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Abstract 
Autoimmune destruction of pancreatic β cells results in type 1 diabetes (T1D), with pancreatic immune infiltrate 
representing a key feature in this process. Studies of human T1D immunobiology have predominantly focused 
on circulating immune cells in the blood, while mouse models suggest diabetogenic lymphocytes primarily 
reside in pancreas-draining lymph nodes (pLN). A comprehensive study of immune cells in human T1D was 
conducted using pancreas draining lymphatic tissues, including pLN and mesenteric lymph nodes, and the 
spleen from non-diabetic control, β cell autoantibody positive non-diabetic (AAb+), and T1D organ donors 
using complementary approaches of high parameter flow cytometry and CITEseq. Immune perturbations 
suggestive of a proinflammatory environment were specific for T1D pLN and AAb+ pLN. In addition, certain 
immune populations correlated with high T1D genetic risk independent of disease state. These datasets form 
an extensive resource for profiling human lymphatic tissue immune cells in the context of autoimmunity and 
T1D. 
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Introduction 
Type 1 diabetes (T1D) results in life long exogenous insulin dependence following autoimmune 

destruction of pancreatic islet β cells1. While β cell autoimmunity may start beforehand as suggested by the 
appearance of β cell-specific autoantibodies (AAb), the disease can take years to progress to overt 
hyperglycemia2. Evidence of β cell mass and insulin secretion can be detected even in long-standing T1D 
patients3,4, with clinically beneficial effects associated with residual β cell function5. T1D genetic risk is primarily 
associated with human leukocyte antigen (HLA) loci but also with genes involved in regulating immune 
responses2,6–8. Accordingly, T cell anergy-inducing immunotherapy shows efficacy in individuals at risk for 
imminent T1D onset but only delays T1D onset by ~24 months9,10. The development of therapies capable of 
halting autoimmune progression and preserving β cell function requires further understanding of the complex 
immune cell responses that occur pre- and post-T1D diagnosis.  

Human immunophenotypes associated with T1D include T cell11–13, B cell14,15, and natural killer (NK) 
cell16 perturbations as well as accelerated immunological aging17 in peripheral blood mononuclear cells 
(PBMCs). While surveying PBMCs can be informative, the immune system operates primarily within tissue 
microenvironments and disease-specific signatures may not be fully recapitulated in circulating immune cells 
18–22. Indeed, pancreatic islets of T1D individuals contain β cell antigen-specific CD8+ T cells23, and the 
frequency of CD8+ T cells that recognize β cell antigens in the pancreas, not the blood, distinguishes T1D from 
healthy donors24. Surveying immunophenotypes in the pancreas itself has greatly increased our understanding 
of T1D pathogenesis25–30; however, the immunological processes that occur in pancreas-draining lymphoid 
tissues that may initiate or exacerbate T1D development and progression remain largely unclear. 
 Evidence suggests that pancreatic lymph nodes (pLNs) harbor immune cells that participate in T1D 
autoimmunity31–34. Studies in the non-obese diabetic (NOD) mouse model of T1D suggest that pLN 
lymphadenectomy early in autoimmune development protects against diabetes31. Further, pLNs in the mouse 
model contain stem-like β cell-specific memory CD8+ T cells, which seed cytotoxic and terminally-differentiated 
effector cells that traffic to the pancreas and eliminate β cells34. In humans, pLN from T1D donors contain 
insulin peptide-reactive T cells32, and are enriched for β cell antigen-reactive T cell receptor (TCR) clones33. 
pLN from T1D donors also contain phenotypic alterations that suggest a more proinflammatory T cell 
population, specifically increased frequencies of Th17 effector CD4+ T cells with reciprocal decreases in 
regulatory T cell (Treg) and follicular regulatory T cell frequencies35,36. While these observations implicate the 
pLN as a hub of T1D autoimmunity, due to the rarity of these sample types, there has not been a 
comprehensive unbiased analysis of human pLN that effectively captures this immune environment.  

To address these knowledge gaps, we profiled lymphoid immune perturbations across T1D 
autoimmune development within pLNs, mesenteric lymph nodes (mLNs), and spleen from control non-diabetic 
autoantibody negative (ND), non-diabetic AAb+, and T1D donors. We performed deep immunophenotyping of 
these tissues using the complementary methods of high-parameter flow cytometry (n = 46 donors) and cellular 
indexing of transcriptomes and epitopes by sequencing (CITEseq; n = 18 donors). Taken together, our findings 
reveal novel immunophenotypes in pLN and mLN from both AAb+ and T1D donors that provide new insights 
into T1D pathogenesis.   
 
Results 
Immune profiling of pancreatic, mesenteric, and splenic lymphatic tissues 

Through the Human Pancreas Analysis Program (HPAP)37, we collected ND, AAb+, and T1D donor 
spleens and lymph nodes that drain the pancreas, including pLNs (pancreatic head, body, and tail) and mLNs 
(superior mesenteric artery termed SMA mLN, and upper mesentery termed MES mLN). Donors were age, 
race, and sex matched across the disease groups (Extended Data Tables 1-2), with tissue samples being 
processed and analyzed at the same facility over the course of the study. T1D donors were diabetic for around 
6 years on average, with only two donors having diabetes >8 years. We used two complementary techniques 
for deep immune cell profiling of donor tissues: high-parameter flow cytometry on 256 unique samples (18 ND, 
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10 AAb+, and 18 T1D donors, Extended Data Table 1) and CITEseq single cell analysis on 650,085 cells post 
quality control (6 ND, 5 AAb+, and 7 T1D donors, Extended Data Table 2). All data are publicly available on 
PANC-DB (https://hpap.pmacs.upenn.edu/) or Genbank (GSE221787). 

We first used a high parameter flow cytometry panel to assess inter-tissue immune differences 
amongst all major immune cell populations across several immune lineages, including T cells, B cells, innate 
cells, and subsets thereof (Figure 1A-C, S1). The spleen showed a unique immune profile compared to LNs 
(Figure 1A-E), with an increased frequency of NK cells (Extended Data Fig. 2A), monocytes, and CCR7- T cell 
subsets including effector memory (Tem) and Tem CD45RA+ (Temra) T cells (Figure 1C,E). Some subsets 
were evenly distributed across the spleen and LNs, including B cells (Figure 1C, S2B). In contrast, the LNs 
were enriched for T cells, particularly CD4+ T cells and naive T cell subsets (Figure 1C-E, S2C-D). The pLNs 
and mLNs were highly similar in immune cell composition, with few exceptions (Extended Data Fig. 2E-I). 
Innate lymphoid cells (ILCs) were slightly decreased in frequency within the MES mLN (Extended Data Fig. 
2E), CD8+ central memory T cells (Tcm) had a slightly higher frequency occurring in the pLN-Tail (Extended 
Data Fig. 2F), and NK cells had a slightly decreased frequency in the pLN-Tail (Extended Data Fig. 2A).  

In parallel, we performed CITEseq on a subgroup of the same donors, allowing for deep resolution of 
immune subsets in pLN, mLN, and spleen samples (Figure 1F). No specific immune population selectively 
resolved by disease state (Figure 1G). Major clusters identified include B cells, T cells, and innate immune 
cells (Figure 1H), with surface epitopes (Extended Data Fig. 3A) and gene transcripts (Extended Data Fig. 3B) 
defining subsets thereof. Some clusters in B and T cells contain over 30,000 cells, with at least a few hundred 
cells in less abundant populations, allowing for deep characterization of rare immune cell populations of 
interest (Figure 1I). The spleen contained the majority of innate immune cells, while the pLN and mLN samples 
contained the majority of T cells (Figure 1F,H,I), closely resembling the flow cytometry dataset.  
 
AAb+ and T1D associated shifts in immune phenotypes 

To define immune cell composition and phenotypic changes in T1D development, we compared 
immune cell population frequencies between ND, AAb+, and T1D donors. As immune cell subsets did not differ 
in frequency between LN draining the pancreas head, body, and tail or the SMA or MES LNs (Extended Data 
Fig. 2), we binned different LNs by anatomical origin, either pLN or mLN, for subsequent analysis. Using 
hierarchical clustering, we observed three different groups of disease-associated immune cell signatures, 
particularly in the pLN and mLN (Figure 2A). Group 1 immune populations generally decreased in frequency in 
AAb+ and further in T1D donors, such as CD4+ naive T cells (Tn) cells and CD25+ CD4+ Tem/Temra within 
the pLN and mLN. Group 2 contained pLN and mLN immune populations, including CD25+ and CD38+ T cell 
subsets, that decreased in frequency in AAb+ compared to ND donors and maintained a lower frequency or 
rebounded to normal levels in T1D. Group 3 populations increased in frequency across disease status or were 
elevated only in T1D. Lymphocyte subsets following this pattern included pLN and mLN populations 
expressing the IL7 receptor (CD127), the putative residency marker CD69, memory CD27+ B cells, and 
cytotoxic CD56dimCD16+ NK cells. Overall, immune cell phenotypes are modulated in the pLN and mLN of 
AAb+ and T1D donors, with changes predominantly occurring in the pLN. 
 We aimed to corroborate these flow cytometry findings using an unbiased weighted gene co-expression 
analysis (WGCNA) approach with the transcriptome modality of the CITEseq data to uncover covarying gene 
modules across T1D development. We only considered ND and T1D pLN in order to identify co-varying gene 
modules before and after overt autoimmunity. Seventeen gene modules covaried across the disease states, 
representing a diverse range of defined biological processes (Figure 2B-C, Extended Data Fig. 6A-B). Since 
most modules had weak correlations with T1D status, we focused on modules containing genes that 
overlapped with phenotypes observed via flow cytometry. Module 15 was significantly decreased in T1D within 
CD4+ and CD8+ naive T cell clusters (Figure 2B-C), similar to the decreased frequency of CD4+ Tn cells 
observed by flow cytometry (Figure 2A). Module 15 was anchored by TXK, a gene critical for TCR signaling38 
and a regulator of interferon signaling39, and also contained the key lymphocyte development regulator IKZF1 
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(Figure 2B). Module 7 included genes associated with proinflammatory signaling and cytotoxic immune cells 
including CCL5, CST740, KLRD1, STAT441, NKG7, and SRGN (Figure 2B). Module 7 was increased in the 
CD8+ Tcm/Tem/Temra and NK/ILC clusters (Figure 2C), similar to increased frequencies of cytotoxic 
CD56dimCD16+ NK cells seen in flow cytometry. Module 6, anchored by CD127 (IL7R), consisted of genes with 
known roles in T cell function and signaling such as CD247, FYB142, CAMK443, PRKCH44, ITK, and LEF1 
(Figure 2B). This module was positively correlated with T1D in CD4 Tem/activated clusters in the CITEseq 
dataset (Figure 2C), similar to the observed increase in frequency of CD127+ CD4+ Tem/TEMRA T cells in the 
flow cytometry dataset (Figure 2A). Overall, unbiased analysis of the CITEseq data generated from ND and 
T1D donor pLN lymphocytes can recapitulate some observations within the flow cytometry dataset. 
Subsequent analyses focused on significant phenotypes observed by flow cytometry that could be 
corroborated in the smaller CITEseq cohort. 
 
Loss and dysfunction of CD4+ Tregs in the pLN 

Immune alterations before T1D onset are of particular interest to inform the development of early 
immune interventions capable of retaining β cell mass. In this regard, we observed a decreased frequency of 
CD25+ CD4+ Tem/Temra in the pLN of AAb+ donors that was maintained in the pLN of T1D donors (Figure 
3A). CD4+ Tregs, phenotypically defined here by high CD25 and low CD127 surface expression, have 
previously been shown to be reduced in the pLN of T1D donors35, and certain single nucleotide polymorphisms 
(SNPs) in or nearby the CD25-encoding gene IL2RA are significantly associated with T1D risk6,45. Indeed, the 
frequency of CD4+CD25+CD127low Tregs was significantly reduced in both AAb+ and T1D pLN (Figure 3B-
C), suggesting that CD4+ Tregs may be altered in the pLN prior to and during T1D onset in a tissue-restricted 
manner, as previously reported in the NOD mouse46. Using CITEseq, we further explored alterations in pLN 
Tregs within the CD4 Tcm/Treg cluster using a set of genes associated with various Treg signatures47,48. Core 
Treg genes FOXP3, IKZF4, and IL2RA were significantly reduced in the CD4 Treg/Tcm cluster in both AAb+ 
and T1D pLN (Figure 3D), showing that this signature appears prior to T1D onset. Other genes associated with 
Tregs, such as CTLA4, were increased in AAb+ versus ND pLN while genes negatively associated with Tregs 
such as IL7R decreased in AAb+ pLN, perhaps reflecting recent activation or attempted reconstitution of Tregs 
in AAb+ pLN. To discern changes within Tregs specifically, we analyzed transcriptional differences between 
disease states within FOXP3+ cells in the CD4 Treg/Tcm cluster (Figure 3E). Compared to ND Tregs, AAb+ 
Tregs expressed lower levels of ANTXR2, a gene critical for extracellular matrix interactions49, GPR183, a 
GPCR required for T cell positioning near activated T cells at the T cell zone-follicle interface50, and several 
MAML genes associated with Notch signaling51. Some of these genes also had decreased expression in T1D 
Tregs versus ND Tregs (Figure 3E). Compared to ND pLN Tregs, Tregs in T1D pLN expressed less FOXP1, a 
gene essential for Treg stability52, and RUNX1, which physically interacts with FOXP3 to upregulate Treg-
associated genes53. To determine whether these signatures were unique to pLN Tregs, we examined the same 
signatures in mLN and splenic Tregs (Extended Data Fig. 5). We observed similar decreases in CD25+ CD4+ 
Tem/Temra frequency in AAb+ donors, but not T1D (Extended Data Fig. 5A-B). CD25+CD127low mLN CD4+ 
Tregs similarly decreased in mLN of AAb+ but not in T1D donors nor in spleen of any disease state (Extended 
Data Fig. 5C-D). Furthermore, we did not observe transcriptomic shifts in FOXP3 or IL2RA seen in the pLN 
within mLN or spleen (Extended Data Fig. 5E). Together, these data indicate that pLN-, and to a lesser degree 
mLN- or splenic-, specific effects on Tregs occur both in frequency and gene expression associated with Treg 
lineage stability and function before T1D onset.   
 
Decreased naive T cell signatures in T1D pLN 

We next characterized alterations in the naive CD4+ T cell pool in T1D donors. Naive CD4+ T cell 
frequency decreased in T1D versus ND pLN (Figure 4A) and mLNs (Extended Data Fig. 5G), while naive 
CD8+ T cell frequency in the pLN did not change with disease status (Figure 4B). Additionally, WGCNA 
module 15, which contained genes directly involved in T cell signaling and development, was negatively 
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correlated with T1D status in both naive CD4+ and CD8+ T cells in T1D (Figure 2B-C, 4C). Donor age could 
not explain shifts in naive T cell phenotype, as age did significantly differ between disease groups, and the T1D 
group was slightly younger in the CITEseq cohort (Extended Data Table 1-2). Within the CITEseq data we 
identified two distinct clusters of naive CD4+ and CD8+ T cells: the first was highly enriched for naive T cell 
markers, termed naive #1, while the second had comparatively lower levels of naive surface markers and 
appeared activated, termed naive #2 (Extended Data Fig. 6). Both CD4 and CD8 naive #1 clusters in the pLN 
displayed a stronger negative correlation of WGCNA module 15 with T1D status, compared to their respective 
naive #2 cluster (Figure 4C). As a percentage of total pLN CD4+ T cells, CD4 cluster naive #1 trended lower in 
T1D compared to ND (Figure 4D), similar to that observed by flow cytometry (Figure 4A). Conversely, cluster 
CD4 naive #2 trended toward an increasing proportion of cells in T1D (Figure 4D). Neither of the naive CD8+ T 
cell clusters changed in frequency between disease states (Figure 4B, 4E). Several genes within WGCNA 
module 15 demonstrated significantly reduced expression in AAb+ or T1D pLN compared to ND pLN, 
particularly within the CD4 and CD8 Naive #1 clusters (Figure 4F-H). TXK, a gene critical for TCR signaling38 
and a regulator of interferon signaling39, and FKBP5, a gene that coordinates with FOXO4 to modulate 
cytokine production54, were significantly decreased in T1D versus ND across all naive subsets. ATM, a gene 
critical for DNA repair during V(D)J recombination55, was also decreased in both CD4 and CD8 naive #1 
clusters but not naive #2 clusters from T1D donors. Taken together these data demonstrate a reduction in 
CD4+ naive T cells in T1D that is accompanied by decreased expression of genes in both CD8+ and CD4+ 
naive T cells involved in processes essential for T cell signaling and DNA repair.   
 
Memory CD8+ T cells display a stem-like phenotype in AAb+ and T1D pLN 

As CD8+ T cells are widely thought to play a direct role in human T1D pathology by infiltrating islets 
and eliminating β cells1,28, we sought a deeper examination of CD8+ T cell perturbations before and after T1D 
onset. In human pLN, we found multiple CD8+ T cell phenotypic changes before and after T1D onset in both 
flow cytometry and CITEseq datasets. We observed a marked decrease in the proportion of cells expressing 
the activation markers CD25 (Figure 5A) and CD38 (Figure 5B) in AAb+ donors compared to ND. Decreased 
CD25 expression was noted amongst all memory CD8+ T cell subsets in AAb+ donor pLNs, and otherwise 
only amongst CCR7- CD8+ memory T cell populations in mLN (Extended Data Fig. 5I-J). The CD38+ 
frequency decreased in CD8+ Tn, Tn-like (Tnl), and Tcm subsets and trended lower in CD8+ Tem and Temra 
subsets in the pLN of AAb+ donors. In mLN and spleen, CD38 surface expression only decreased in splenic 
Tnl of AAb+ donors compared to ND. Overall, the frequency of CD25+ and CD38+ CD8+ T cell subsets 
decreased in the pLN, and to a lesser degree in the mLN and spleen, of AAb+ donors in comparison to ND. 

We further explored T1D-associated memory CD8+ T cell alterations in relation to disease state using 
CITEseq (Figure 5C). CD25 and CD38 ADT signatures could not be used to corroborate phenotypes observed 
with flow cytometry due to low resolution of these markers in memory CD8+ T cell clusters. Therefore, we 
instead utilized genes within the proinflammatory and cytotoxicity associated WGCNA Module 7 that positively 
correlated with T1D in memory CD8+ T cells (Figure 2B-C) and genes associated with autoimmune or tissue-
targeting CD8+ effector memory T cells (Figure 5C)34,56. The cells in the CD8 Tcm/Tem/Temra cluster included 
a diverse range of memory CD8+ T cell subsets, based on gene expression signals associated with stem, 
effector, and effector memory CD8+ T cells such as TCF7, EOMES, TOX, PRF1, GZMB, and CXCR3 (Figure 
5C). Of these genes, CXCR3 and TOX were the only genes differentially expressed in both AAb+ and T1D 
pLN relative to ND pLN, with expression of CXCR3 increasing and TOX decreasing (Figure 5D). TOX had 
similar expression patterns in mLN and spleen, while CXCR3 expression decreased in T1D versus ND mLN 
(Extended Data Fig. 5M-N), suggesting that the pLN may have a unique CXCR3 gene expression pattern 
compared to the other tested tissues (Extended Data Fig. 5M-N). The frequency of CXCR3-TOX+ and 
CXCR3+TOX- cells in the pLN trended in the same patterns as TOX and CXCR3 gene expression (Figure 5E), 
suggesting that the cells driving this gene expression pattern expressed either CXCR3 or TOX. Compared to 
all cells in the CD8 Tcm/Tem/Temra cluster, CXCR3-TOX+ cells had higher levels of PD1 and CCR4 surface 
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protein (Figure 5F). Conversely, CXCR3+TOX- cells expressed relatively higher levels of the lymph node 
homing receptor CD62L (L-selectin), the immune inhibitory receptor CD94 (KLRD1), and the costimulatory 
molecule CD26 on the cell surface (Figure 5G). Within the CD8 Tcm/Tem/Temra cluster, CXCR3-TOX+ cells 
and CXCR3+TOX- cells had distinct gene expression patterns (Figure 5H-I). Genes with higher expression in 
CXCR3-TOX+ cells included chemokines CCL4 and CCL4L2, inhibitory receptor TIGIT, costimulatory molecule 
ICOS, and transcription factors IKZF2 and BCL2 (Figure 5H). CXCR3+TOX- cells expressed higher levels of 
immunosuppressive genes KLRD1 and CD55, the CD127-encoding gene IL7R, and the stemness-enforcing 
transcription factor BACH257,58. In total, pLN CD8+ T cells exhibited changes that manifested in AAb+ donors 
prior to T1D development: decreased cell surface expression of activation markers CD25 and CD38, a 
reduction of an effector TOX+ population, and an increase in a stem-like CXCR3+ population. The mLN and 
spleen also contained some, but not all, of these phenotypic differences between disease states, specifically 
overlapping with pLN in CD25 surface expression and TOX expression patterns.  

 
Cytotoxic NK cells more prominent in T1D pLN 

Finally, we examined innate cell populations for potential changes associated with AAb+ or T1D status. 
While few overt differences were noted within most innate cell lineages present within the pLN or mLN across 
the different cohorts, we found that the cytotoxicity-associated WGCNA module 7 (Figure 2B-C) was positively 
correlated with T1D status in pLN N K cells (Figure 2A), and there was a proportional increase in the cytotoxic 
CD56dimCD16+ NK cell frequency in T1D pLN (Figure 6A-B). We further assessed differential gene expression 
within NK cell clusters between ND and T1D, focusing on genes within WGCNA module 7 and additional NK 
cell cytotoxicity associated genes from the KEGG pathway database59–61. GZMB, CRTAM, IFNG, and other 
genes associated with NK cell cytotoxicity were upregulated in T1D (Figure 6C-D). Further, the NK cell 
inhibitory receptor KLRB1 was the most downregulated gene by fold change in the specific gene set (Figure 
6C,E). GZMB+ NK cells in the pLN were highly enriched in genes associated with cytotoxicity such as NKG7, 
KLRD1, and GNLY (Figure 6F), while GZMB- NK cells in the pLN expressed IL1R1 and the 
immunosuppressive enzyme IL4I162 (Figure 6G). Compared to ND, GZMB expression was not increased in 
T1D in the mLN or spleen, while KLRB1 decreased in expression in the mLN (Extended Data Fig. 5O-P), 
indicating that the increased cytotoxic NK cell frequency and transcriptomic signature was observed in the 
pLN, and not the mLN or spleen, of T1D donors.  

  
Immune populations correlate with HLA genetic risk 

HPAP collects and publicly shares extensive clinical information on each donor, allowing for the 
correlation of immune phenotypes with these metadata. One such parameter is HLA type, where certain alleles 
of HLA-DR and HLA-DQ convey significant risk for T1D63–65. Higher genetic risk is associated with rapid onset 
of T1D66 and can distinguish between young adults with T1D versus T2D67. Therefore, profiling the immune 
system in individuals with high genetic risk may uncover immune perturbations associated with T1D disease 
susceptibility. Using only the HLA risk score portion of Genetic Risk Score 2 (GRS2)68, we generated an HLA 
genetic risk score (HLA-GRS) for each donor that accounts for HLA DR-DQ haplotype interactions17,68, with a 
higher score indicating a higher risk for disease development. As expected, T1D donors had increased HLA-
GRS compared to ND (Figure 7A). After controlling for the effects of disease state on immune population 
frequency, we observed moderate correlations between HLA-GRS and the frequency of specific pLN immune 
populations. For example, when grouping ND and AAb+ donors, the frequency of CD8+ Tcm and Tem 
expressing CXCR5, HLA-DR and/or CD38 were positively correlated with HLA-GRS (Figure 7B-D). When 
grouping ND and T1D donors, similar populations were associated with HLA-GRS but did not reach statistical 
significance (data not shown), likely due to these populations being regressed out due to their increased 
frequency in T1D pLNs (Figure 2A). When binning AAb+ and T1D donors, the frequency of CD69+ cells in B 
cells and memory T cell subsets correlated positively with HLA-GRS (Figure 7E-F). The frequency of CD127+ 
memory T cell subsets also positively correlated with HLA-GRS, with a reciprocal decrease in the frequency of 
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CD127- T cells (Figure 7E,G). Together, these data indicate that higher risk HLA haplotype combinations are 
positively associated with the frequency of certain pLN immune populations, particularly activated CD8+ 
memory T cells, CD127+ T cells, and CD69+ B and T cells.  

 
Discussion 

Our current knowledge of the landscape of immune perturbations during the ontogeny of T1D largely 
originates from the NOD mouse model and targeted analysis of specific immune subsets in human peripheral 
blood, with limited studies of human pLN32,33,35. Here, we broadly profiled lymphocyte subsets from lymphatic 
tissues in a large cross-sectional cohort of ND, AAb+, and T1D human organ donors to define immunological 
perturbations occurring in pLN prior to and after disease diagnosis. Compared to ND, AAb+ and T1D pLN have 
a reduced Treg signature and increased stem-like CXCR3+ CD8+ T cells. Some perturbations were T1D pLN 
specific, including a reduced naive T cell signature and an increased frequency of cytotoxic CD56dimCD16+ NK 
cells. Additionally, several immune populations in the pLN correlated with HLA-GRS independently of the 
effects of disease status, in particular CD8+ T cell activation signatures and increased CD69 and CD127 
surface expression on T cells and/or B cells. Importantly, immune alterations were most readily observed in 
lymphoid tissues that drain the pancreas as opposed to the spleen, implying that disease-related effects may 
be diluted or influenced by other factors at sites more distal from autoimmune inflammation.  

One of the clearest observed signatures was a marked decrease in CD25 expression on CD4+ and 
CD8+ T cells in the pLN of AAb+ individuals. This was most strongly reflected by an overall decrease in CD4+ 
Tregs, a phenomenon observed previously in T1D35, but shown here to also manifest in AAb+ donors and in 
individuals with T1D. IL-2 signaling and production deficiencies have long been tied to T1D susceptibility, as 
PBMCs from children with recent onset T1D produce less IL-269,70, and several T1D susceptibility genomic loci 
are involved in IL-2 signaling6,45. IL-2 induced signaling responses are critical to maintaining T cell tolerance to 
self-antigen through the maintenance of CD4+ Tregs71, and IL-2 signaling strongly influences CD8+ memory T 
cell differentiation72. Decreases in pLN Treg frequency in AAb+ donors highlight the evolution towards an 
inflammatory environment that may occur in pLN before T1D onset. Further, while CD25+ CD4+ Tem 
frequency in the mLN and spleen have similar patterns across disease states compared to pLN, a decline of a 
Treg signature in AAb+ or T1D disease states was not observed in mLN or spleen, indicating that the pLN are 
uniquely losing this cell population known to be critical for autoimmune control.  

The loss of Tregs in AAb+ individuals was accompanied by an increase of a stem-like CD8+ T cell 
population closely resembling one found in multiple autoimmune contexts, including a population that resides 
in the pLNs and drives autoimmunity in NOD mice34 and is associated with ulcerative colitis in mice and 
humans73. In humans, stem-like CD8+ T cells12 and CXCR3+ CD8+ T cell subsets17 in PBMCs are positively 
associated with T1D status. In human AAb+ and T1D pLN, we also observed increased frequencies of less 
differentiated stem-like CXCR3+ memory CD8+ T cells. Importantly, CXCR3+ memory CD8+ cells did not 
change across disease state in the mLN, suggesting localization of this effect to the pLN. We further found that 
a TOX+ memory CD8+ T cell population defined by surface PD1 and CCR4 protein and gene expression of 
CCL4, IKZF2, and BCL2 reciprocally decreased in the pLN of AAb+ individuals. While PD1+ CD8+ T cells 
expressing TOX have been described as being functionally exhausted in some contexts, many polyfunctional 
non-exhausted CD8+ T cells express PD1 and TOX in human lymph nodes74. The PD1+ TOX+ CD8+ T cell 
population shares features with IKZF2+KIR+ CD8+ T cells, which play a role in peripheral tolerance during 
inflammatory conditions75. It is unclear how these events are temporally associated with progression as T1D-
associated AAb specificities develop76, but a loss of Treg activity or changes in IL2 signaling could enable the 
survival and expansion of T1D autoantigen-specific CD8+ T cells in the local pLN environment.  

We also observed an increased proportion of cytotoxic NK cells, and decreases in frequency and 
transcriptomic alterations in naive CD4+ and CD8+ T cells, in pLN and mLN of T1D donors. Although various 
pathways may explain the general differentiation of naive T cells and NK cells, evidence in the context of T1D 
implicates cytokine signaling, and in particular γ-chain cytokines, as a potential mechanism behind these 
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observations. Long-term inflammation drives immune aging, activation, and differentiation signatures in 
PBMCs of T1D donors17. γ-chain cytokines IL7 and IL21 are elevated in the circulation of long-standing, and 
not newly diagnosed, T1D donors77,78, and IL7 and IL21 signaling are required for diabetes development in 
NOD mice79–81. IL21 and IL15 promote NK cell differentiation into cytotoxic subsets including CD56dimCD16+ 
NK cells82, and γ chain cytokines promote naive T cell differentiation83, similar to phenotypic changes we 
observed in these immune subsets. Additionally, IL7 is known to increase the expression of its canonical 
receptor CD12784, and we observed CD127 expression in the pLN was positively associated with T1D status 
and HLA-associated T1D risk. Several IL2-related phenotypic changes were identified in the pLN of AAb+ 
donors, implying that certain γ chain cytokines may impact earlier stages of T1D progression and others after 
disease establishment. Examining if γ chain cytokine signals actively drive the observed phenotypes in the 
T1D context, and whether they derive from the lymph node or upstream from the pancreas, will inform 
therapeutic strategies for immune intervention during or after T1D onset. 

By calculating T1D genetic risk conveyed by HLA class II alleles, we found that the frequency of 
memory CD8+ T cells with HLA-DR and CD38 surface expression was positively correlated with HLA-GRS, 
indicating that non-T1D individuals with higher-risk HLA alleles have an increased frequency of activated 
memory CD8+ T cells in the pLN. While cytotoxic CD8+ T cells infiltrate islets and eliminate β cells in T1D26,29, 
it is unclear how or where these autoimmune CD8+ T cells develop in humans. Evidence from the NOD mouse 
implicates stem-like autoimmune CD8+ T cells as a reservoir of T cells that infiltrate the pancreas34, and we 
observed an expansion of stem-like memory CD8+ T cells in the pLN of AAb+ and T1D donors. It is unknown 
whether pLN CD8+ T cell activation observed in high-risk individuals is related to the expansion of stem-like 
CD8+ T cells, but a higher basal T cell activation state may potentiate expansion of autoimmune CD8+ T cells. 
We found that a higher HLA-GRS in AAb+ and T1D donors positively correlates with CD127 surface 
expression on T cells. CD127, along with the common γ chain receptor subunit, comprises the IL7R that is 
critical for T cell homeostatic proliferation85, implying that pLN T cells in individuals with higher HLA-GRS may 
have heightened IL7 responsiveness86. AAb+ and T1D individuals with a higher HLA-GRS also had increased 
frequencies of CD69+ B and T cell subsets, indicating these individuals may have more tissue resident87 or 
activated88 immune cells. As tissue residency is critical for local tissue immune memory responses87, further 
investigation is needed to explore if high risk individuals have an expanded immune memory pool that could 
potentiate autoimmune responses.   

Our study was limited in a number of aspects. First, due to the complexities of donor acquisition, we 
were limited in our ability to acquire enough AAb+ organ donors with two or more T1D-associated AAbs, 
preventing a properly powered subanalysis of single versus multiple AAb+ donors. As the study design is 
inherently cross-sectional, we do not have longitudinal data, including glucose tolerance tests, to properly 
stage AAb+ individuals. This limits our ability to stage the progression of immune perturbations that we 
observed in our cross-sectional study. Individuals without diabetes who have multiple T1D-associated AAbs 
are rare, and generally progress to T1D more rapidly than those with single autoantibodies2. Furthermore, as 
not all single AAb+ donors develop T1D2,89, additional studies of pLN from donors with >1AAb+ across a range 
of AAb specificities will be necessary to define immunological associations with pre-T1D. Second, due to blood 
samples being drawn well before donor organ harvest, we determined that peripheral blood lymphocytes 
yielded unreliable flow cytometric and transcriptomic data (data not shown). As such, we cannot directly 
compare our results to previous studies focusing exclusively on peripheral blood. Third, we restricted our flow 
cytometric analysis to freshly isolated lymphocytes, rather than frozen lymphocytes, due to evidence of 
cryopreservation-induced changes in certain cell surface markers90. This limits subsequent flow based analysis 
to prospectively acquired cohorts. Fourth, we were unable to simultaneously assess B cell or T cell repertoires 
in the CITEseq analysis due to technical limitations from 3’ mRNA transcriptomic analysis. Hence, studies of T 
cell or B cell T1D antigen specificity are pending. 

The deep immune profiling of rare and valuable tissue samples from organ donors collected across the 
spectrum of disease stages reported here provide an expansive resource for both the T1D community as well 
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as individuals interested in lymph node immunology. This resource is structured as an immune cell atlas in an 
open data format with the goal of facilitating novel investigative approaches to understand disease 
mechanisms and identify novel targets to intervene in T1D development. Importantly, the conjunction of the 
high-dimensional analyses allowed for the observation of subtle immune changes associated with AAb 
positivity and T1D status. The datasets provide foundational immunobiology information for the research 
community that could help uncover potential therapeutic targets to delay, prevent, or ameliorate T1D.  
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Figures 

Figure 1. Immune profiling of pancreatic, mesenteric, and splenic lymphatic tissues  
(A) UMAP representation of pLN-Tail lymphocytes and (B) splenocytes, highlighting immune lineage 
populations detected with flow cytometry.  
(C) Hierarchical clustering of all samples within the flow cytometry dataset using major immune lineage 
populations. Coloring of the heatmap represents an individual sample’s Z-score within the respective im
population. Immune lineage population clustering patterns were labeled and partitioned at k-means clus
level 3.  
(D) PCA and (E) biplot of all flow cytometry samples using frequencies of major immune lineage populat
(F) UMAP representation of the RNA component of the CITEseq dataset colored by tissue origin, (G) dis
status, and (H) cluster annotation of each cell.  
(I) Number of cells within each cluster, further subsetted by tissue type and disease state.  
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Figure 2. AAb+ and T1D associated shifts in immune phenotypes  
(A) Heatmap of immune populations, detected by flow cytometry, from each tissue type that are significa
different in frequency in at least one comparison between disease states. Coloring of the heatmap repre
the mean of Z-scores for a specific immune population within the specified tissue type. Statistical signific
was calculated with robust one-way ANOVA, with post hoc testing using Hochberg’s multiple comparison
adjustment. Only immune populations with a differential p-value < 0.01 in at least one disease compariso
were plotted.  
(B) Modules of interest generated using WGCNA analysis on scRNAseq data from pLN lymphocytes in N
T1D disease states.  
(C) Correlations of modules of interest between ND and T1D disease states, across all immune cell clus
For all panels, * is p < 0.05, ** is p < 0.01, *** is p < 0.001.  
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Figure 3. Loss and dysfunction of CD4+ Tregs in the pLN 
(A) Frequency of pLN CD25+ cells or (B) CD25+ CD127- CD4+ Treg cells within CD4+ T cell subsets, a
determined by flow cytometry. Statistical significance determined by robust ANOVA with post hoc testing
Hochberg’s multiple comparison adjustment. Boxplot represents median and interquartile range. 
(C) Representative two-parameter density plots of CD4+ Treg cells within the pLN, as measured by flow
cytometry.  
(D) Expression of CD4+ Treg-associated genes within the CD4+ Treg/Tcm cluster from pLN. Expression
scaled within each gene. Statistical significance determined by Wilcoxon Rank Sum Test and p-value 
adjustment using the Bonferroni method.  
(E) Top 20 differentially expressed genes (adjusted p value < 0.05, excluding common genes (see STAR
Methods)) between disease states in FOXP3+ cells within the CD4 Treg/Tcm cluster in the pLN only. Sta
significance determined by Wilcoxon Rank Sum with genes with a log fold change threshold > 0.1 and p
adjustment with the Bonferroni method across all combinatorial comparisons.  
For all panels in this figure, * is p < 0.05, ** is p < 0.01, *** is p < 0.001.   
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Figure 4. Decreased naive T cell signatures in T1D pLN 
A) Frequency of pLN CD4+ Tn within total CD4+ T cells or (B) pLN CD8+ Tn within total CD8+ T cells, a
determined by flow cytometry. Statistical significance determined by robust ANOVA with post hoc testing
Hochberg’s multiple comparison adjustment. Boxplot represents median and interquartile range.  
(C) Mean normalized expression of the top 10 most inter-connected genes in WGCNA module 15, plotte
across the naive T cell clusters in the pLN and disease state.  
(D) Frequency of the two naive CD4+ T cell clusters and (E) the two naive CD8+ T cell clusters in the pL
across disease states. Boxplot represents median and interquartile range. P value determined by Wilcox
ranked sum test with Benjamini-Hochberg multiple test correction.  
(F) Normalized expression of genes of interest from WGCNA module 15, from the pLN only. Statistical 
significance determined by Wilcoxon Rank Sum Test with a log fold change threshold of 0.1 and p-value
adjustment using the Bonferroni method.  
(G) Differentially expressed WGCNA module 15 genes CD4 Naive #1 and CD4 Naive #2 clusters and (H
Naive #1 and CD8 Naive #2 clusters from the pLN, between ND and T1D donors. Statistical significance
using Wilcoxon Rank Sum Test with p-value adjustment using the Bonferroni method.  
For all panels in this figure, * is p < 0.05, ** is p < 0.01, *** is p < 0.001.  
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Figure 5. Memory CD8+ T cells display a stem-like phenotype in AAb+ and T1D pLN 
(A) Frequency of pLN CD25+ cells or (B) CD38+ cells within pLN CD8+ T cell subsets, as determined by
cytometry. Statistical significance determined by robust ANOVA with post hoc testing using Hochberg’s 
multiple comparison adjustment. Boxplot represents median and interquartile range.  
(C) WGCNA module 7 and effector CD8+ T cell genes of interest mean normalized expression in the pL
across disease state. 
(D) Normalized expression of CXCR3 and TOX in CD8 Tcm/Tem/Temra cells in the pLN. Statistical 
significance determined by Wilcoxon Rank Sum test with Bonferroni correction done between all combin
tests. Dashed red line indicates the exclusive threshold (> 0.5) for demarcating positive gene expression
later plots.  
(E) Frequency of pLN CD8 Tcm/Tem/Temra cells expressing permutations of CXCR3 and TOX, across 
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disease state. P value determined by Wilcoxon rank sum test with Benjamini-Hochberg multiple test correction. 
(F) Differential surface protein ADTs enriched in CXCR3-TOX+ cells and (G) CXCR3+TOX- cells compared to 
all other permutations of CXCR3 and TOX expression within CD8 Tcm/Tem/Temra cluster in the pLN. Total 
CD8+ T cells, total CD8+ T cells, the NK/ILC cell cluster, and total B cells were used as comparators. Surface 
markers are ranked in descending order of fold change between CXCR3-TOX+ cells and CXCR3+TOX- cells. 
Statistical significance determined by Wilcoxon rank sum test on ADTs with log fold change threshold > 0.1 
followed by Bonferroni multiple test adjustment (adjusted p value < 0.05 denotes significant differential 
expression). Populations of interest highlighted by the black outline.  
(H) Genes differentially expressed in CXCR3-TOX+ cells and (I) CXCR3+TOX- cells compared to all other 
permutations of CXCR3 and TOX expression within CD8 Tcm/Tem/Temra cluster in the pLN. Genes are 
ranked in descending order of fold change between CXCR3-TOX+ cells and CXCR3+TOX- cells. Statistical 
significance determined by Wilcoxon rank sum test with log fold change threshold > 0.25 followed by 
Bonferroni multiple test adjustment (adjusted p value < 0.05). Only genes with a p < 0.0001 are plotted. 
Populations of interest highlighted by the black outline.  
For all panels in this figure, * is p < 0.05, ** is p < 0.01, *** is p < 0.001.  
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Figure 6. Cytotoxic NK cells more prominent in T1D pLN 
(A) Frequency of CD56dimCD16+ NK cells within the pLN, as measured by flow cytometry. Statistical 
significance determined by robust ANOVA with post hoc testing using Hochberg’s multiple comparison 
adjustment. Boxplot represents median and interquartile range. 
(B) Representative two-parameter density plots images of NK cell subsets within the pLN.  
(C) List of differentially expressed genes, ranked by descending log2 fold change, of genes that are 
significantly more expressed in T1D pLN. Cells are from a combination of the NK and NK/ILC clusters, fr
pLN only. Gene sets to test came from the Module 7 of the WGCNA analysis, which was significantly 
increased in NK cell clusters in T1D, and from the “Natural killer cell mediated cytotoxicity” gene set from
Encyclopedia of Genes and Genomes (KEGG).  
(D) Normalized expression of GZMB and (E) KLRB1 within the combined NK and NK/ILC clusters in the
Statistical significance tested using Wilcoxon Rank Sum Test with p-value adjustment using the Bonferro
method.  
(F) Mean normalized expression of genes significantly increased in GZMB+ and (G) GZMB- cells from th
combined NK and NK/ILC clusters in the pLN. P value determined by Wilcoxon Rank Sum Test with p-va
adjustment using the Bonferroni method.  
For all panels in this figure, * is p < 0.05, ** is p < 0.01, *** is p < 0.001.  
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Figure 7. Immune populations correlate with HLA genetic risk 
(A) HLA-GRS score of donors in the cohort. Boxplot represents median and interquartile range. P value 
generated with Dunn’s test with multiple hypothesis correction adjustment using Holm’s method. * is p <

(B) Immune populations that significantly correlate with HLA-GRS in ND and AAb+ donors. Grey line 

represents an adjusted p value ≥ 0.05. Dot fill represents a Kendall tau correlation value corrected for d

state effects. 

(C) and (D) Representative plots of HLA-GRS versus immune population frequency in ND and AAb+ don
is the Kendall tau correlation value corrected for disease state effects, represented by the blue linear 
regression line with standard error in grey. pc is the p value adjusted for disease state effects and correc
with Benjamini-Hochberg multiplicity adjustment.  
(E) Immune populations that significantly correlate with HLA-GRS in AAb+ and T1D donors. All plot 
parameters follow (B). 
(F) and (G) Representative plots of HLA-GRS versus immune population frequency in AAb+ and T1D do
All plot parameters follow (C) and (D). 
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Methods 
 
Tissue collection 
Experimental model and study participant methods are described29,91. Details on the samples obtained through 
the HPAP are available online at https://hpap.pmacs.upenn.edu and described37. Whole organ samples are 
obtained via the local organ procurement organization or via University of Florida/nPOD. The consent for 
procurement of research pancreata was obtained by staff of the organ procurement organization. All human 
samples were de-identified and IRB exempt. Donors were evaluated for autoantibody status (GAD, IA-2, IAA 
and ZnT8), C-peptide levels, and underwent clinical chart review. Clinical data including diagnosis of T1D, 
HbA1c, BMI, age, gender, HLA type, and more are recorded in the HPAP database. Additional data from 
histology, immunophenotyping, repertoire profiling, metabolic and transcriptomic studies are generated on all 
HPAP donors, providing a shared and publicly available comprehensive resource. 
 
Tissues and cells 
 To isolate pancreatic and mesenteric LN lymphocytes, LNs obtained from brain-dead organ donors were 
submerged in 5 mL R10 media (RPMI + 10% FBS + 1% penicillin/streptomycin + 2mM L-glutamine) 
supplemented with 10U/mL DNase I (Roche), cleaned of visceral fat, and cut into small pieces (~2mm x 
~2mm). Tissue fragments were placed into a sterile 70 μm mesh (Miltenyi Biotech) and pushed through the 
mesh with the blunt end of a sterile 5 mL syringe plunger. Residual tissues and cells in the mesh were washed 
with 45 mL of R10 + DNAse, centrifuged at 500 xg for 7 minutes, resuspended in 10 mL of R10 + DNAse, and 
counted. To isolate splenocytes, approximately 30 g of spleen tissue was placed in R10 supplemented with 
10U/mL DNase I and 3 mg/ml collagenase D (Sigma), the capsule was removed, and remaining tissue was cut 
into 4mm x 4mm pieces. The tissue was then mechanically dissociated using a GentleMACS (Miltenyi Biotech) 
and incubated at 37 C for 15 min with gentle inversion. After digestion, the cell suspension was filtered through 
a 100 μm strainer, and erythrocytes were lysed by ACK buffer (Corning). Post-ACK, cells were resuspended in 
R10 media and filtered through a sterile 70 μm mesh. Splenic mononuclear cells were isolated by density 
gradient centrifugation using Ficoll-Paque. Viable cell suspensions from LN and spleen were cryopreserved in 
FBS + 10% DMSO and stored at -150°C until thawing. 
 
Flow cytometry acquisition and analysis 
All antibody staining was done on freshly isolated cells following a protocol detailed elsewhere92. After washing 
with phosphate-buffered saline (PBS), cells (whole blood derived leukocytes or isolated lymphocytes) were 
prestained for the chemokine receptor CCR7 for 15 min at 37°C 5% CO2. All following incubations were 
performed at room temperature. Cells were stained for viability exclusion using Live/Dead Fixable Aqua 
(Invitrogen) for 10 minutes, followed by a 20-minute incubation with a panel of directly conjugated antibodies 
and Trustain (BioLegend) diluted with fluorescence-activated cell sorting (FACS) buffer (PBS containing 0.1% 
sodium azide and 1% bovine serum albumin) and Brilliant Stain Buffer (BD Biosciences). The cells were 
washed in FACS buffer and fixed in PBS containing 4% paraformaldehyde (Electron Microscopy Sciences). 
Cells were stored at 4°C in the dark until acquisition. All flow cytometry data was collected on a BD 
FACSymphony A5 cytometer (BD Biosciences). FlowJo software version 10.9 was used to generate population 
frequencies and representative flow cytometry plots. R was used for further analysis of these exported 
population frequencies. 
 
CITEseq sample processing and library generation 
Eight samples were run simultaneously for each round of CITEseq, balancing both tissue type and disease 
state across runs. Cryopreserved cells were thawed by gentle shaking in a 37°C water bath until the cell 
suspension was partially thawed, which was immediately decanted into cold R10 medium + DNAse. Thawed 
cells were centrifuged at 500 xg for 7 minutes, then resuspended in room temperature R10 + DNAse. Cells 
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were rested in R10 + DNAse at 2 x106 cells/mL for 2 hr at 37°C with 5% CO2. All following cell preparation and 
antibody staining steps, including centrifugation, were done at 4°C. After resting, cells were centrifuged at 500 
xg for 7 minutes and resuspended in 1 mL ice cold Cell Stain Buffer (CSB, BioLegend). Samples were filtered 
through a sterile pre-wet 70 μm mesh, followed by a 2 mL wash with CSB. 500k live cells that passed through 
the mesh were spun at 200 xg for 10 minutes and resuspended in CSB. Trustain was added to each sample at 
a 1:10 dilution and incubated on ice for 10 minutes. After, each sample received a unique hashing antibody 
(BioLegend) following manufacturer’s instructions. Totalseq-A antibody cocktail (BioLegend), reconstituted in 
CSB following the manufacturer’s protocol, was added to each sample at the manufacturer’s recommended 
concentration. After a 30 minute incubation on ice, cells were washed 3X with ice cold CSB, counted, and 
pooled in CSB at 2000 cells/μL with ~125K cells from each sample. The pooled sample was filtered through a 
40μm FlowMi strainer (Sigma) and counted. Pooled samples were run at 17.5k cells/well on a Chromium X 
(10X Genomics) using the Chromium Next GEM Single Cell 3’ HT or RT kit v3.1 (10X Genomics). Single cell 
sequencing library preparations for the RNA modality followed the manufacturer’s protocol, with the exception 
of spiking in primers at step 2.2 that amplify ADT and HTO sequences. 1 μL of 0.2 μM ADT additive primer 
(sequence: CCTTGGCACCCGAGAATT*C*C) and 1 μL of 0.1 uΜ ΗΤΟ additive primer (sequence: 
GTGACTGGAGTTCAGACGTGTGCTCTTCCGAT*C*T) was spiked into each individual sample prep. 
Preparation of the ADT and HTO single cell sequencing libraries followed manufacturer’s protocol (BioLegend) 
and described elsewhere (cite-seq.com)93,94. Briefly, at step 2.3d, 60 μL of supernatant was collected, 140 μL 
of SPRIselect reagent (Beckman Coulter) was added to the collected supernatant, washed twice with 80% 
ethanol, and eluted with 90 μL EB (Qiagen). For the respective ADT and HTO modalities, antibody-derived 
oligomers were amplified and indexed by mixing 45 μL eluent with 50 μL of KAPA HiFi HotStart ReadyMix 
(KAPA Biosystems) and 5 μL of forward/reverse indexing primers (Biolegend). Amplification settings for the 
ADT modality were as follows: 95 °C 3 min, ~8 cycles of 95 °C 20 sec, 60 °C 30 sec, and 72 °C 20 sec, 
followed by 72 °C for 5 min and ending with hold at 4 °C. Amplification settings for the HTO modality were the 
same except for a 64 °C annealing temperature. Post-amplification, ADT and HTO libraries were purified with a 
1.2X SPRIselect cleanup and eluted with 30 μL EB. All final libraries were quantified using a Qubit dsDNA HS 
Assay kit (Invitrogen) and a High Sensitivity D1000 DNA tape (Agilent) on a Tapestation D4200 (Agilent). 
 
CITEseq library sequencing 
Sequencing runs were performed on the NovaSeq 6000 platforms (Illumina) with a target of at least 10,000 
reads per cell for ADT libraries, 25,000 reads per cell for RNA libraries, and 500 reads per cell for HTO 
libraries.     
 
CITEseq preprocessing 
The cellranger (7.0.0; 10X Genomics) suite of tools were used for all preprocessing steps for the RNA 
component. Raw BCL files were demultiplexed using the cellranger mkfastq tool, resulting in fastq files for 
each lane used in the 10X Genomics chip. Fastq files were processed into cell by gene matrices using the 
cellranger count tool by aligning against the hg38 reference genome. The resultant matrices were used for 
downstream analyses. For ADT and HTO, raw BCL files were demultiplexed using bcl2fastq2 (Illumina) to 
create fastq files that correspond to each lane used in the 10X Genomics chip. Fastq files were then counted 
using a variation of the kite pipeline (https://github.com/pachterlab/kite) which uses kallisto and bustools95 for 
alignment, barcode correction, and counting to create cell by feature matrices. Code for ADT and HTO 
preprocessing is found here: https://github.com/betts-lab/scc-proc. 
 
CITEseq modality processing and dehashing 
The RNA filtered feature barcode matrix (as outputted from cellranger count) was loaded into R (v4.1.1) and 
Seurat (v4.1.1) to create a Seurat object after filtering out for wells that had low cell recovery and/or poor 
quality control metrics as determined by cellranger. Cells were then further filtered by the following criteria for 
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initial quality checking: number of features > 200 & number of features < 6000 & percentage of mitochondrial 
reads < 12.5%. RNA counts were then normalized on a per cell basis. The ADT barcode matrix (as outputted 
from kallisto bustools) was loaded into the emptyDrops function (DropletUtils v1.14.2) with a minimum 
threshold of 100 UMI counts to determine what barcodes are associated with empty droplets (false discovery 
rate < 0.01). The empty droplets were filtered out of the ADT matrix. The intersection of usable barcodes was 
determined between the QC filtered RNA modality, the QC filtered ADT modality, and the HTO barcode matrix. 
The Seurat object was filtered to retain only barcodes that were detected/passing QC in all three modalities. 
After adding the ADT and HTO modalities as separate Assay objects, we normalized the HTO data within each 
hashtag. The HTODemux() function in Seurat with the argument (positive.quantile = 0.99) was used to 
demultiplex samples based on hashtag. Samples that were classified as singlets were kept for downstream 
analyses. 
 
Modality integration and clustering: All runs were merged into a single Seurat object. ADT data were scaled 
and normalized using the centered-log ratio method by cell. Principal component analysis was performed for 
RNA and ADT separately and resultant principal components were each used as input for batch effect 
correction using Harmony96 with grouping variables set by donor and by each chip used for droplet emulsions. 
The batch effect corrected RNA-based principal components were used to generate a shared nearest neighbor 
(sNN) graph. Using the sNN graph, clustering was performed with the Leiden algorithm and the following 
settings for the FindClusters method in Seurat (method = “igraph” and resolution = 1). An uniform manifold 
approximation and projection (UMAP) representation of the data was constructed from the sNN graph for 
visualization purposes. Using both the ADT and RNA modalities, clusters were manually annotated. Clusters 
with multiplet signatures or phenotypes indicative of poor sample quality/viability were discarded. Given the 
known viability difficulties with human biopsy samples, we used a heat shock protein (HSP) gene set list 
(Group 582) from the HUGO Gene Nomenclature Committee (HGNC)97. These genes were fed into the 
AddModuleScore function in Seurat to generate a heat shock module. To remove confounding effects 
associated with heat shock response, cells with a score less than the 95th percentile of overall heat shock 
module scores were kept for downstream analysis. 
 
Weighted gene co-expression network analysis (WGCNA) for pancreatic lymph node samples 
The dataset after clustering and quality control filtering were filtered for cells from the pancreatic lymph nodes 
and from donors associated with ND or T1D disease status for a more targeted analysis without confounding 
effects from other tissue sites and the inherent diversity of donors labeled as autoantibody positive. A WGCNA 
was constructed using the WGCNA98 and hdWGCNA99 packages where metacells were formed based on the 
following grouping variables: donor, disease status, and condensed phenotype from manual annotations. The 
resulting topological co-expression network was used to identify modules and assess correlations with disease 
status and manual phenotypes. All specific function parameters and steps for WGCNA are detailed in the study 
GitHub repository (see Resource Availability). 
 
HLA-GRS calculation and correlation to immune populations 
Phasing of HLA-DQA1 and HLA-DQB1 genotypes was inferred via comparison with published haplotype 
frequencies from European Americans100. HLA-DQA1-DQB1 haplotypes were used to calculate the HLA 
component of the T1D polygenic risk score, GRS2, according to methods developed by Sharp, et al68. Scoring 
considered additive odds ratios for 14 individual haplotypes and interactions for 18 non-additive haplotype 
combinations as in the Polygenic Risk Score (PRS) Toolkit for HLA (v0.22a)68. Correlations between HLA-GRS 
and immune population frequency were computed using partial correlation analysis from the ppcor package.  
 
Graphics 
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All figures were made in R with the following packages: grid, ggplot2101, ComplexHeatmap, Seurat, hdWGCNA, 
and patchwork. All code to produce figures can be found in the study GitHub repository (see Resource 
Availability). Annotations were added to the R-generated figures using Adobe Illustrator (v.22.2.3). 
 
Statistical Analyses 
For flow cytometry, all statistical analyses were run in R with the rstatix, ggpubr, and multicomp packages. 
Non-parametric analyses between two groups were performed with a two sample Wilcoxon test, with multiple 
hypothesis correction using Holm’s method when appropriate, using the rstatix package. Non-parametric 
analyses between 3 or more groups was performed with Dunn’s test, with Holm’s method for multiple 
hypothesis correction adjustment, using the rstatix package. Parametric comparisons between 3 or more 
groups were performed with robust one-way ANOVA in the WRS2 package, with post hoc testing using 
Hochberg’s multiple comparison adjustment and tr = 0.1. If cold ischemia was found to affect the frequency of 
an immune population, ANCOVA was used to control for the effect of cold ischemia on immune population 
frequency while comparing 3 or more groups, with post hoc analysis performed with Tukey’s test, using the 
multicomp package. Each dot in a plot depicting summarized flow cytometry data is an individual sample. 
Sample distributions represented by a boxplot, with the median depicted as the center value, quartile ranges 
forming the box edges, and whiskers depicting the minimum to maximum distribution. Correlations between 
HLA-GRS and immune population frequency were run using the partial Kendall rank correlation while 
controlling for the confounding variables of disease state and cold ischemia time. Correlation p-values were 
adjusted for multiple comparisons using Benjamini-Hochberg multiple test correction. For CITEseq analysis, 
samples were quality controlled as explained in the “CITEseq modality processing and dehashing” section. To 
help elucidate more specific cell type differences in differential gene analysis, a common set of differentially 
expressed genes was computed for each manually annotated cluster between disease states using the 
Wilcoxon Rank Sum implementation in Seurat FindAllMarkers with a log fold change threshold of 0.1. Any 
differential genes that were found in more than 12 clusters were labeled as common genes that were largely 
independent of cell phenotype. Combinatorial differential expression testing was performed with Seurat 
FindMarkers (Wilcoxon Rank Sum) followed by Bonferroni correction for multiple tests calculated across all 
tests performed across the combinations. Unless otherwise stated in text or figure legends, significance by 
statistical test was set as adjusted p value < 0.05. * is p < 0.05, ** is p < 0.01, *** is p < 0.001 for all figures. 
Refer to figure legends for the application and details of each test.  
 
Data Availability 
All de-identified human flow cytometry, sequencing-based, clinical data have been deposited on PANC-DB 
(https://hpap.pmacs.upenn.edu/). Raw sequencing -based data are also deposited in Genbank under 
accession number GSE221787. All original code has been deposited at GitHub at https://github.com/betts-
lab/hpap-tissue-citeseq. Exceptions are the code used to generate HLA-GRS, which can be found at 
https://github.com/sethsh7/hla-prs-toolkit version 0.22a68, and code for ADT and HTO preprocessing, which is 
found at https://github.com/betts-lab/scc-proc. All data are publicly available as of the date of publication. 
Additional data from histology, immunophenotyping, repertoire profiling, metabolic and transcriptomic studies 
are generated on all HPAP donors and are deposited on PANC-DB (https://hpap.pmacs.upenn.edu/), providing 
a shared and publicly available comprehensive resource. 
 
Code Availability 
All original code has been deposited on GitHub at https://github.com/betts-lab/hpap-tissue-citeseq. Exceptions 
are the code used to generate HLA-GRS, which can be found at https://github.com/sethsh7/hla-prs-toolkit 
version 0.22a68, and code for ADT and HTO preprocessing, which is found at https://github.com/betts-lab/scc-
proc. All code are publicly available as of the date of publication. 
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