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Background. This bioinformatics study was aimed at evaluating type 2 diabetes (T2D) and oral squamous cell carcinoma (OSCC)
with regard to related immune cells and prognosis. Methods. We downloaded the data on OSCC from TCGA and for T2D from
GEO database. Differentially expressed genes were analyzed, i.e., for OSCC genes with p value < 0:01, jlog 2ðFCÞj > 0; and for T2D,
genes with p value < 0:05, jlog 2ðFCÞj > 0. The intersected genes between OSCC and T2D were cross-talk genes. The expression
values of immune-related genes in case samples in OSCC and T2D were assessed and underwent multivariate and univariate
analysis (Cox-PH model). The intersection between the immune genes and cross-talk genes was taken and further analyzed by
recursive feature elimination (RFE), survival analysis, and ROC analysis. Results. 1008 cross-talk genes were acquired, including
28 common upregulated, 440 common downregulated, and 540 differently regulated DEGs. We extracted the gene expression
value of 782 immune-related genes, of which seven increased immune cells were obtained. From the results, plasmacytoid
dendritic cells and effector memory CD8 T cells were highly negatively correlated in both OSCC and T2D. After estimating a
low- and high-risk model for survival, we found that activated dendritic cell was significantly different between high and low
groups (p = 0:0095), followed by plasmacytoid dendritic cell. We integrated DE_Immune genes set 1 and DE_Immune genes
set 2 and eight key immune-related cross-talk genes (C1QC, ABCD1, NOS2, PDIA4, IL1RN, ALOX15, CSE1L, and PSMC4)
were evaluated. After ROC analysis, we obtained that ABCD1, C1QC, CSE1L, and PSMC4 had higher classification and
prediction effects on OSCC and T2D. Conclusion. This study revealed a close relationship between T2D and OSCC. Thereby,
plasmacytoid dendritic cell and activated dendritic cell-related genes were associated with the survival of T2D-related OSCC,
while ABCD1, C1QC, CSE1L, and PSMC4 were the most important immune-related cross-talk genes.

1. Background

Diabetes mellitus, especially type 2 (T2D), is an enormous
global health issue, whereby over 90% out of the 415 million
individuals suffering from diabetes worldwide have a frank
T2D [1]. In course of T2D, the sensitivity of the insulin
receptors, regulating the glucose inclusion into cells, is
decreased, resulting in hyperglycemia as main symptom
[2]. This is associated with lifestyle of the patients, including
nutritional behavior, physical education, increased body
weight, or smoking as risk factors [2]. Therapy and manage-
ment of T2D developed into a large aim of current research
and promising approaches are repeatedly introduced [3].
However, diabetes-related diseases are common and of high

clinical relevance; those include microvascular and mac-
rovascular complications, alongside with oral diseases
like increased periodontal inflammation and oral mucous
diseases [1, 4].

Another potentially diabetes-related problem is the
occurrence and prognosis of oral cancer, especially oral
squamous cell carcinoma (OSCC) [5]. This common form
of head and neck cancer is often related with high morbidity
and, especially in advanced stages, poor prognosis [6].
Thereby, potential factors affecting the risk of development
of OSCC, as well as prognostic parameters/models for
OSCC outcome, are of high research interest [6]. Different
mechanisms between T2D and OSCC have been mentioned
in literature, including promoted proliferation, metastasis
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formation, and suppression of apoptosis of OSCC in case of
diabetes [5]. Although it has been reported that T2D alone
appears not to affect OSCC survival, the evidence is limited
due to contradictory results [7]. To understand the inter-
play between T2D and OSCC, further research is required,
especially with regard to cellular and molecular mecha-
nisms [8]. Especially, the role of inflammation and thus
inflammatory tumor environment appears of interest, as
this is an interesting and promising field of research [9].

Recently, bioinformatics was repeatedly used to evaluate
both, OSCC prognosis and its cross-talk with other diseases
and conditions, like e.g., periodontitis [10, 11]. This kind of
research allows a comprehensive and deep insight in the
topic and helps to identify potential biomarkers, which can
be a basis for future research in the field. Against this back-
ground, this bioinformatics study followed the objective to
reveal the cross-talk between T2D and OSCC. For this, the
focus was on immune cells or immune-related cells, to iden-
tify the role of inflammation and immunity in the interplay
between the two diseases. Finally, models for the prediction
of survival were estimated.

2. Materials and Methods

2.1. Datasets. We downloaded the RNA-seq dataset of Head
and Neck Squamous Cell Carcinoma (HNSC) and corre-
sponding clinical data from TCGA (https://portal.gdc
.cancer.gov/). Based on the anatomic neoplasm subdivision
results in the clinical information of HNSC, we selected sam-
ples related to the buccal mucosa, alveolar ridge, floor of the
mouth, hard palate, oral cavity, and tongue, which were clas-
sified as oral squamous cell carcinoma (OSCC). Gene
expression profiling data for Type 2 Diabetes (T2D) in
humans was downloaded from the GEO database (http://
www.ncbi.nlm.nih.gov/). Finally, three datasets of T2D were
obtained: GSE23561, GSE26168, and GSE184050. We used
the data of GSE184050 to analyze the cross-talk genes, while
GSE23561 and GSE26168 acted as the validation sets
(Table 1). Immune genes and immune cells were obtained
from the literature [PMID: 28052254]. Finally, 782 immune
genes were obtained, which corresponded to 28 immune cell
types.

2.2. Data Preprocessing. For the OSCC obtained from the
TCGA database, we converted the ensemble ID to gene sym-
bol based on the annotation file from GENCODE (https://
www.gencodegenes.org/human/). When multiple ENSG ID

were mapped on one gene, the mean expression value of
ENSG ID in samples was taken as the gene expression value.

For the microarray dataset of T2D obtained from the
GEO database, we first converted the probes into corre-
sponding gene names based on the platform information.
When multiple probes corresponded to the same gene, we
selected the mean of the expression values of these probes
in a certain sample as the expression value of the gene in this
sample. Finally, if the number of samples under a gene with
a zero value exceeded 50% of the total number of samples,
we deleted the gene from the dataset.

2.3. Differentially Expressed Gene Analysis. The “edgeR”
package of R project was applied to analyze the differentially
expressed genes for OSCC and T2D. For the OSCC dataset,
genes with p value < 0:01, jlog 2ðFCÞj > 0 were differentially
expressed genes which were dysregulated between control
samples versus case samples. For the T2D dataset, genes
with p value < 0:05, jlog 2ðFCÞj > 0 were selected as differen-
tially expressed genes.

2.4. Cross-Talk Genes. We extracted the intersection of
DEGs of OSCC and T2D, which are cross-talk genes of
OSCC and T2D. The expression values of cross-talk genes
in OSCC and T2D were then extracted, and the “pheatmap”
package of R project was used to show the expression levels
of these genes in the samples. Then, the “clusterProfiler”
package of R project was used to analyze the GO Biological
processes and KEGG pathways of cross-talk genes. The
functions of the p value < 0:05 were the significant functions.

2.5. Immune Cell Enrichment of OSCC and T2D. We
extracted the expression values of immune-related genes in
case samples in OSCC and T2D. To analyze the relationship
between immune genes and immune cells, we performed
ssGSEA analysis for the sample expression values of immune
genes using the GSVA package of R. Sample enrichment
scores for immune cells were obtained by ssGSEA analysis.
We combined the immune cell enrichment scores of OSCC
and T2D and obtained the immune cells with higher enrich-
ment scores through hierarchical clustering.

2.6. Multivariate Analysis of Immune Cells (High) Based on
Cox-PH Model. To investigate the relationship between
immune cell scores and survival in OSCC, we obtained over-
all survival and survival events from clinical information of
OSCC. A multivariate Cox proportional risk regression
model (Cox-PH) was then built on immune cell scores,

Table 1: Datasets of TCGA-OSCC and T2D.

TCGA-OSCC T2D

Datasets TCGA-OSCC GSE184050 GSE23561 GSE26168

Platform GPL11154 GPL10775 GPL6883

Experimental type High-throughput sequencing High-throughput sequencing Array Array

Case 305 50 8 9

Control 44 66 9 8

Total 349 116 17 17
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overall survival, and survival events using the “survival
package” of R. Out of this model, we can obtain the Haz-
ard ratio of each feature variable and the risk score of the
sample. After the model is established, the ROC analysis
of the model was first performed to assess its prediction
effect. We performed the ROC analysis with “timeROC”
package of R based on risk score, overall survival, and sur-
vival event. Meanwhile, we divided the samples into high-
risk groups and low-risk groups based on the median risk
score. The survival analysis of the two risk groups was car-
ried out by using the “survival” package of R, and the sur-
vival analysis results were presented by the “survminer”
package of R.

2.7. Survival Analysis for Immune Cells Based on the
Univariate Cox-PH Model. Each immune cell in univariate
Cox-PH model acted as a feature variable. We built a model
for each feature variable and predicted the relationship
between feature variable and survival through the risk score
of the model. We analyzed each immune cell (high) using a
univariate Cox-PH model to obtain a risk score and divided
the samples into high-risk groups and low-risk groups for
survival analysis based on the median risk score.

2.8. Immune-Related Cross-Talk Gene. The intersections
between the immune genes and cross-talk genes were taken,

and the intersected genes were the immune-related cross-
talk genes. We performed the function enrichment including
GO biological process and KEGG pathway with the “cluster-
Profiler” package of R project. Besides, we extracted the genes
form the immune cells, which were highly related with sur-
vival and these genes were noted as DE_Immune genes set 1.

2.9. Gene Screening with Recursive Feature Elimination
(RFE). We extracted the gene expression value of immune-
related cross-talk genes from OSCC and T2D and then per-
formed the RFE for the case and control group of samples
with the rfe method of “caret” of R project. With the RFE,

Table 2: DEGs of OSCC and T2D.

OSCC T2D(GSE184050)

p value p < 0:01 p < 0:05
|Log2(FC)| Log2 FCð Þj j > 0
DEG up 2696 566

DEG down 9182 1672

Total DEG 11878 2238

Cross-talk gene 1008
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Figure 1: Volcano plot of DEGs in OSCC (a) and T2D (b).
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Figure 2: Cross-talk gene counts (a) and the expression level of cross-talk gene in OSCC (b) and T2D (c).
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Figure 3: The function enrichment of cross-talk genes. (a) The significant enriched biological processes and (b) the significant enriched
KEGG pathways.
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Figure 4: Immune cell enrichment analysis of OSCC and T2D. (a) The enrichment analysis for immune cells in OSCC and T2D and (b) the
enrichment analysis for immune cells in other two datasets of T2D.
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Figure 5: Seven high immune cells. (a) The enrichment and differences of seven high immune cells in OSCC and T2D. The horizontal axis
represents immune cells, and the vertical axis represents the enrichment score. ∗Represents the difference of immune cells between in OSCC
and T2D: ∗: p < = 0:05, ∗∗: p < = 0:01, ∗∗∗: p < = 0:001, ∗∗∗∗: p < = 0:0001. (b) Correlation of 7 high immune cells and other immune cells
in OSCC. (c) Correlation of 7 high immune cells and other immune cells in T2D.
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Figure 6: Continued.
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we obtained the key immune-related cross-talk genes of
OSCC and T2D, which were noted as DE_Immune genes
set 2.

2.10. The Survival Analysis and ROC Analysis for the
Immune-Related Cross-Talk Genes. We acquired the DE_
Immune genes by integrating DE_Immune genes set1 and
DE_Immune genes set2. Then, we extracted the gene expres-
sion value of DE_Immune genes in case group of OSCC and
built the Cox-PH model of univariate analysis to analyze the
relationship between gene and survival. We extracted the
expression values of DE_Immune genes in case and control
sample of OSCC and T2D and performed ROC analysis to
analyze the AUC of these genes.

3. Results

3.1. Differential Expression Analysis. For OSCC, we selected
genes with p value < 0:01, jlog 2ðFCÞj > 0 as differentially
expressed genes (DEG), where Log2ðFCÞ > 0 is an upregulated
and log 2ðFCÞ < 0 is a downregulated gene (Figure 1(a)).
For the T2D dataset, the genes with p value < 0:05 and jlog
2ðFCÞj > 0 acted as DEGs, where Log2ðFCÞ > 0 was an
upregulated and log 2ðFCÞ < 0 was a downregulated gene
(Figure 1(b)). The counts of DEG are shown in Table 2.

3.2. Cross-Talk Genes between OSCC and T2D. We extracted
the common DEGs between OSCC and T2D and 1008 cross-
talk genes were acquired including 28 common upregulated
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Figure 6: Multivariate Cox-PH analysis of high immune cell. (a) Risk forest plot of 7 immune cells. (b) Multivariate model assessment of the
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DEGs, 440 common downregulated DEGs, and 540 differ-
ently regulated DEGs (Figure 2(a)). We extracted the gene
expression value of cross-talk genes from OSCC and T2D
and showed the gene expression level with heat map
(Figures 2(b) and 2(c)). With the “clusterProfiler” package
of R project, we analyzed the enriched functions of cross-
talk genes (Figure 3). The results showed that cross-talk
genes regulated the RNA splicing, pattern specification pro-
cess, biological process involved in symbiotic interaction,
and so on. Meanwhile, the cross-talk genes were involved
in the Notch signaling pathway, Th1 and Th2 cell differenti-
ation, Wnt signaling pathway, and so on.

3.3. The Enrichment of Immune Cells. We extracted the gene
expression value of 782 immune-related genes in the case
group of OSCC and T2D and performed the enrichment of
immune cells with ssGSEA. We integrated the immune cell
enrichment scores of OSCC and T2D and then obtained
the higher enrichment scores of immune cells by hierarchi-
cal clustering (Figure 4(a)). In addition, we performed the
immune cell enrichment for T2D datasets GSE23561 and
GSE26168 and selected the immune cells with higher enrich-
ment score through hierarchical clustering (Figure 4(b)).

Seven increased immune cells were obtained, which were
plasmacytoid dendritic cell, central memory CD8 T cell,
MDSC, monocyte, activated dendritic cell, activated CD8 T
cell, and central memory CD4 T cell. We used the violin dia-
gram to show the distribution of increased immune cells and

performed a Wilcoxon test on the sample fractions of OSCC
and T2D (Figure 5(a)). The results showed that only acti-
vated CD8 T cells had no significant difference between
OSCC and T2D. We analyzed the correlation between the
seven increased and other immune cells (Figures 5(b) and
5(c)). From the results, plasmacytoid dendritic cells and
effector memory CD8 T cells were highly negatively corre-
lated in both OSCC and T2D.

3.4. Multivariate Cox-PH Analysis of Immune Cells. We
obtained 304 samples with survival time from OSCC and
then used the enrichment scores of seven increased immune
cells in these samples to build a multivariate Cox-PH model.
After building the model, we checked the Hazard ratio of
immune cells in the model through the forest plot
(Figure 6(a)). The results showed that plasmacytoid den-
dritic cell and activated dendritic cell were more significant
in the model. Among of the immune cells, plasmacytoid
dendritic cell correlated with lower risk, while activated den-
dritic cell correlated with higher risk.

In order to evaluate the prediction effect of the model,
we used the timeROC package to integrate Hazard ratio,
overall survival, and survival event and then performed
ROC analysis for 3 years, 5 years, and 10 years, respectively
(Figure 6(b)). From Figure 6(b), it can be seen that the pre-
diction effect of the model is better (83.6%) in the sample
within 10 years. Therefore, we selected samples of overall
survival within 10 years from OSCC, obtaining 297 samples,
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Figure 7: The result of univariate Cox-PH analysis for 7 high immune cells.
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which were divided into high-risk group and low-risk
group according to the median risk score (Figure 6(c)).
Subsequently, we performed a survival analysis on the
high-risk group and the low-risk group, and there was a

significant difference between the high-risk group and the
low-risk group (p = 0:0022), with a significantly lower sur-
vival rate of the high-risk group than of the low-risk
group (Figure 6(d)).
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Figure 8: Results of immune-related cross-talk gene analysis. (a) 7 high immune cells and gene relationships; (b) GO biological process with
significant enrichment of immune-related cross-talk genes; and (c) KEGG pathway with significant enrichment of immune-related cross-
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3.5. Univariate Cox-PH Analysis for High Immune Cells. We
treated each high immune cell as a characteristic variable to
build a Cox-PH model and then divided the samples into
high-risk and low-risk groups, according to the median risk
score for survival analysis (Figure 7). In Figure 7, we found
that activated dendritic cell was significantly different
between high and low groups (p = 0:0095), followed by plas-
macytoid dendritic cell, which was consistent with our mul-
tivariate analysis results. The results showed that activated
dendritic cells and plasmacytoid dendritic cells were associ-
ated with survival.

3.6. Immune-Related Cross-Talk Gene. We took the intersec-
tion of 782 immune genes and 1008 cross-talk genes and

obtained 50 immune-related cross-talk genes. We used
Cytoscape to examine the relationship between 50 immune-
related cross-talk genes and immune cells (Figure 8(a)).
From Figure 8(a), we obtained plasmacytoid dendritic cell
and activated dendritic cell-related genes (C1QC, ABCD1,
NOS2, and PDIA4), which were marked as DE_Immune
genes set 1. Next, we performed GO Biological process and
KEGG pathway analysis on these 50 immune-related
genes, selected p value < 0:05 as a significant function, and
used a bubble chart to display these significant pathways
(Figures 8(b) and 8(c)). These 50 immune-related cross-
talk genes were mainly involved in biological processes
such as response to interferon-gamma, regulation of
heterotypic cell-cell adhesion, and positive regulation of
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Figure 9: RFE signature screening of immune-related cross-talk genes in OSCC (a) and T2D (b). The abscissa represents the number of
variables, and the ordinate represents the accuracy of feature selection.
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defense response (Figure 8(b)). At the same time, these 50
immune-related cross-talk genes regulated Th1 and Th2
cell differentiation, NF-kappa B signaling pathway, TNF
signaling pathway, pathways of neurodegeneration—multi-
ple diseases, and other pathways (Figure 8(c)).

3.7. Further Screening of Immune-Related Cross-Talk Genes.
We extracted the expression values of 50 immune-related
cross-talk genes in OSCC and T2D and then performed fea-
ture screening using the RFE algorithm (Figure 9). Through
analysis, 13 immune-related cross-talk genes were obtained
from OSCC (Figure 9(a)) and 11 immune-related cross-
talk genes were obtained from T2D (Figure 9(b)). There
were five common genes (IL1RN, ABCD1, ALOX15, CSE1L,
and PSMC4) in OSCC and T2D, which we marked as DE_
Immune genes set 2.

3.8. Immune-Related Cross-Talk Genes for Survival Analysis
and ROC Analysis. We integrated DE_Immune genes set 1
and DE_Immune genes set 2 and eight key immune-related
cross-talk genes (C1QC, ABCD1, NOS2, PDIA4, IL1RN,
ALOX15, CSE1L and, PSMC4). Then, a univariate Cox-PH
model was constructed for these eight genes to see the rela-
tionship between these genes and survival (Figures 10(a)–
10(h)). We obtained that CSE1L and PSMC4 had significant
differences in survival in different risk groups. The differences
of other genes in different risk groups were not obvious. It is
possible that they interact with other genes to affect survival.
Therefore, we combined these eight genes to establish a multi-
variate Cox-PH model for survival analysis, and the results
showed that these eight genes had significant differences in
survival (Figure 10(i)).

We extracted the expression values of these eight genes
in case and control groups of OSCC and T2D and extracted

their expression values in the validation sets GSE23561 and
GSE26168. ROC analysis was performed on the four datasets
to see the predictive effect of these gene expression values
(Figure 11). After ROC analysis, we obtained that ABCD1,
C1QC, CSE1L, and PSMC4 had higher classification and
prediction effects on OSCC and T2D when the sample size
was large. The four genes, ABCD1, C1QC, CSE1L, and
PSMC4, are immune-related genes and are differentially
expressed in T2D and OSCC, playing a role as a bridge
between the two diseases.

4. Discussion

In this bioinformatics study, we identified a genetic cross-
talk between T2D and OSCC, confirming their close rela-
tionship. Regarding prognosis, a high-risk and a low-risk
model for survival was estimated; thereby, plasmacytoid
dendritic cell- and activated dendritic cell-related genes were
associated with the survival of T2D-related OSCC. Four
genes, i.e., ABCD1, C1QC, CSE1L, and PSMC4, were the
most important immune-related cross-talk genes between
T2D and OSCC.

Based on recent literature, a genetic cross-talk between
T2D and OSCC was expectable and thus the aim of this cur-
rent research project [5]. It is repeatedly documented that
T2D is a risk factor for the development of OSCC [12].
Moreover, T2D is related with metastasis formation and
prognosis of OSCC [5]. Additionally, the diabetes-related
therapy, e.g., metformin intake has an effect on the relation-
ship between OSCC and T2D [13, 14]. Thereby, the causality
of the relationship or, in other words, whether T2D would
be an independent predictor for OSCC formation and out-
come can be discussed controversially [7]. An indirect link
would also be plausible; on the one hand, a shared risk

+++++++++
+++++++++++++++++++++++

+++++++++++++++++++++++++++++++
++++++++++

+++
+

+ ++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
+++

+ +

+
p = 0.0096

0.00

0.25

0.50

0.75

1.00

0 5 10 15

O
ve

ra
ll 

su
rv

iv
al

Risk model survival

Time (Years)

+
+

High (N = 152)
Low (N = 152)

(i)

Figure 10: Survival analysis results of 8 key immune-related cross-talk genes.
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complex, i.e., nutrition, obesity, and smoking would also
predict T2D as well as OSCC [15–19]. On the other hand,
oral inflammations, especially periodontitis and mucous dis-
eases, are related to T2D [4, 20]. Those disease, however, are
also closely related to OSCC [21, 22]. Considering the close
cross-talk between OSCC and periodontitis, as revealed by
another bioinformatics study [10], a complex interaction
between the different chronic diseases appears probable.
This makes a clear statement on the potential causality vs.
coincidence very difficult.

Against this background, however, the role of inflamma-
tion between T2D and OSCC is worth to be recognized. As
revealed in our study, dendritic cells were found to be of
highest relevance in this context. Thereby, lower expression
of the immune genes for activated and plasmocytoid den-
dritic cells was associated with better survival in the patients.
Dendritic cells have a crucial function in induction of the
protective adaptive immunity, making it a focus of cancer
immunology and therapy [23]. Dendritic cells are regulators
of the adaptive immune response and represent a heteroge-
neous population of leukocytes [24]. Those cells can be
divided into conventional and plasmocytoid dendritic cells,
having distinct functions in immunology [25]. Different
types of dendritic cells have also been already examined in
OSCC [26–28]. A recent study based on flow cytometry
found that an increase in tumor-infiltrating plasmocytoid
cells promotes OSCC proliferation, primarily by TNF-α/
NF-κB/CXCR-4 pathway [27]. Another study directly
showed an increase of those cells to be related to poor OSCC
prognosis [29]. Therefore, an association of the reduced
expression of dendritic cell genes with better survival in
the current study appears plausible. Dendritic cells are also
related with T2D. Especially in obese individuals, dendritic
cells are involved in the development of an adipose tissue
inflammation, leading to insulin resistance [30]. Another
study in mice found that dendritic cells drive mechanisms
to increase the insulin reserve in response to obesity-
induced insulin resistance [31]. Accordingly, an increased
activation of dendritic cells, especially in adipose individuals
with T2D, might affect the relationship between T2D and
OSCC and its prognosis, respectively.

Furthermore, the four immune-related genes ABCD1,
C1QC, CSE1L, and PSMC4 require discussion. ABCD1 is
one of three members of the D subfamily of the ATP-
binding cassette (ABC) transporters, which act as tetramers
in peroxisome metabolism and thus in cell signaling and
control [32]. While there is no research for this gene in oral
cancer, some findings in literature indicate a role of ABCD
transporters in cancer in general [33]. On the other side, a
whole exome sequencing analysis revealed ABCD1, amongst
other genes, as potentially relevant in context of T2D. How-
ever, the low body of evidence does not allow further
hypotheses on the role of ABCD1 in the interplay between
T2D and OSCC. C1QC, as important gene for the comple-
ment system and thus innate immune response, has been
found to be a part of tumor microenvironment of different
cancer entities [34, 35]. In esophageal squamous cell carci-
noma, C1QC was potentially related with prognosis in a bio-
informatics analysis [36]. Therefore, its relation with OSCC

development and prognosis appears reasonable. Two hints
for the potential role of C1QC in T2D are also available.
One bioinformatics study found C1QC to be a potential
hub gene, which is associated with immune cell infiltration
related with the progression of obesity-related diabetes or
insulin resistance, respectively [37]. This is similar as for
dendritic cells, which was explained above. Considering that
dendritic cells produce C1Q as initial molecule for the com-
plement system [38], this interlink seems relevant in context
of the current study. Moreover, the complement system-
related genes were found to play a role in diabetic nephrop-
athy [39]. Altogether, a potential role of complement system
in the interplay between T2D and OSCC appears possible,
but requires further data.

CSE1L (human chromosomal segregation 1-like), which
is an effector of apoptosis, invasiveness, and migration of
cancer cells, was already found to be related with oral cancer
[40]. This has been shown to be regulated by MITF, which is
upregulated, resulting in activation of the Akt/mTOR path-
way [40]. No data regarding CSE1L and diabetes are avail-
able, making its role in T2D-related OSCC questionable.
Similarly, PSMC4, which is a member of the ATPase gene
(PSMC) family and thus involved in protein degradation,
has been reported to be related with cancer development
and prognosis [41, 42]. However, no literature supports its
role in diabetes.

5. Strengths and Limitations

This current study based on bioinformatics revealed some
interesting findings on the relation between T2D and OSCC.
It remains, however, limited on the absence of a validation in
clinical or laboratory setting. The findings are only a basis
for future research in the field and identified several bio-
marker candidates. The following limitations are of particu-
lar relevance and need to be considered in this respect. No
validation was performed for the analysis, and therefore,
the results are restricted to a hypothetic level. Moreover,
there is insufficient information on the sample, especially
the patient-related information like age, gender, smoking,
and comorbidities. Those parameters might have influenced
the current study’s findings. Thereby, sample size is limited
on the available data and the sample has a potential bias.
Overall, the transferability and clinical consequences of the
findings remain limited and speculative. Therefore, subse-
quent studies are required to validate the results. First, find-
ings should be used as a basis for an in vitro or animal model
and then transferred to clinical context.

6. Conclusion

A genetic cross-talk between T2D and OSCC points out on
the close relationship between those two diseases. Plasmacy-
toid dendritic cell- and activated dendritic cell-related genes
were associated with the survival of T2D-related OSCC.
Four genes, i.e., ABCD1, C1QC, CSE1L, and PSMC4, were
the most important immune-related cross-talk genes
between T2D and OSCC.
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