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Many gene fusions are reported in tumours and for most their role remains unknown. As
fusions are used for diagnostic and prognostic purposes, and are targets for treatment, it is
crucial to assess their function in cancer. To systematically investigate the role of fusions in
tumour cell fitness, we utilized RNA-sequencing data from 1011 human cancer cell lines to
functionally link 8354 fusion events with genomic data, sensitivity to >350 anti-cancer drugs
and CRISPR-Cas9 loss-of-fitness effects. Established clinically-relevant fusions were identi-
fied. Overall, detection of functional fusions was rare, including those involving cancer driver
genes, suggesting that many fusions are dispensable for tumour fitness. Therapeutically
actionable fusions involving RAF1, BRD4 and ROST were verified in new histologies. In addition,
recurrent YAPT-MAML?2 fusions were identified as activators of Hippo-pathway signaling in
multiple cancer types. Our approach discriminates functional fusions, identifying new drivers
of carcinogenesis and fusions that could have clinical implications.
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ncogenic gene fusions occur in solid tumours and

hematologic malignancies, and are used for diagnostic

purposes, patient risk stratification, and for monitoring of
residual disease!. Critically, the chimeric protein encoded by
fusions may be a tumour-specific target for treatment, resulting in
significant clinical benefit for patients>3. Fusions are often asso-
ciated with a tissue histology, but can occur at a low frequency in
multiple histologies. Gene fusion transcripts are composed of two
independent genes formed either through structural rearrange-
ments, transcriptional read-through of adjacent genes, or pre-
messenger RNA (mRNA) splicing. The exchange of coding or
regulatory sequences between genes can result in aberrant func-
tionality of the fusion protein, and deregulation of the partner
genes, including overexpression of oncogenes and decreased
expression of tumour suppressor genes (TSGs).

Discriminating between fusions that have a role in cancer fit-
ness and those that do not is a major challenge with important
clinical implications®. Deep sequencing technology together with
sensitive fusion detection algorithms have led to a dramatic
increase in the number of reported cancer-associated fusions.
Most fusion transcripts are likely the indirect consequence of
genomic instability or false-positive events due to error-prone
fusion calling. Previous studies have focused on the identification
of fusions, or have investigated the function of specific gene
fusions; for example, in the setting of acute myeloid leukemia
(AML)®. The functional role of most cancer-associated fusions
has not been investigated.

We have generated large-scale genomic and pharmacological
datasets for over 1000 human cancer cell lines as part of the
Genomics of Drug Sensitivity in Cancer (GDSC) project”-8. These
datasets, together with CRISPR-Cas9 genetic screening technol-
ogy, make it now possible to systematically assess the contribu-
tion of fusion transcripts to cancer cell fitness. Here, we report a
comprehensive functional landscape of fusions using RNA-
sequencing (RNA-seq) data for 1011 human cancer cell lines.
We investigate the functional relevance of gene fusions using
differential gene expression, drug sensitivity to >350 anti-cancer
compounds, and whole-genome CRISPR-Cas9 drop-out screens
to identify fusions required for cancer cell fitness. To our
knowledge, this study is the first large-scale systematic analysis in
human cancer models to unveil the largely unexplored functional
role of gene fusions.

Results

Landscape of fusion transcripts. To systematically identify gene
fusions in diverse cancer types, we first analyzed RNA-seq data to
define fusion transcripts in the GDSC cancer cell lines
(1034 samples from 1011 unique cell lines) representing 41 cancer
types (Fig. 1 and Supplementary Data 1)°. RNA-seq data for 587
cell lines was obtained from the Cancer Genome Hub (CGHub)
and 447 cell lines were sequenced at the Sanger Institute!0. Fusion
calling algorithms are prone to detecting false positives from
sequencing artifacts and alignment ambiguities!!. To improve the
accuracy of fusion transcript calling, we used three different
algorithms, deFuse, TopHat-Fusion, and STAR-Fusion, across all
samples!'?2-14 and applied stringent filtering criteria. In total,
10,514 fusion transcripts were called by more than one algorithm
and taken forward for this study (Fig. 1b and Supplementary
Data 2). Targeted PCR of 406 putative fusion breakpoints indi-
cated a validation rate of 72%. Furthermore, we compared
23 samples with RNA-seq data from both Sanger Institute and
CGHub (Supplementary Data 1), and the proportion of fusions
transcripts in both data sources for a given cell line was 70%. The
presence of a fusion in a cell line, even in instances where mul-
tiple transcripts involving the same partner genes were detected,

was defined as a “fusion event”. Thus, we identified 8354 gene
fusion events from 10,514 fusion transcripts and, because only a
small number of fusions were recurrent, a total of 7430 unique
fusions (Supplementary Data 2).

Next, we examined the number of fusion events that occurred
in different cancer types. Cell lines had a median of six fusion
events and 26% of fusion events were predicted to be in frame.
Fusion numbers varied by cancer type (Fig. 1c), with osteosar-
coma and breast cancer having the most (median of 16 fusion
events per cell line), and kidney cancers and B-lymphoblastic
leukemia together with three non-cancerous immortalized human
cell lines having the lowest number of fusion events (median = 2).
The prevalence of fusion events for each cancer type in our cell
lines was slightly higher, but significantly correlated with the
frequency reported from the analysis of 9624 patient samples (p <
0.001, R?=0.42, Pearson’s correlation; Supplementary Fig. 1a),
indicating that cell lines reflect the frequency of fusions in
tumours from different tissues!>. We identified recurrent known
oncogenic fusions events, including BCR-ABLI (n = 11 cell lines),
NPMI1-ALK (n=15), EWSRI-FLI1 (n=24), and TMPRSS2-ERG
(n=2). Of note, only 431 of 7430 (6%) fusions were recurrent,
while the remaining were detected in only one cell line (Fig. 1d),
indicating that most fusions are rare.

Of the fusion events we identified, 11% have been reported in
human tumour samples!>. For 14.2% of the fusion events, at least
one of the fused genes is in the COSMIC Cancer Gene Census,
representing an enrichment for cancer genes (odds ratio=1.8
and p < 0.001, Fisher’s test). TSGs were enriched as 5’ end partner
genes (odds ratio=2.1 and p<0.001, Fisher’s test), while
oncogenes were enriched as 3’ or 5" genes (odds ratio=2 and
1.8, respectively, p <0.001, Fisher’s test). An empirical permuta-
tion test identified known oncogenic fusions enriched in specific
cancer types that are consistent with their pathognomonic nature,
such as ABLI fusions in chronic myeloid leukemia (false
discovery rate (FDR) <1%, n=9), EWSRI-FLII fusions in
Ewing’s sarcoma (FDR <1%, n=24) and FGFR3 fusions
in bladder cancer (FDR <1%, n=3) (Supplementary Fig. 1b).
In summary, using multiple algorithms and stringent criteria we
built a comprehensive landscape of fusions in cancer cell lines,
most of which occur at a low frequency, and reflect the prevalence
and tissue specificity in tumour samples.

Fusions impact gene expression. Fusions may result in altered
expression of fusion partner genes!®. To identify genes whose
expression is altered when fused, we first aggregated fusion events
that had a common gene partner at the 5 or the 3’ end to
increase sample size and statistical power. We then used multiple
linear regression (MLR) to link gene expression with the presence
of a fused gene, incorporating bias due to copy number altera-
tions and cancer type. In total, we tested 902 genes (5’ genes n =
611 and 3’ genes n = 383) that involved 3048 fusions. We iden-
tified 172 (19%) genes significantly associated with differential
expression (5’ genes =54 (9%) and 3’ genes n =118 (31%)) that
encompassed 592 fusions (Fig. 2a). Of the significantly associated
genes, 24 (14%) were from the COSMIC cancer gene census
(2.5% of the total; Fig. 2a and Supplementary Data 3). As
expected, several TSGs such as TP53, APC, and KDM6A were
significantly associated with reduced expression (p <0.001, MLR,
Supplementary Fig. 1c). In contrast, many oncogenes fused at the
3" end were overexpressed, including ALK, ERG, FL1, MYC,
MLL4, and ROSI (p <0.001, MLR, Supplementary Fig. 1c).
Because most fusions are rare and therefore not suitable for
linear regression modeling, we also annotated expression of genes
involved in each fusion event (1 = 8354). We focused on 3’ end
genes with exceptionally high expression because overexpression
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Fig. 1 Landscape of gene fusions in cancer cell lines. a Tissues (inner ring) and cancer types (outer ring) represented by the cell lines and CRISPR dataset
used for this study. b Fusion transcript calls using three algorithms and their overlap. ¢ Frequency of gene fusion events in cancer cell lines, separated by
cancer type. The black line is the median. d Fusion event recurrence in cancer cell lines
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Fig. 2 Fusions impact gene expression. a Frequency of a statistical association between a recurrent fusion (n > 2 cell lines) and differential gene expression.
Examples of downregulated tumour suppressor genes (TSGs) and overexpressed oncogenes are displayed. b Frequency of co-occurrence of a gene fusion
and overexpression of the 3’ gene for each fusion event. RSPO2, RSPO3, and NUTMT are examples of overexpressed cancer driver genes involved in

previously unreported gene fusions
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of proto-oncogenes occurring as 3’ partner genes is observed in
several malignancies!>!6, We found that 25.6% (n=2145) of
fusion events were coincident with high expression and did not
co-occur with copy number amplification (Fig. 2b). Only 5.4%
(1.4% of the total; n=117) of these fusion events involve the
overexpression of a COSMIC driver gene (Fig. 2b and
Supplementary Data 4). Thus, aberrant transcript expression of
genes involved in gene fusions is a common event, but only a
small subset of these fusions involve established driver oncogenes.

This analysis identified new contexts for fusion transcripts
leading to overexpression of cancer genes located at the fusion 3’
end, such as NUTM1, RSPO2/3, and ROS]1 (Fig. 2b). In support of
this observation, we validated by Sanger sequencing and
fluorescence in situ hybridization (FISH) a previously unchar-
acterized RWDDI-ROS] fusion in the OCUB-M cell line, which is
derived from a triple-negative breast cancer (Supplementary
Fig. 2a and b). ROSI is a receptor tyrosine kinase and gene
rearrangements leading to ROS1 overexpression are therapeutic
biomarkers of response to ROS1 kinase inhibitors in non-small-
cell lung cancer and other cancer types (Supplementary Fig. 2c)!”.
The fusion retains the ROS1 protein kinase domain and OCUB-
M cells display sensitivity to crizotinib and foretinib, two potent
ROSI inhibitors (Supplementary Fig. 2d and €)!81°. Interestingly,
in a dataset of 590 breast cancer patients, we identified a triple-
negative and a HER2+4 tumour-carrying in-frame fusions
involving the ROS1 kinase domain?® (Supplementary Fig. 2f),
suggesting that this rare subset of breast cancer patients could be
potentially eligible to targeted tyrosine kinase inhibitor-based
therapies.

Fusions as markers of drug sensitivity. Fusion proteins can
impact on clinical responses to therapy. Consequently, we rea-
soned that differential drug sensitivity in cell lines could be used
to identify functional fusions, as well as opportunities for
repurposing of existing drugs. We used an established statistical
model®?! to perform an analysis of variance (ANOVA) linking
the 431 recurrent gene fusions (1 22 cell lines; in-frame and not
in frame fusions) with 308,634 ICs, (half-maximal inhibitory
concentration) values for 409 anti-cancer drugs (334 unique
compounds) screened across 982 cell lines by the GDSC project
(Fig. 3a and Supplementary Data 5). The compounds assessed
consisted of anti-cancer chemotherapeutics and molecularly tar-
geted agents, including many which are Food and Drug
Administration-approved (n=46) or in clinical development
(n = 65; Fig. 3a). This included data for 155 new compounds and
a total of 212,774 previously unpublished ICs, values. Preliminary
analyses indicated that mutations in cancer driver genes co-
occurring with fusions in cell lines were frequent confounders
when identifying fusion-specific associations. To control for this,
we first identified associations between 717 cancer driver muta-
tions and copy number alterations with drug sensitivity, and then
used them as a covariate in the ANOVA to identify fusion-
specific associations (Supplementary Data 6). Adding the cov-
ariates resulted in 11 fusion associations falling below our
threshold for statistical significance. For instance, the association
of NKDI-ADCY7 with BRAF-inhibitor dabrafenib was explained
by the presence of a coincident BRAF mutation in one highly
sensitive cell line (Supplementary Fig. 3a).

We identified 227 large-effect size associations (ANOVA FDR
<25% and Glass Delta’s >1; the Glass Delta’s are a measure of
effect size incorporating the standard deviation of the two sub-
populations) between gene fusions and drug sensitivity (Fig. 3b;
Supplementary Data 7). At the level of individual fusion events,
284 of 1355 (21%) tested fusion events were involved in a
significant association with a drug. Most of the strongest

fusion-drug associations were well understood cases, such as
sensitivity of ALK-fusion-positive cell lines to ALK inhibitors, for
example, alectinib, (FDR <0.1%), and sensitivity of BCR-ABLI
translocation-positive cells to ABL inhibitors, such as imatinib
and nilotinib (FDR <0.1%) (Fig. 3b, c). We also identified
associations with low-frequency fusions, such as sensitivity to
multiple EGFR inhibitors (e.g., cetuximab), in two CRTCI-
MAML2-fusion-positive cells (FDR <0.1%), mediated as a result
of fusion-driven paracrine induction of EGFR signaling??
(Fig. 3¢c). Following manual curation, most associations between
fusions and drug sensitivity could be readily explained by known
interactions (n = 66; 30%), mutations in secondary genes (n=7;
3%), and fusions that were either not in frame (n = 77; 34%) or
not detected in patient samples (n =131; 57%). The remaining
associations (n=35; 15%) generally involve poorly described
fusions present in two or three cell lines, making drug sensitivities
difficult to interpret. This analysis suggests that besides well-
established oncogenic fusions, there are few recurrent gene
fusions that are associated with differential drug sensitivity, and
which could be used as biomarkers for repurposing of existing
anti-cancer drugs. We did, however, observe potent sensitivity to
specific drugs in individual cell lines with rare fusions.

Functional fusion analysis using CRISPR-Cas9 loss-of-fitness
data. Our analysis of fusions using drug sensitivity data was
limited by their low frequency and the limited number of targets
covered by available drugs. Here, we complemented our fusion
identification pipeline with CRISPR-Cas9 screens to system-
atically assess fusion function based on their requirement for cell
fitness. To be as comprehensive as possible, we considered all
fusions including in-frame and not in frame transcripts. We
assembled CRISPR-Cas9 whole-genome drop-out screening data
from Project Score at the Sanger Institute?3, Broad Institute
DepMap project?4, and Wang et al. ©, which together span 371
cell lines from 33 different cancer types®2% CRISPR loss-of-
fitness screens typically target each gene with 5-10 single guide
RNAs (sgRNAs) and average their fold changes to calculate gene-
level depletion values. By contrast, we took advantage of indivi-
dual sgRNA fold changes to query the functional importance of
gene regions. We mapped the coordinates of the sgRNAs tar-
geting either of the fusion genes, and classified them as mapping
or non-mapping sgRNAs, depending on whether they targeted
the fusion transcript or not (Fig. 4a). For each gene fusion, we
calculated a fusion essentiality score (FES) representing the
average difference between the mapping and non-mapping
sgRNAs normalized and scaled fold changes (a measure of the
cell fitness effect). For transcripts where there were only mapping
guides (50% of transcripts), the value of non-mapping guides was
set to zero, allowing us to compare the effect in a specific cell line
to the average effect across all cell lines. The statistical significance
of each FES and FDR were calculated based on 10,000 rando-
mizations of all sgRNA fold changes in the cell lines, and we set a
minimum fold change of —0.45 between mapping and non-
mapping sgRNA (see Methods).

We identified mapping sgRNA for 2821 (26%) fusion
transcripts, of which only 99 (4%; representing 103 fusion events)
were significantly associated with decreased cell fitness in at least
one CRISPR dataset (FES FDR <5%; Fig. 4b and Supplementary
Data 8). This corresponded to one or more functional fusions in
55 (16%) tested cell lines. Using gene-set enrichment analysis
(GSEA), functional fusions were enriched for transcripts reported
in the COSMIC database of oncogenic fusions (p <0.001, GSEA),
which included well-known fusions such as EML4-ALK, EWSRI-
FLI1, and KMT2A-MLLT3 and TPM3-NTRKI (Fig. 4b, ¢ and
Supplementary Fig. 3b). In addition, amongst the most significant
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functional fusions were YAPI-MAML?2 fusions (FDR <0.01%),
DDX6-FOXRI (FDR <0.5%), and PICALM-MLLT10 (FDR
<0.5%). There was an enrichment in functional fusions for
transcripts linked with drug sensitivity based on our ANOVA
analysis (p <0.001, GSEA; Fig. 4b). Interestingly, there was no
enrichment for fusion transcripts that were: (i) previously
reported in patient samples; (ii) fusion transcripts that are in
frame vs. not in frame; (iii) fusion transcripts in amplified
regions, which are associated with non-specific fitness effects in
CRISPR screens;?> (iv) nor for fusion transcripts that involve
genes in the COSMIC Census?®. Moreover, when considering
only the subset of fusions most likely to be clinically relevant,
namely those involving an in-frame event with a COSMIC
oncogene, we did not observe an enrichment in functional fusions
(Fig. 4b). Overall, for most tested fusions, we did not detect
evidence supporting a functional role in cancer cell fitness.

Function of oncogenic gene fusions across different histologies.
Despite an absence of evidence supporting the function of most
fusions, as exemplified in the following analyses, we provide new
insights into the pathogenic role of specific gene fusions that
point to strategies for repurposing clinically approved drugs in
rare subsets of fusion-positive cancers.

Rare RAFI fusions occur in patient tumours?’~2% and are
biomarkers of response to mitogen-activated protein kinase
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pathway inhibition. We identified an in-frame ATG7-RAFI
fusion in PL18, a pancreatic adenocarcinoma cell line (Fig. 5a).
The fusion was confirmed by Sanger sequencing and FISH
(Fig. 5b and Supplementary Fig. 4a). The fusion removes the N-
terminal regulatory region, but retains an intact RAFI protein
kinase domain, suggesting it results in constitutive kinase
activation. Only mapping sgRNAs targeting the portion of the
two genes involved in the fusion were significantly depleted in
PL18, resulting in a significant FES (Fig. 5c). Moreover, ATG7-
fusion-targeting sgRNA were only depleted in PL18 cells and not
other pancreatic cell lines (Fig. 5d). Unlike >90% of pancreatic
tumours and cell lines that have activating mutations in
KRAS830, PL18 has a wild-type KRAS allele, but retained potent
sensitivity to downstream MEK (mitogen-activated protein kinase
kinase) pathway inhibitors trametinib and PD0325901 (Fig. 5e
and Supplementary Fig. 4b). An ATG7-RAFI rearrangement was
previously reported in another KRAS wild-type pancreatic cancer
model3!. Furthermore, we mined sequencing data for 126
pancreatic adenocarcinoma patient-derived xenograft (PDX)
models and identified an additional KRAS wild-type tumour
with a PDZRN3-RAF]I fusion, which conserves the RAFI kinase
domain (Supplementary Fig. 4f). Together, our analysis supports
emerging evidence for rare recurrent and potentially therapeu-
tically actionable RAFI rearrangements in KRAS wild-type
pancreatic cancer.
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BRD4-NUTM1 fusions genetically define NUT midline
carcinoma (NMC), a rare and aggressive neoplasm that
usually arises in the midline of the body with marked sensitivity
to BET bromodomain inhibitors3>33. We identified a novel in-
frame BRD4-NUTM]1 fusion in SBC-3, a cell line established from
a 24-year-old male diagnosed with small-cell lung carcinoma
(SCLC)*%, and confirmed the fusion by Sanger sequencing
and FISH (Fig. 5a, b and Supplementary Fig. 4a). Based on
CRISPR data for 206 cell lines screened at Sanger, NUTMI-
targeting guides were highly depleted only in SBC-3 cells, and the
fusion was associated with a significant FES (Fig. 5c and
Supplementary Fig. 4c). Moreover, SBC-3 cells displayed marked
sensitivity to four different BET inhibitors (Fig. 5e and
Supplementary Fig. 4b).

We investigated whether the SBC-3 cell line is mis-classified as
an SCLC and is actually a rare NMC of the lung. Unlike >95% of
SCLC tumours and cell lines, SBC-3 cells do not have alterations
in RBI or TP53, nor do they express SCLC-specific neuroendo-
crine markers, such as CgA, NSE, and synaptophysin (Supple-
mentary Fig. 4d). The BRD4-NUTMI fusion was specifically
associated with high NUTM1 transcript expression in cell lines
(Fig. 2b and Supplementary Fig. 4e). Therefore, we mined The
Cancer Genome Atlas (TCGA) expression data for SCLC and
non-SCLC (NSCLC) searching for samples displaying high
NUTM1 mRNA levels. We identified a single NSCLC sample
derived from a 39-year-old patient diagnosed with lung squamous
cell carcinoma, displaying NUTM1 mRNA outlier expression
(Supplementary Fig. 4e) and carrying a NSD3-NUTMI
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rearrangement!® (Supplementary Fig. 4f), a chimeric oncoprotein
recently identified in NMC patients and associated with BET
inhibitor sensitivity>>. NUT rearrangements occur in a rare
subpopulation of patients diagnosed with SCLC and NSCLC3037,
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functional NUTM1 fusions are present in tumours diagnosed as
lung cancer, and could represent an actionable driver event in
these tumours with immediate potential clinical implications.

Aberrant expression of RSPO2/3 fusion transcripts synergize with
WNT ligands to trigger WNT pathway activation in APC wild-type
colorectal cancer (CRC)!6. WNT pathway blockade with porcupine
inhibitors is effective in RSPO3-rearranged CRC preclinical
models>*40 and clinical trials in patients with RSPO2/3-fusion-
positive tumours of any histological origin are ongoing
(NCT01351103). Here, we detected and validated two unreported
canonical R-spondin fusions in cancer cell lines derived from biliary
tract (EGI-1; PTPRK-RSPO3 fusion) and esophagus (ESO51; EIF3E-
RSPO2 fusion) by PCR and FISH (Fig. 5a and Supplementary
Fig. 5a, b and c). Aberrant expression of RSPO2/3 was detected in
both cell lines (Fig. 2b and Supplementary Fig. 5d). Similarly,
through mining TCGA esophageal cancer data, we found that a
tumour with high RSPO3 expression was positive for a canonical
RSPO3 fusion!® (Supplementary Fig. 5d). Surprisingly, EGI-1 and
ESO51 were insensitive to WNT pathway blockade with a porcupine
inhibitor (Fig. 5e and Supplementary Fig. 5e). This was in contrast to
SNU1411, a positive control CRC cell line model addicted to WNT
pathway activation by rearranged RSPO3, which was sensitive to
multiple porcupine inhibitors*!. This result points to an element of
tissue specificity in mediating the functional role of some fusions,
with potentially important implications for repurposing of WNT
pathway inhibitors across different RSPO-fusion-positive tumour
types. Interestingly, sgRNA mapping to the RSPO2/3 fusion were
not associated with significant FES in EGI-1 and ESO51, nor in the
positive control line SNU1411 (Supplementary Fig. 5f-h). This may
be because RSPO2/3 fusions act as paracrine signals to enhance
WNT ligands and so are not readily detected by pooled CRISPR
screens designed to unveil cell intrinsic gene dependencies.

Recurrent YAPI-MAML?2 fusions drive Hippo pathway sig-
naling. We next investigated the function of a poorly understood
fusion. Recurrent YAP1-MAML? fusions were identified in AM-
38 (glioblastoma), ES-2 (ovarian carcinoma), and SAS (head and
neck carcinoma) cell lines (Fig. 6a). We validated the fusion in all
three cell lines by PCR, and interphase and fiber FISH (Fig. 6b, c
and Supplementary Fig. 6a). YAPI-MAML?2 fusions have been
reported in nasopharyngeal carcinomas*? and in a sample from a
patient with skin cancer, but not in the three tumour types
reported here!” (Fig. 6a). The fusion brings together exons 1-5 of
YAPI and exons 2-5 of MAML?2, a transcript structure that is
conserved across all cell lines and patient samples (Fig. 6d and
Supplementary Fig. 6b).

A functional role for YAPI-MAML?2 fusions has not been
reported. We found that YAPI-MAML?2 fusions were significantly
associated with decreased cell fitness when targeted in the CRISPR
screen (Figs. 4b, 6e). Furthermore, loss of fitness in response to
MAML2 knockout is unique to MAML2-fused cell lines in the three
cancer types where the fusion is observed (Fig. 6f). YAPI aberrant
activation is linked with poor prognosis, chemoresistance, and
resistance to cell death in multiple solid tumours*>44, YAP1 is a
transcriptional co-activator of the Hippo pathway through binding
with the TEADI transcription factor and MAML2 is a transcrip-
tional co-activator involved in NOTCH signaling*>. YAP1-MAML2
fuses the transcriptional activation domain of MAML2 with the
TEAD-binding domain of YAPI. Intriguingly, ES-2 and AM-38,
although not SAS, also showed essentiality for TEADI in the
CRISPR drop-out screen (Supplementary Fig. 6d), suggesting that
the fusion protein signals through TEAD]1.

To further investigate fusion protein activity, we performed GSEA
comparing the three YAP1-MAML2-fusion-positive cell lines against
all others. Of 189 pathways tested, a YAP1-conserved transcriptional

signature was the most significant hit (adjusted p < 0.001; Fig. 6g).
The same signature was highly enriched when ES-2 was compared
against all other ovarian cancer cell lines and SAS against all other
head and neck cell lines, while expression of prototypic tissue-
specific oncogenic signatures, such as estrogen receptor signaling in
ovary, were depleted (Supplementary Fig. 6e). Overall, our findings
that recurrent YAPI-MAML?2 fusion are associated with increased
YAP1 signaling and required for cell fitness support targeting the
Hippo signaling cascade in YAP1-MAML2-fusion-positive tumours.

Discussion

Thousands of gene fusion transcripts have been reported!>46:47,
and most are likely to be passenger events due to chromosomal
instability or artifactual. We developed a multi-algorithm fusion
calling pipeline, and integrated large-scale genomic and func-
tional datasets, including CRISPR-Cas9 screening data, to sys-
tematically identify functional gene fusions across diverse tissue
histology. Our analysis is a valuable reference of gene fusions in
cancer cell lines. Furthermore, since fusions can have diagnostic,
prognostic, and therapeutic utility, our analysis could have clin-
ical implications.

Using our analysis pipeline, we tested 3354 fusion events and
found supporting evidence of a functional role for 368 (11.8%) by
either CRISPR data (n=103) or drug sensitivity analysis (n =
284) (Fig. 6h). Thus, most fusions are likely to be passenger
events and dispensable for cell fitness. Of those with functional
evidence, only 142 (38.5%) involved a COSMIC cancer gene, 58
(16%) were listed in the COSMIC fusion census, and 107 (29%)
were called in TCGA patient samples. Thus, many fusions with
supporting functional evidence are poorly understood and do not
contain known driver genes, indicating that there are gaps in our
knowledge of genes with roles in cancer cell fitness.

Although our analysis suggests that most fusions are not func-
tional, there are several limitations to our approach. Some fusions
may be required for aspects of the malignant phenotype not mea-
sured here, such as tumour initiation, paracrine signaling,
host-tumour cell interaction, and metastasis. Our CRISPR-based
approach is only suitable for testing fusions with mapping sgRNA,
and is subject to possible bias based on sgRNA efficiency and the
number of mapping vs. non-mapping sgRNA. Furthermore, this
approach captures fusions that induce gain-of-function or
dominant-negative effects, but is not able to identify loss-of-function
effects, such as inactivation of a tumour suppressor. Some tumour
types are relatively poorly represented, including hematological and
pediatric malignancies, and it may be that in some tumour types we
observe different patterns of functionality. Finally, sub-clonal fusions
could lead to false-negative results. Despite these limitations, our
finding that most fusions tested do not have supporting functional
evidence, including fusions with cancer drivers genes, emphasizes
the importance of analyses to ascribe function when interpreting
fusions identified using genomic sequencing.

Gene fusions are used as therapeutic biomarkers to enroll
patients in clinical trials and to direct clinical care, often in
diverse histologies and clinico-pathologic subtypes. Notable
examples are NTRK and ALK fusions, originally identified as
effective biomarkers of response to targeted agents in NSCLC
patients and occurring at low frequencies (<1%) in a variety of
malignancies*®->0. We provide specific and previously unde-
scribed data on fusions involving RAFI, ROSI, and BRD4 that
suggest that existing drugs could be repurposed for use in rare
pancreatic, breast, and lung cancers. FISH analysis confirmed the
presence of these gene fusions in the vast majority of the cell
nuclei analyzed (>90%), indicating that these alterations are
clonal events. Further studies using tumour xenograft models
would support the in vivo efficacy of these findings and could
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pave the way for their clinical application. More broadly, these
results support the use of validated oncogenic fusions as ther-
apeutic biomarkers in diverse histologies, and the utility of basket
trials for clinical development of drugs targeting fusion proteins
irrespective of tumour type, such as the type used for the devel-
opment of entrectinib in solid tumours with ALK, ROSI, and
NTRK fusions®®. A notable exception in our analysis was the
differential sensitivity to WNT pathway inhibition of CRC vs.
biliary tract and esophageal cancer cell lines with canonical R-
spondin fusions. This suggests that tissue context could impact
the functional role of some fusions as has been observed for
oncogenes (e.g., BRAF-mutated CRC’!). Further investigations
are warranted to understand this difference, and drug combina-
tions could be evaluated in these specific context to overcome
resistance similar to what is in clinical development for BRAF-
mutated CRCL.

We identified and functionally evaluated less well-studied gene
fusions, as exemplified by YAPI-MAML?2 rearrangements, which
are required for cell fitness in multiple histology and associated
with increased YAP1 signaling. Given the emerging role of YAP1/
TEADI and the Hippo pathway in cancer, there is interest in
pharmacological inhibition of Hippo signaling as an anti-cancer
therapeutic strategy®>. We provide preclinical evidence support-
ing inhibition of this signaling axis in YAPI-MAML2-fusion-
positive tumours, which could pave the way for clinical devel-
opment in a rare but defined patient population.

In summary, our findings that most fusions tested were dis-
pensable for tumour cell fitness has implication for the interpreta-
tion of fusions detected in tumour sequencing data. Furthermore,
this observation supports the use of systematic functional studies in
preclinical models as an unbiased platform to systematically assess
the impact of fusions in cancer. Extending this approach to a larger
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set of cancer models that represents the histopathologic and geno-
mic diversity of patient tumours could reveal additional new insights
with clinical relevance. Notably, here we identified fusion drivers of
carcinogenesis, which could represent targets for drug development
and specific actionable leads with potential for immediate clinical
development in defined fusion-positive patients.

Methods

Sample selection. A collection of 1011 cancer cell lines have been compiled from
publicly available repositories as well as private collections and maintained fol-
lowing supplier guidelines. These cell lines were selected to be genetically unique
based on short tandem repeat (STR) and single-nucleotide polymorphism (SNP)
fingerprints (http://cancer.sanger.ac.uk/cell_lines/download). STR profiles matched
those in public repositories or match published STR profiles. The cells lines have
been extensively characterized using whole-exome sequencing
(EGAD00001001039), Affymetrix SNP6-based copy number analysis, and geno-
typing (EGADO00010000644). The origin of all cell lines and related data are
available through the Cell Model Passports database (https://cellmodelpassports.
sanger.ac.uk/)’. All cell lines have been tested for mycoplasma using a PCR-based
assay (EZ-PCR Mycoplasma Detection Kit, Biological Industries) and a biochem-
ical test (MycoAlert, Lonza). Cell lines that test positive using either method are
removed from the collection. Comparing SNP6 genotyping data and somatic
variant data, we verified that cell lines overlap extensively with those characterized
by the Cancer Cell Line Encyclopedia (TCGA). See Supplementary Data 1 for a
complete description of the cell lines and their molecular annotation. This study
includes the following commonly misidentified lines: TE-12, NCI-H1304, MEL-
HO, U-118-MG, BT-549, BE-13, ETK-1, GT3TKB, MKN28, RPMI-6666, SK-MG-
1, CGTH-W-1, H513, OVMIU, and KP-1N. Misidentified lines have been noted in
Supplementary Data 1 and on the Cell Model Passport (https://cellmodelpassports.
sanger.ac.uk). Mis-identification does not impact tissue of origin, genomic data
used for analyses, or results. SNU1411 were purchased from KCLB and maintained
in RPMI-1640 with -glutamine (300 mg/L), 25 mM HEPES and 25 mM NaHCO;,
90%; heat-inactivated fetal bovine serum, 10%.

RNA-seq data and identification of fusion transcripts. RNA-seq data for 589 cell
lines was obtained from the CGHub, and 450 cell lines were sequenced at the Sanger
Institute (EGAS00001000828). For 23 cell lines, sequence was obtained from both
CGHub and Sanger Institute to allow comparison of the output based on the sequence
from the two studies. Where replicated datasets were available, we took forward only
fusions called from Sanger Institute sequencing data for our final analysis.

For sequencing performed at the Sanger Institute, cell line pellets were collected
during exponential growth in RPMI or Dulbecco’s modified Eagle’s medium/F12
and were lysed with TRIzol (Life Technologies) and stored at —70 °C. Following
chloroform extraction, total RNA was isolated using the RNeasy Mini Kit (Qiagen).
DNAse digestion was followed by the RNAClean Kit (Agencourt Bioscience). RNA
integrity was confirmed on a Bioanalyzer 2100 (Agilent Technologies) prior to
labeling using 3’ IVT Express (Affymetrix). Sequence libraries were prepared in an
automated fashion on the Agilent Bravo platform using the stranded mRNA
Library Prep Kit from KAPA Biosystems. Processing steps were unchanged from
those specified in the KAPA manual, except for use of an in-house indexing set.
Three publicly available gene fusion detection algorithms were used (TopHat-
Fusion (v2.1.0), STAR-Fusion (v2.5.0), and deFuse (v0.7.0)) as described in GitHub
(https://github.com/cancerit/cgpRna/blob/dev/README.md).

Fusion transcript filtering criteria. From the output of the three distinct fusion
detection algorithms, we selected for analysis only fusions that were called with four or
more reads that align directly across the breakpoint. We also required fusions to be
called by at least two different algorithms. Next, we removed fusions identified from
the analysis of 245 non-neoplastic samples downloaded from GTEx>3.

Fusion annotations. The frame of fusion transcripts was predicted using the
GRASS algorithm that is built into the fusion-calling pipeline (https://github.com/
cancerit/cgpRna/blob/dev/README.md/https://github.com/cancerit/grass). A list
of known cancer driver genes was obtained from the COSMIC cancer census in
June 2017 (https://cancer.sanger.ac.uk/cosmic/curation). Known cancer fusions, as
well as annotation of TSGs and oncogenes, were downloaded from the COSMIC
fusion census (https://cancer.sanger.ac.uk/cosmic/fusion). Our reference set of
fusions identified previously in patient samples comes from an analysis of fusions
in over 9000 TCGA samples!.

PCR validation of fusion transcript. Complementary DNA (cDNA) was prepared
using the Superscript double-stranded cDNA Synthesis Kit (Invitrogen) followed
by SPRI (Solid Phase Reversible Immobilization) clean-up. The cDNA was then
subjected to “whole-genome amplification” using the Illustra GenomiPhi HY DNA
Amplification Kit as per the manufacturer’s instructions. This WGA’ed cDNA was
used as a template for the PCR validation. Generally two distinct sets of PCR
primers were designed using Primer3 (http://www.bioinformatics.nl/cgi-bin/

primer3plus/primer3plus.cgi) for each fusion junction tested (Primer sequences are
in Supplementary Data 9). The primers were then checked by ePCR (http://www.
ncbi.nlm.nih.gov/sutils/e-pcr/reverse.cgi?taxi-
d=9606&db=2&orgdb=118&margin=200&mism=0&gaps=0) against the gen-
ome and transcriptome to make sure that they would not produce a PCR product
of <5kb. PCRs were carried out in duplicate using two PCR programs: (1) 30
cycles, 95 °C for 30, 60 °C for 30's, and 72 °C for 30's; (2) a touchdown program
reducing annealing temperature by 2 °C every two cycles, dropping from 60 °C to
50 °C over ten cycles, with a final 20 cycles at 50 °C. For all cycles, the melting and
extension temperatures were 95 °C and 72 °C, respectively, and all stages were
maintained for 30 s. Finally, the PCRs were checked by gel electrophoresis to
confirm the presence of a product of the predicted size. To validate candidate
fusions, PCR products were further checked by PCR product Sanger sequencing. In
these cases, the PCR products were first cleaned up using ExoSAP (Affymetrix) and
then capillary sequenced by Eurofins Genomics (Ebersberg, Germany).

Differential fusion frequencies across cancer types. We designed an empirical
permutation approach to identify genes with differential fusion frequencies across
cancer types. Briefly, we built a binary matrix (genes x samples), where 1 indicates
that the sample contains at least one fusion involving a gene G and 0 indicates that
the gene G is not fused. Under the null hypothesis that gene alterations distribute
homogeneously across cancer types (i.e., any sample from any cancer type has the
same likelihood of having the gene G fused), we permuted 10,000 times the initially
observed matrix using the algorithm BiRewire implemented in an R package>*.
This algorithm generates randomized binary networks that preserve marginal
totals. Randomized networks are used to build an empirical null distribution,
modeling the likelihood of observing a gene fused in X samples. Thus, we can
derive a p value per gene and cancer type representing the probability of observing
>N samples with the gene G fused in the null distribution. Nominal p values are
adjusted using the FDR method.

Gene expression and differential gene expression analysis. Read counts per
gene, based on the union of all exons from all possible transcripts, were used to
calculate reads per kilobase per million (RPKM) as described previously'?. To identify
genes which expression is significantly altered when fused, we used MLR. For each
fusion-associated gene, the expression values G (log, RPKM) from each sample S are
modeled as a function of the fusion status of the gene in the sample S (Xggion)s @ series
of dependent covariates (X ovariatess including cancer type in pan-cancer analyses,
microsatellite instability status, and gene absolute CNA status), and a noise term (y):

G= ﬁcovariatesXCOVariates + ﬁ fusioanusion +y. (1>

The association between the fusion status and gene expression was defined by
the regression coefficient (Bsion) estimated with a multiple linear least-squares
regression. Significance of the regressors was estimated with a type II ANOVA
method from the car R package. For each cancer type, p values were adjusted for
multiple testing correction using the Benjamini-Hochberg method. To annotate
fusion genes for overexpression of the 3" gene, we selected fusions where the
expression level of the 3’ gene is above the 95th percentile (i.e., 95% of the cell lines
have an expression level lower than the one observed in the cell line carrying the
fusion). Z-score RNA-seq values for TCGA samples from esophageal
adenocarcinoma (187 samples) and lung squamous cell carcinoma (187 samples)
were downloaded from cBioPortal®>.

Gene-set enrichment analysis. Data for GSEA and expression of neuroendocrine
markers for GSEA analysis, and RNA-seq voom-transformed gene expression
measurements®® were obtained from ref. 10. GSEA software was downloaded from
the Broad Institute GSEA portal (http://software.broadinstitute.org/gsea/index.jsp)
and was applied using default parameters and exploiting signal-to-noise metric for
gene ranking. The significance of enrichment was estimated using 1000 gene
permutations. Heatmap of neuroendocrine genes in small-cell lung cancer cell lines
was generated by the GEDAS software 1.1.6 Beta®”.

Cancer functional event-drug association analysis. Potential confounding fac-
tors in our fusion-drug association analysis were identified by implementing a
systematic analysis of associations between cancer functional events published by
Torio et al. 8 for our panel of cell lines and our set of 409 drugs. The 717 cancer
functional events used in the analysis included 281 genes with somatic coding
mutations, 424 copy number altered chromosomal segments and methylation
status for 12 segments that included any gene altered by point mutations. The
analysis was conducted as described by Garnett et al. 7, although our analysis only
considered tissue type and microsatellite instability status as covariates.

We identified 101 large-effect size significant cancer functional event-drug
associations across 73 drugs when implementing the same cut-offs as in ref. 8 (FDR
<25%, p value <0.001, and positive and negative Glass Deltas >1) reported in
Supplementary Data 6.

Gene fusion-drug association analysis. The fusion ANOVA model was con-
structed as per Garnett et al. 7, but also includes as covariate any cancer functional
event that was involved in a significant large-effect size association with a given
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drug. High-throughput drug sensitivity data were generated by the GDSC project
(www.cancerRxgene.org) at the Sanger Institute as previously described®. Details of
compounds screened and cell line sensitivity data are provided in Supplementary
Data 5.

CRISPR screening data analysis. sgRNA raw counts and guide annotations were
obtained for 274 cell lines screened as part of Project Achilles by the Broad
Institute? (Supplementary Data 10), 14 acute myeloid cell lines screened by Wang
et al. © (Supplementary Data 11), and 206 cell lines from Project Score?3 performed
at the Sanger Institute (Supplementary Data 12). CRISPR screening data for EGI-1,
ESO51, H3118, SAS, SBC-3, and SNU1411 were generated ad hoc for this study at
the Sanger Institute, following the CRISPR screening pipeline used to screen cell
lines part of the Project Score. sgRNA target positions were converted from
GrCh37 to GrCh38 using the NCBI remapper tool (https://www.ncbi.nlm.nih.gov/
genome/tools/remap).

sgRNA raw counts were converted into log fold changes and corrected for
CRISPR biases using CRISPRcleanR>® (https://github.com/francescojm/
CRISPRcleanR). Corrected log fold changes were scaled to essentials using the
scale-to-essentials R function in the CERES package (https://github.com/
cancerdatasci/ceres/blob/master/R/scale_to_essentials.R).

Positions of sgRNA were mapped onto fusion transcripts using a bespoke R
script that takes into consideration: (1) the fusion transcript breakpoint and (2) the
mapping location of the guides. Essentially, sgRNA map onto the 5’ gene if the
gene is on the positive DNA strand and the guides maps before the position of the
fusion breakpoint, or if the gene is on the negative DNA strand and the sgRNA
maps after fusion breakpoint. Guides map onto the 3’ gene if the opposite is true.

In order to calculate an FES, we took the following steps: (1) Z-normalized the
scaled and corrected log fold changes across all cell lines screened for a given
sgRNA; (2) subtracted the mean Z-score of non-mapping from that of the mapping
sgRNA for both genes involved in a fusion transcript. Where a gene has no non-
mapping sgRNA, the difference was taken from zero; (3) values obtained in step 2
for each gene were averaged to produce the FES.

To assign statistical significance for the FES, we performed 10,000 randomizations
of all scaled and corrected log fold changes within cell lines. Randomized FES were
then calculated for each fusion transcript, as described in the above paragraph. A p
value of statistical significance was assigned to each fusion transcript as the fraction of
randomized FES that have a higher FES score than the non-randomized FES. For
multiple-hypothesis correction, we calculated a false discovery rate for each p value.
Calculation of the FES and the subsequent randomization was performed
independently for each data resource, since the sgRNA libraries were different in all
cases. Based on an empirical analysis of “gold standard” known functional fusions, we
removed any significant hits where the difference between the average scaled fold
changes of mapping and non-mapping guides is <0.45.

Cell viability assay. Cell lines were seeded at different densities (1-3 x 10° cells per
well) in 100 pl complete growth medium in 96-well plastic culture plates at day 0. The
following day, serial dilutions of drug were added to the cells in an additional 50 ul of
medium. Plates were incubated at 37 °C in 5% CO, for 5 days, after which the cell
viability was assessed by measuring ATP content through Cell Titer-Glo Luminescent
Cell Viability assay (Promega). Luminescence was measured by Envision Multiplate
Reader at day 7. Crystal violet growth assays were performed seeding 30-50 x 10° cells
in 6-well plates. After 24 h, the medium was replaced adding drugs as indicated. After
7-10 days of treatments, cells were fixed with a solution of 3% paraformaldehyde and
then stained with 0.05% crystal violet in distilled water.

PDX database. Gene fusion data for 126 pancreatic adenocarcinoma PDX models
were downloaded from HuBase database (https://hubase.crownbio.com/; Crown
Bioscience International, Santa Clara, CA, USA).

Interphase and fiber FISH. Metaphase chromosomes were prepared from cell lines
listed in Supplementary Data 10 using a standard method. Briefly, colcemid (Thermo
Fisher Scientific) was added to a final concentration of 0.1 mg/ml for 1 h, followed by
treatment with hypotonic buffer (0.4% KCl in 10 mM HEPES, pH 7.4) for 10 min and
subsequent fixation using 3:1 (v/v) methanol-acetic acid. Human fosmid and bacterial
artificial chromosome (BAC) clones containing the genes of interest (Supplementary
Table 1) list of BAC and fosmid clones used in the FISH validation) were provided by
the clone archive team of the Wellcome Sanger Institute. Probes were generated by
whole-genome amplification with GenomePlex Whole Genome Amplification Kits
(Sigma-Aldrich), from purified BAC fosmid DNA as described previously>®. For
interphase and metaphase FISH, probes were labeled directly with Atto488-XX-dUTP,
Cy3-XX-dUTP, Texas Red-12-dUTP, and Cy5-XX-dUTP (Jena Bioscience), respec-
tively. Slides pre-treatment included a 10 min fixation in acetone (Sigma-Aldrich),
followed by baking at 65 °C for 1 h. Metaphase spreads on slides were denatured by
immersion in an alkaline denaturation solution (0.5 M NaOH, 1.0 M NaCl) for 7-10
min, followed by rinsing in 1M Tris-HCI (pH 7.4) solution for 3 min, 1x PBS for 3
min and dehydration through a 70, 90, and 100% ethanol series. The probe mix was
denatured at 65 °C for 10 min before being applied onto the denatured slides.
Hybridization was performed at 37 °C overnight. The post-hybridization washes
included a 5 min stringent wash in 1x SSC at 73-75 °C, followed by a 5 min rinse in 2x

SSC containing 0.05% Tween®20 (VWR) and a 2 min rinse in 1x PBS, both at room
temperature. Finally, slides were mounted with SlowFade Gold” mounting solution
containing 4’,6-diamidino-2-phenylindole (DAPI) (Thermo Fisher Scientific). Indir-
ectly labeled probes were used in fiber FISH with single-molecule DNA fibers. Single-
molecule DNA fibers for fiber-FISH were prepared by molecular combing. The three-
color probe set was labeled with biotin-16-dUTP, DNP-11-dUTP, and digoxenin-11-
dUTP (Jena Bioscience), respectively, and visualized with Cy3-conjugated, FITC-
conjugated, and Texas Red-conjugated antibodies, with the exception of post-
hybridization washes, which consisted of three 5 min washes in 2x SSC at 42 °C,
instead of two 20 min washes in 50% formamide/50% 2x SSC at room temperature.
Slides were examined using Axiolmager D1 microscope equipped with appropriate
narrow-band pass filters for DAPI, Aqua, FITC, Cy3, Texas Red, and Cy5 fluores-
cence. Digital images capture and processing were carried out using the SmartCapture
software (Digital Scientific UK). Ten randomly selected metaphase cells were kar-
yotyped based on the multiplex FISH and DAPI-banding patterns using the Smart-
Type Karyotyper software (Digital Scientific UK).

Data availability

All data are available in the main text or the Supplementary information. Supplementary
Data 10, 11, and 12 are accessible at the following link https://figshare.com/s/
169e9fa07450ea7cebce.
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