filth analysis), in some cases

resulted in a fibrous paper background getting embedded in

the elytral images (see Figure 6B). This imaging artifact was

prominent in some parts of a few of the elytral images, which

appeared quite different from the actual elytral pattern and

could very well be the reason for their poorer performance.

AAF was another species performing below average. In

this case, each elytron had regions that appeared different

from one another (variegated pattern). In some areas, the

elytra appeared much brighter, while in other regions they

appeared much darker. Some regions had more prominent

patterns compared to others (see Figure 6C). When the

images of the whole elytra were divided into subimages,

the subimage set had much more pattern diversity. Some

of the randomly-selected subimages used in testing probably

appeared quite different from the training subimages, yielding

a lower prediction value. It can also be noted that the

AAF had a high Recall value but low Precision values. This

indicated that our model was impressive in choosing relevant

species, but in this case was slightly less exact due to highly

diverse subimages.

While our collective results showed that model performance

improved significantly when using better-quality images, thus

validating our initial hypothesis, they indicated that species with

higher intraspecies elytral diversity or with enhanced variegated
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elytral patterns do not perform as well. These observations

seemed reasonable and have room for improvement without

needing significant change in the model architecture. They are

also aligned with a known general limitation of CNN models,

which require training sets with both high-quality and large-

quantity of images to yield better prediction accuracies (Valan

et al., 2019; Høye et al., 2020).

While the cropped subimages were a way of imitating the

actual beetle fragments and artificially increasing the size of

the dataset, the limited number of elytral images remained

one of the challenges in this study. Adding Keras image

augmentation became a possible solution, as it has been used

to solve imaging issues in domains such as medical image

analysis (Shorten and Khoshgoftaar, 2019). In this step, several

other scenarios, such as rotation, shearing, and zooming to

some extent, were incorporated. During the training stage,

the model was exposed to data augmentation to prepare it

for possible variations, including likely presence of fragmented

patterns. Even though this approach worked very well both for

training accuracy and training loss, slightly lower accuracy and

fluctuating loss observed in the validation stage also indicates

that high variability of novel patterns is much harder to control

and beyond the reach of data augmentation.

The broader objective of our work is to automate the

process of elytral pattern recognition to better alleviate insect

food contamination. We foresee this can only be achieved

by concatenating the following three steps: (1) establishing a

mechanism of acquiring high-quality images, (2) accumulating

beetle images with proper labels in a repository with a growing

number of samples for species with high variability, and (3)

making them accessible for model development/improvement.

Before developing a full-force effort to implement the whole

process, it was critical to validate with a proof of concept the

hypothesis that high-quality images can significantly improve

predictive accuracy. The present study served this purpose and

indicated that a high number of high-quality images is indeed a

promising way forward in achieving precise identification over

a large number of species. In our recent report on imaging

optimization techniques, we elaborated on the method for

acquiring high-quality images of pantry pests. Through this

study, we developed a step-by-step procedure and a detailed

instruction manual for high-quality image acquisition, which we

will make publicly available. We currently are in the process of

developing a high-quality image database containing 40 images

per species for about 40 different pantry beetles, which will also

be made public. Efforts currently are underway to construct a

graphical user interface (GUI), from which any user can upload

elytral images (preferably obtained by following the SOP and

imaging manual) of pantry beetles in order to identify species

using a CNN model similar to the one reported here. This

use of the GUI will further enhance the high-quality image

database and will provide a large number of high-quality, well-

labeled image sets which can be used to further improve this

CNN model in the future. At this point, the present work

explores advantages and limitations of using a CNN model for

classifying various species of pantry pests through elytral pattern

recognition. We are optimistic that the current study has put

us a step closer to achieving automated species identification of

pantry pests, and thus toward a more efficient regulatory system

to better manage food contamination scenarios.

Conclusions

In this study, we aimed at scouring the landscape

and moving closer to achieving near-perfect species-level

identification. We set out to explore whether high-quality elytral

images were sufficient for improving the prediction accuracy

of pantry beetle species identification. To test this hypothesis,

we first compared two CNN models; one developed with

traditionally-obtained, low-resolution images, and another with

optimized imaging conditions, yielding high-quality images.

Overall, we observed an improvement in average prediction

accuracy due to the improved image quality. When we extended

the analysis to 27 different pantry beetles, we achieved an average

accuracy of ∼90%; however, several species fell below that

average accuracy. A data review elucidated that below-average

performance was not due to poor image quality, but rather

to significant intraspecies variation of elytral pattern, and in

some cases, to enhanced regional variation of patterns within

one elytron. Detailed analysis indicated that greater numbers of

high-quality images are necessary to account for these variations

and achieve higher accuracy of the model. In future studies,

we aim to achieve this objective using a publicly-available GUI

for pantry beetle identification, allowing us to accumulate larger

quantities of high-quality images through user participation.We

hope this exploratory study will help achieve our ultimate goal of

automated species identification of food-contaminating beetles.
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