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With the explosive growth of protein-related data, we are confronted with a critical scientific inquiry: How can 
we effectively retrieve, compare, and profoundly comprehend these protein structures to maximize the utilization 
of such data resources? PS-GO, a parametric protein search engine, has been specifically designed and developed 
to maximize the utilization of the rapidly growing volume of protein-related data. This innovative tool addresses 
the critical need for effective retrieval, comparison, and deep understanding of protein structures. By integrating 
computational biology, bioinformatics, and data science, PS-GO is capable of managing large-scale data and 
accurately predicting and comparing protein structures and functions.

The engine is built upon the concept of parametric protein design, a computer-aided method that adjusts and 
optimizes protein structures and sequences to achieve desired biological functions and structural stability. PS-GO 
utilizes key parameters such as amino acid sequence, side chain angle, and solvent accessibility, which have a 
significant influence on protein structure and function. Additionally, PS-GO leverages computable parameters, 
derived computationally, which are crucial for understanding and predicting protein behavior.

The development of PS-GO underscores the potential of parametric protein design in a variety of applications, 
including enhancing enzyme activity, improving antibody affinity, and designing novel functional proteins. 
This advancement not only provides a robust theoretical foundation for the field of protein engineering and 
biotechnology but also offers practical guidelines for future progress in this domain.
1. Introduction

1.1. Topology of protein landscape

Within the field of life sciences, deciphering and understanding the 
intricacy of proteins remain substantial challenges. Proteins, as the fun-

damental functional units in biological systems, exhibit functionalities 
determined primarily by their structures. With the explosive growth 
of protein-related data, we are confronted with a critical scientific in-

quiry: How can we effectively retrieve, compare, and profoundly 
comprehend these protein structures to maximize the utilization 
of such data resources? The advancement of Internet technology of-

fers possible resolution pathways. Take Google’s search engine as an 
example; it spearheaded a significant transformation in the information 
retrieval field. Google’s search engine, through its innovative PageRank 
algorithm, successfully tackled the problem of swiftly locating relevant 
information among a vast amount of web pages [1]. PageRank algo-

* Corresponding author.

rithm, which is based on the hyperlink structure of web pages to assess 
their significance, enabled the effective ranking of web pages. Con-

sequently, users can quickly obtain the most relevant search results. 
This structure-based processing approach significantly elevated the ef-

ficiency of information retrieval. Inspired by this strategy, we need to 
introduce similar methods in the field of biosciences to process and in-

terpret the massive volume of protein data. The ideal solution should 
profoundly reveal the topological structure of proteins, accurately infer 
their functional properties, and perform precise searches and compar-

isons within large-scale protein datasets. To achieve this goal, we re-

quire a tool that integrates computational biology, bioinformatics, and 
data science, capable of handling big data and accurately predicting and 
comparing the structure and function of proteins.

Protein topology, as the arrangement and spatial relationship of sec-

ondary structure elements, plays a crucial role in understanding key 
aspects such as protein folding, stability, function, and evolution, as 
shown in Fig. 1. There is a close connection between protein structural 
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Fig. 1. The steps in parametric protein design.
topology and its biological function. A specific structural topology of the 
protein determines key functional features such as active sites, subunit 
interaction interfaces, and molecular recognition patterns. Studying the 
structural topological features of proteins can better predict protein 
function and reveal functional and structural similarities between dif-

ferent protein families [2]. Furthermore, studying protein structural 
topology can help to reveal the relationship between protein structure 
and function, and in turn, apply this knowledge to protein design. The 
goal of protein design is to create proteins with desired functions, sta-

bility, and solubility. During the design process, researchers often use 
computational methods to optimize protein sequences to achieve the 
desired structural topology.

However, due to the diversity of amino acid species and the end-

less possibilities of arrangement, the number of combinations of protein 
structures is enormous. In this vast search space, many combinations 
of amino acids do not produce stable protein structures or have bio-

logical functions. Therefore, understanding the quantitative differences 
between the available mathematical combinations and the actual possi-

bilities is important for parametric protein searches to explore protein 
sequence space more efficiently and discover proteins with the de-

sired properties. In this regard, algorithms such as machine learning 
and metaheuristics can help to filter out protein sequences with poten-

tial biological functions, thereby reducing the complexity of the search 
space. In practice, the combination of existing knowledge of pro-

tein structures, parametric models and efficient search strategies 
can be used to mine proteins with specific functions, stability and 
solubility with limited computational resources, providing strong 
support for protein design and optimization.

1.2. Parametric protein design

Parametric protein design is a computer-aided protein design 
method, with the primary goal of adjusting and optimizing parame-

ters of protein structures and sequences to achieve desired biological 
functions and structural stability [3]. To achieve this goal, the right 
combination of parameters needs to be found to give the protein the 
desired function and properties. The key steps in parametric protein de-

sign are shown in Fig. 1. The two most important steps in the design 
process are parameter selection and parameter optimization. Parameter 
selection requires the selection of parameters related to protein struc-

ture and function, such as amino acid sequence, side chain angle, and 
solvent accessibility, according to the design objectives [4]; parameter 
optimization can be classified according to the optimization strategy 
and search strategy. Optimization strategies mainly include energy min-

imization and probabilistic search. Energy minimization methods focus 
on optimizing the energy of protein structures to improve structural 
stability and function; while probabilistic search methods employ ran-

dom sampling and acceptance or rejection criteria to search within the 
parameter space. Search strategies include genetic algorithms, Monte 
Carlo simulations, and more. As a heuristic search method, genetic 
algorithms have high search efficiency and flexibility; Monte Carlo 
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simulations are suitable for handling complex energy landscapes and 
parameter relationships [5]. Parametric protein design, and in particu-

lar the parameter selection and parameter optimization steps involved, 
is provided by theoretical underpinnings and practical guidance from 
protein structure topology studies.

The study of protein structure topology can provide a basis for pa-

rameter selection in the parametric protein design process. For example, 
it has been found that the interactions between protein secondary struc-

ture elements and the mechanism of tertiary structure formation are 
crucial for protein function [6]. In addition, understanding the topolog-

ical characteristics of protein structures helps to better grasp the impact 
of parameter tuning on protein structure and function. For example, 
protein structural topology studies have revealed certain general prin-

ciples of structural stability, such as hydrogen bonding networks and 
hydrophobic cores [7]. Furthermore, Protein structure topology studies 
have revealed the phenomenon of “protein folding topology” [8], which 
provides valuable clues for parametric protein design. By changing pa-

rameters such as amino acid sequence or side chain angle, proteins can 
be guided to form specific topological patterns to achieve function and 
stability [3].

Understanding the relationship between structure, parameters, and 
function is crucial in parametric protein design [4]. Parameters such as 
amino acid sequence, side chain angle, and solvent accessibility have 
a significant impact on protein structure and function [5]. Firstly, the 
amino acid sequence determines the primary structure of a protein and 
indirectly influences its secondary, tertiary, and quaternary structure. 
By adjusting the amino acid sequence, properties such as the folding 
stability, functional activity, and affinity of a protein can be altered [2]. 
In addition, the side chain angle determines the spatial arrangement of 
the amino acid side chains during protein folding and affects the steric 
conformation and stability of the protein. Solvent accessibility affects 
the interaction of the protein with its surroundings, including binding 
to ligands, substrates, or other proteins. By optimizing the side chain an-

gle and solvent accessibility, the affinity of a protein to a specific ligand 
can be improved, allowing for specific antibody design [5]. Paramet-

ric protein design has played a key role in many successful examples of 
protein design, including enzyme activity improvement, antibody affin-

ity enhancement, and the design of novel functional proteins [4]. These 
success cases provide ample evidence of the reliability and effectiveness 
of parametric protein design in achieving specific goals.

Computable parameters are a class of parameters related to protein 
structure and function that can be derived computationally. These pa-

rameters are essential for understanding and predicting the behavior of 
proteins, as they can directly affect the structure, stability, hydropho-

bicity, and other properties of proteins, as shown in Table 1.

In areas such as protein design, drug development, and bioengi-

neering, the use of computable parameters helps to optimize protein 
function and enhance its applications [9]. Researchers have used com-

puter simulations, data mining, and bioinformatics methods to calculate 
and predict these parameters, thereby making connections between pro-

tein sequence, structure, and function. This provides an innovative and 

powerful direction for the modification and optimization of proteins.
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Table 1

Computable parameters and description.

RC Score: It is a parameter that describes the importance of amino acid residue interactions. The higher the score, the more 
critical the amino acid residues are in the protein structure. Calculating the RC score helps to optimize the stability and folding 
ability of the protein and is essential for improving thermal stability and resistance to protease degradation.

Hydrophobicity: It is a parameter that measures the hydrophilicity of amino acid residues and is usually calculated using 
molecular dynamics simulations and computational chemistry. Optimizing the hydrophobicity of proteins enhances their 
solubility, stability, and interaction with other molecules.

Instability: It refers to the half-life of a protein molecule in vitro and is closely related to factors such as amino acid sequence, 
structure, and hydrophobicity. Calculating the instability of amino acid residues helps to predict the stability and susceptibility to 
degradation of the whole protein molecule, which is of great importance for drug development and protein engineering.

Size: Protein size refers to the total number of amino acid residues in its molecule. Size can have an impact on the folding rate, 
stability, and function of a protein. Calculating protein size can help predict its properties and function and provide a basis for 
optimizing protein structure.

Isoelectric: The isoelectric point is the pH value of a protein molecule when the sum of its charges is zero. Calculating the 
isoelectric point helps to predict the charge state of a protein in different pH environments and further speculates on its role in the 
organism. In addition, calculating the isoelectric point also helps to optimize the charge distribution of proteins, thereby 
improving their stability and biological activity in various environments.

Solvent accessibility: It describes the extent to which an amino acid residue or part of it in a protein molecule is exposed in 
solution. It is closely related to protein folding, stability, and molecular interactions. Calculating the solvent accessibility of amino 
acid residues helps to predict the stability and biological function of proteins while revealing the structural features of proteins 
and the role of amino acid residues in the structure.

Fig. 2. Issues and challenges of existing protein search methods.
1.3. Challenges and bottlenecks in searching the protein space

Protein research heavily relies on extensive experimental data stored 
in various databases. The RCSB Protein Data Bank (RCSB PDB) is a 
widely-used repository for 3D protein structures determined by experi-

mental methods [10]. UniProt is another comprehensive resource that 
integrates protein sequences and functional annotations from several 
databases, including the manually annotated Swiss-Prot and the auto-

matically annotated TrEMBL [11]. Additionally, databases like CATH, 
SCOP, and Pfam classify and annotate proteins based on their structural, 
sequence, or functional characteristics [12,2,13]. These databases pro-

vide valuable information for understanding protein structure, function, 
and evolution, making them essential for protein research and design.

Protein searching typically employs two main approaches: structure-

based and sequence-based methods. Structure-based methods, such as 
DALI [14] and TM-align [15], compare the 3D structures of proteins 
to identify similarities, which is particularly useful for proteins with 
diverse sequences but similar structures. In contrast, sequence-based 
methods, like BLAST [16] and HMMER [17], detect homology by com-

paring amino acid sequences and excel at identifying proteins with 
similar sequences.

However, as illustrated in Fig. 2, these methods have limitations in 
terms of efficiency, accuracy, and adaptability [18–21]. Structure-based 
methods are computationally intensive and slow, while sequence-based 
methods may struggle with proteins exhibiting significant structural 
differences despite sequence similarity. The non-linear relationship be-

tween protein structure and sequence can lead to errors in search re-

sults, with structure-based methods potentially failing to identify func-

tional similarities between proteins with similar structures but different 
sequences, and sequence-based methods failing to accurately detect 
structural similarities in proteins with similar sequences but different 
structures. Database quality, including incorrect annotations, redun-

dancy, and incomplete data, can also negatively impact search results. 
Moreover, interpreting protein search results and comparing them with 
experimental data can be challenging and error-prone for large datasets. 
1501

Existing search methods may not adapt well to various protein types 
and biological problems, particularly when targeting specific proteins 
or scenarios.

To address these challenges, researchers have developed various 
rapid protein structure search methods in recent years. For instance, 
3D-AF-SURFER [22] utilizes deep learning to learn 3D feature rep-

resentations of protein surfaces, enabling fast and accurate structure 
alignment and similarity search. GraSR [23] introduces a graph repre-

sentation learning approach, improving search efficiency and general-

izability by converting protein structures into graphs and learning their 
embedded representations. DeepFold [24] employs convolutional neu-

ral networks to extract features directly from 3D structures, accelerating 
the structure alignment process. MADOKA [25] designs a MapReduce-

based distributed computing framework, achieving parallelization and 
scalability for large-scale protein structure searches. These methods 
have made significant contributions to accelerating searches and ex-

panding functionality in the field of protein structure search.

Despite the progress made by existing methods, there are still limita-

tions in terms of insufficient utilization of sequence information, limited 
search flexibility, and interpretability. These limitations highlight the 
need for innovative approaches that can effectively integrate sequence 
and structural information, support flexible search queries, and provide 
interpretable results.

Parametric protein search emerges as a promising alternative that 
tackles the challenges in protein search from a different perspective. 
Instead of solely relying on traditional structure or sequence-based 
methods, parametric protein search introduces a novel paradigm that 
leverages the power of parametric protein design. By carefully select-

ing and optimizing a set of key parameters that define protein structure 
and function, such as amino acid composition, hydrophobicity, and sec-

ondary structure propensities, parametric protein search enables a more 
comprehensive and fine-grained representation of proteins.

This parametric approach offers several advantages over existing 
methods. It allows for the seamless integration of sequence and struc-

tural information, as the parameters can capture both the global topol-
ogy and the local physicochemical properties of proteins. Furthermore, 
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Fig. 3. How PS-GO search works and its key features.
it provides a highly flexible and customizable search framework, where 
users can define their own parameter combinations and search criteria 
based on their specific research needs. Finally, the parametric repre-

sentation facilitates the interpretability of search results, as the key 
parameters contributing to the similarity or difference between proteins 
can be easily identified and visualized.

1.4. PS-GO - transforming protein exploration with a breakthrough search 
method

PS-GO(Parametric Search, GO!) is an innovative parametric protein 
search engine that cleverly integrates protein structure, sequence infor-

mation, and computable parameters. Our search engine aims to address 
the multiple limitations of existing protein search methods and provide 
a more powerful, efficient, and flexible tool for protein design research 
and applications.

A core feature of PS-GO is its unique search capability, which en-

ables users to specify specific parameters and constraints to search for 
protein sequences and structures that meet their needs through a para-

metric protein design approach. This approach improves the ability to 
control protein structure and function with precision by calculating and 
tuning key parameters in the protein molecule. Specifically, PS-GO can 
handle a variety of complex protein sequences and structure parame-

ters such as RC.Score, hydrophobicity, instability, size, isoelectric point, 
and solvent accessibility to meet different research needs. This precise 
search capability not only improves the accuracy of the search results 
but also contributes to a deeper understanding of the structure-function 
relationships of proteins, which is of great academic value for research 
in the field of protein design and engineering.

As shown in Fig. 3, PS-GO (https://psgo .ucc .ie/) utilizes parallel 
computing and rapid algorithms and processes a vast array of protein 
structure parameters swiftly. Even when dealing with extensive protein 
data, PS-GO returns results that cater to users’ needs promptly. Sig-

nificantly more efficient than traditional structure or sequence-based 
search methods, PS-GO allows researchers to acquire necessary protein 
structure information in less time, accelerating the experimental proce-

dure.

Another highlight of PS-GO is the enhanced user experience. Its in-

tuitive graphical interface, coupled with natural language processing 
technology, allows effortless input and interaction, eliminating the re-

quirement of specialized biological or computer technology knowledge. 
Therefore, PS-GO’s usability extends beyond researchers, catering to a 
broader user base including students, teachers, biologists, and drug re-

searchers. This capacity helps proliferate protein design knowledge and 
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techniques, extending their applicability.
PS-GO also provides customization of parameters and optimization 
conditions according to user needs, facilitating realistic protein design. 
Its high adaptability and customization allow its utility across diverse 
research requirements and application scenarios, offering researchers 
more innovative avenues and fostering the advancement and applica-

tion of protein design technologies.

In conjunction with the Silver Surfer service, PS-GO enables users 
to freeze certain protein sequence residues while adjusting others to 
generate novel protein sequences. This feature empowers researchers to 
probe deeper into protein sequence space, enhancing the diversity and 
adaptability of protein structures. This holds immense academic merit 
in investigating the interplay between protein sequence and structure, 
optimizing proteins’ functional attributes, and creating opportunities 
for protein modification and novel drug development.

The integration of PS-GO with Protein Fragment And Structure 
Analysis (PROFASA) interlinks it with other bioinformatics tools and 
data resources, creating a comprehensive ecosystem for protein de-

sign and research [26]. Through PROFASA, PS-GO integrate with pro-

tein databases (like PDB, UniProt), sequence alignment tools (such as 
BLAST), and structure prediction software, establishes a one-stop plat-

form for protein design and research, bolstering research and applica-

tions in related domains.

1.5. Parametric search strategy

PS-GO employs a novel parametric search strategy to efficiently ex-

plore the vast protein sequence and structure space. The key steps of 
this strategy are outlined below:

Data Collection and Processing: PS-GO collects protein data from 
various public databases, such as PDB and UniProt. The collected data is 
carefully curated and filtered based on sequence and structure quality, 
redundancy, and completeness. A series of preprocessing steps, includ-

ing sequence alignment, structure validation, and data normalization, 
are performed to ensure the consistency and reliability of the data.

Parameter Calculation: For each protein in the database, PS-

GO calculates a set of key parameters that characterize its physico-

chemical properties and structural features. These parameters include 
amino acid composition, hydrophobicity, instability index, molecular 
weight, isoelectric point, secondary structure content, solvent acces-

sibility, and more. The calculation of these parameters is based on 
well-established algorithms and empirical formulas, such as the Kyte-

Doolittle hydrophobicity scale [27] and the Chou-Fasman secondary 
structure prediction method [28].

Data Integration: The calculated parameters, along with the 

sequence and structure information, are integrated into a unified 

https://psgo.ucc.ie/
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database. This database serves as the foundation for the subsequent 
parametric search and protein design tasks. The integration process in-

volves data mapping, indexing, and optimization to facilitate efficient 
data retrieval and analysis.

Parametric Search: Given a user-specified query, PS-GO performs a 
parametric search against the integrated database. The query can be a 
combination of various parameters, such as sequence similarity, struc-

tural motifs, and physicochemical properties. PS-GO employs advanced 
indexing and hashing techniques to quickly identify proteins that match 
the query criteria. The search results are ranked based on their rele-

vance and similarity to the query, providing users with a prioritized list 
of candidate proteins.

Protein Design and Optimization: In addition to searching existing 
proteins, PS-GO also supports the design of novel proteins with desired 
properties. Users can specify the target parameters, such as stability, 
solubility, and function, and PS-GO will generate a set of candidate se-

quences that satisfy these requirements. The design process involves a 
combination of data-driven modeling, molecular simulations, and opti-

mization algorithms. PS-GO iteratively refines the candidate sequences 
based on their predicted structures and functions, ultimately delivering 
a set of optimized protein designs for experimental validation.

By integrating these key steps, PS-GO provides a powerful and flex-

ible platform for parametric protein search and design. The modular 
architecture of PS-GO allows for easy extension and customization, 
enabling researchers to adapt the system to their specific needs and 
incorporate new algorithms and data sources.

2. Methods

2.1. Parametric search algorithm

The core of PS-GO is an innovative parametric search algorithm 
that enables efficient and flexible retrieval of proteins based on user-

specified multi-dimensional parameter conditions. The algorithm con-

sists of the following key steps:

Parameter Extraction: Given a protein sequence or structure, PS-

GO first extracts a set of parameters that characterize the physicochem-

ical properties and structural features of the protein. These parameters 
include:

(1) Amino acid composition: The frequencies of 20 amino acids in 
the protein sequence are calculated using the ProtParam module of 
BioPython [29], resulting in a 20-dimensional composition vector.

(2) Isoelectric point: The isoelectric_point() function in the Prot-

Param module is used to calculate the isoelectric point of the protein 
based on the pKa values of amino acids.

(3) Molecular weight: The molecular_weight() function in the Prot-

Param module is used to calculate the molecular weight of the protein 
based on the molecular mass of amino acid residues.

(4) Hydrophobicity: We implemented the Kyte-Doolittle hydropho-

bicity scale algorithm to calculate the hydrophobicity score of each 
amino acid residue using a sliding window approach. The average score 
is then taken as the hydrophobicity index of the entire protein. Specifi-

cally, the following formula is used:

𝐻 = 1
𝑛

𝑛∑
𝑖=1

ℎ𝑖 (1)

where 𝐻 is the hydrophobicity index of the protein, 𝑛 is the number 
of amino acid residues, and ℎ𝑖 is the hydrophobicity score of the 𝑖-th 
residue (obtained from the Kyte-Doolittle scale table).

(5) Instability index: The instability_index() function in the Prot-

Param module is used to calculate the instability index of the protein 
based on the dipeptide frequency and the Dipeptide instability weight 
values (DIWV) instability weight values [30].

(6) Secondary structure: The DSSP program is used to predict the 
1503

secondary structure (like 𝛼-helix, 𝛽-sheet, coil) of the protein, and the 
Computational and Structural Biotechnology Journal 23 (2024) 1499–1509

proportions of each secondary structure type are calculated [31]. DSSP 
uses hydrogen-bonding patterns and geometrical criteria to reliably 
identify secondary structure elements.

(7) Solvent accessibility: The NACCESS program is used to calcu-

late the relative solvent accessibility (RSA) of residues on the protein 
surface [32]. NACCESS employs the Lee-Richards algorithm to estimate 
the accessibility of residues by rolling a probe over the protein surface. 
We calculate the RSA value for each residue and then take the average 
as the solvent accessibility index of the entire protein.

The above parameter extraction process is implemented by com-

bining existing bioinformatics tools (like DSSP, NACCESS) and self-

developed algorithms (like Kyte-Doolittle hydrophobicity calculation) 
to ensure the efficiency and accuracy of the calculation. The algo-

rithms are implemented in Go, and the bioinformatics tools are invoked 
through system calls.

To speed up the parameter extraction process, we leverage Go’s gor-

outine mechanism to perform concurrent calculations. Each protein is 
assigned to a goroutine, which independently carries out the parame-

ter extraction tasks. Within each goroutine, we invoke Python scripts or 
custom Go scripts to compute specific parameters. This parallel comput-

ing approach greatly improves the efficiency of parameter extraction, 
especially when dealing with large-scale protein datasets.

Natural Language Search: In addition to range-based parameter 
search, PS-GO also supports natural language queries. Users can input 
natural language sentences describing the desired protein properties or 
functions, such as “Find proteins with high stability and low molecu-

lar weight”. We utilize the GPT-4 model from OpenAI to convert the 
natural language query into structured parameter conditions through 
function calls [33].

Specifically, we define a function named “parse_query” that takes a 
natural language query as input and outputs the parameter conditions 
in JSON format. For example, given the above query, GPT-4 will return 
the following JSON:

{
"stability": "high",
"molecular_weight": "low"

}

We then map these qualitative descriptions to specific numeric 
ranges. For instance, “high stability” corresponds to an instability index 
less than 40, and “low molecular weight” corresponds to a molecular 
weight less than 50 kDa. Finally, the converted parameter conditions 
are used for the subsequent search process.

Indexing and Hashing: To accelerate the retrieval process, PS-GO 
builds inverted indexes for the extracted parameter values. Each pa-

rameter value is mapped to a unique hash code, and the proteins are 
organized into corresponding hash buckets based on their parameter 
features. This indexing scheme allows for constant-time lookup of pro-

teins that match a given parameter query condition.

Specifically, we adopt a multi-dimensional hashing approach that 
converts each parameter value into a 64-bit hash code. For numeric 
parameters (like molecular weight), we use a double hashing function 
to map the value to a hash bucket:

ℎ1(𝑥) = (𝑎𝑥+ 𝑏)%𝑝 (2)

ℎ2(𝑥) = 1 + ((𝑥+ 𝑐)%(𝑝− 1)) (3)

where 𝑥 is the parameter value, 𝑝 is a prime number (chosen as the 
smallest prime greater than the range of the parameter), and 𝑎, 𝑏, 𝑐 are 
randomly selected constants. The double hashing function effectively 
reduces hash collisions and improves retrieval efficiency.

For categorical parameters (like secondary structure), we use the 
MurmurHash3 algorithm to map the category labels to hash codes [34]. 
MurmurHash3 is a non-cryptographic hash function known for its fast 

speed and good distribution properties.
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During retrieval, the system calculates the hash codes corresponding 
to the user query and then performs matching in the corresponding hash 
buckets to filter out the proteins that satisfy the conditions.

Query Processing: When a user submits a query containing mul-

tiple parameter conditions, PS-GO first parses the query and converts 
it into a set of hash codes. Then, the algorithm retrieves proteins from 
the corresponding hash buckets and filters them to find the results that 
satisfy all the conditions.

We designed a set operation-based query processing method that 
treats multiple parameter conditions as sets and uses set operations (like 
intersection, union, difference) to combine the conditions. For example, 
given the query “(stability >0.8) AND (size <2000)”, we first find the 
sets of proteins satisfying “stability >0.8” and “size <2000”, denoted 
as 𝑆1 and 𝑆2, respectively. We then calculate the intersection of 𝑆1 and 
𝑆2 to obtain the final result.

This set-based query processing method fully leverages the inverted 
indexes and avoids linear scans over the entire database, thereby signif-

icantly improving query efficiency.

2.2. Protein database construction

The PS-GO database is constructed by integrating two major public 
data sources: PDB and UniProt.

Data Integration: We first download data files from the FTP servers 
of PDB and UniProt, respectively. For PDB, we download the mmCIF 
format structure files and FASTA format sequence files. For UniProt, we 
download the XML format annotation files and FASTA format sequence 
files.

We then use the BioPython library in Python to parse these files 
and extract the fields of interest, such as PDB ID, UniProt ID, amino 
acid sequence, secondary structure, and functional annotations. These 
fields are mapped to a relational database schema, creating tables for 
proteins, residues, atoms, and annotations.

During the integration process, we need to handle cross-references 
between PDB and UniProt to establish a mapping between the two 
databases. We utilize the “PDB cross-reference” field in UniProt, which 
provides the correspondence between UniProt entries and PDB struc-

tures. Through these cross-references, we can associate structural infor-

mation with sequence and functional annotations.

We developed an automated data integration pipeline using the 
Luigi workflow framework to manage tasks such as data downloading, 
parsing, cleaning, and mapping. The pipeline runs periodically to en-

sure that the database stays in sync with PDB and UniProt.

Data Storage: PS-GO uses a MySQL relational database manage-

ment system to store and manage the protein data. MySQL is a widely-

used open-source database known for its high performance, scalability, 
and ease of use.

We designed a normalized database schema that includes the fol-

lowing main tables:

(1) Protein table: stores basic information about proteins, such as 
PDB ID, UniProt ID, sequence length, and species.

(2) Residue table: stores information about amino acid residues in 
proteins, such as residue number, residue name, and secondary struc-

ture type.

(3) Atom table: stores the atomic coordinate information of proteins, 
such as atom number, atom name, and x/y/z coordinates.

(4) Annotation table: stores functional annotation information for 
proteins, such as Gene Ontology (GO) terms, Enzyme Commission (EC) 
numbers, and Pfam domains.

(5) Parameter table: stores various parameters of proteins, such as 
molecular weight, isoelectric point, hydrophobicity, and instability in-

dex.

We utilize MySQL’s indexing mechanisms (like B+ tree index, hash 
index) to speed up data retrieval. For frequently queried fields (like 
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PDB ID, UniProt ID), we create single-column indexes. For fields that 
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are often queried together (like residue number and atom name), we 
create composite indexes.

Additionally, we developed stored procedures and user-defined 
functions (UDFs) to perform certain computation tasks on the database 
server side, reducing the burden on the application server.

Data Access: PS-GO uses the database/sql package in Go to com-

municate with the MySQL database [35]. The database/sql package 
provides a generic interface for interacting with SQL databases, sup-

porting multiple database drivers.

We define Go structs that correspond to the tables in the database. 
These structs, also known as “models”, contain fields that map to the 
columns of the tables. We use the GORM library, which is an object-

relational mapping (ORM) library for Go, to simplify database opera-

tions [35]. GORM allows us to define database models using Go structs 
and provides high-level APIs for querying and manipulating data.

For example, the following code defines the Protein and Residue 
models:

type Protein struct {
ID uint ‘gorm:"primaryKey"‘
PdbID string ‘gorm:"index"‘
UniprotID string ‘gorm:"index"‘
Sequence string
Residues []Residue

}

type Residue struct {
ID uint ‘gorm:"primaryKey"‘
ProteinID uint
Number int
Name string
SSType string

}

With these model definitions, we can easily perform database opera-

tions using GORM’s methods, such as Create, Find, Update, and Delete. 
For instance, the following code demonstrates how to query a protein 
by its PDB ID and retrieve its residue information:

var protein Protein
db.Preload("Residues").First(&protein, "pdb_id = ?", "1ake")

for _, residue := range protein.Residues {
fmt.Println(residue.Number, residue.Name, residue.SSType)

}

By leveraging GORM, we can express complex SQL queries in a more 
intuitive and object-oriented way, greatly improving development effi-

ciency.

2.3. Silver surfer

The integration with Silver Surfer service takes PS-GO’s capabilities 
a step further. Should the initial search not yield any closely matching 
sequences, Silver Surfer enables the creation of novel protein sequences. 
Silver Surfer is a novel tool that applies a genetic algorithm for protein 
sequence generation with a fitness function derived from the query. The 
fitness function plays a crucial role in guiding the evolutionary process 
towards sequences that satisfy the user-specified target properties.

In Silver Surfer, the fitness function is designed to measure the 
similarity between the generated sequences and the target protein prop-

erties specified by the user. The fitness function calculates a weighted 
sum of the mean absolute errors (MAEs) between the predicted proper-

ties of the generated sequence and the user-defined target values. The 
MAE for each property is computed as follows:

MAE = 1
𝑛∑|𝑝 − 𝑡 | (4)
𝑖

𝑛
𝑗=1

𝑖𝑗 𝑖𝑗
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where 𝑖 is the index of the property, 𝑛 is the number of residues in 
the sequence, 𝑝𝑖𝑗 is the predicted value of the 𝑖-th property for the 𝑗-th 
residue, and 𝑡𝑖𝑗 is the user-defined target value for the 𝑖-th property at 
the 𝑗-th residue.

The properties considered in the fitness function include various 
physicochemical and structural parameters, such as stability, hydropho-

bicity, molecular weight, and secondary structure composition. For each 
property, the user specifies a desired target value or range at each 
residue position. The fitness function then evaluates how well the gen-

erated sequence matches these target values by calculating the MAE for 
each property.

To account for the relative importance of different properties, the 
fitness function assigns a weight to each property based on user prefer-

ences or predefined settings. The weighted sum of MAEs is calculated 
as follows:

Fitness =
𝑚∑
𝑖=1

𝑤𝑖 ⋅MAE𝑖 (5)

where 𝑚 is the number of properties, 𝑤𝑖 is the weight assigned to the 
𝑖-th property, and MAE𝑖 is the mean absolute error for the 𝑖-th property.

The weights allow users to prioritize certain properties over others. 
For example, if stability is more important than hydrophobicity for a 
specific protein design task, the user can assign a higher weight to the 
stability property. The fitness function will then place more emphasis 
on minimizing the MAE for stability compared to other properties.

In addition to the weighted sum of MAEs, the fitness function also 
incorporates a penalty term for sequences that violate the “frozen” re-

gions specified by the user. The frozen regions are specific portions of 
the sequence that should remain unchanged during the optimization 
process. If a generated sequence modifies any residue in the frozen re-

gions, a large penalty value is added to the fitness score, effectively 
discouraging the selection of such sequences.

The final fitness score is calculated as follows:

Fitness =
𝑚∑
𝑖=1

𝑤𝑖 ⋅MAE𝑖 + 𝜆 ⋅ FrozenPenalty (6)

where 𝜆 is a hyperparameter that controls the strength of the penalty, 
and FrozenPenalty is the number of residues in the frozen regions that 
have been modified.

A lower fitness score indicates a better fit between the generated se-

quence and the target properties. The genetic algorithm in Silver Surfer 
aims to minimize the fitness score by selecting and mutating sequences 
with lower scores.

During the evolutionary process, the genetic algorithm maintains a 
population of candidate sequences. In each generation, the sequences 
with the lowest fitness scores are selected for reproduction and mu-

tation. The mutation operator introduces random changes to the se-

quences while respecting the frozen regions. The modified sequences 
are then evaluated using the fitness function, and the process continues 
for a specified number of generations or until a satisfactory solution is 
found.

By incorporating a comprehensive fitness function that considers 
multiple properties, assigns weights based on user preferences, and pe-

nalizes violations of frozen regions, Silver Surfer enables the generation 
of novel protein sequences that closely match the user-defined target 
properties. This approach allows users to fine-tune the desired charac-

teristics of the generated sequences and explore a vast sequence space 
beyond the existing proteins in the database.

The genetic algorithm employed by Silver Surfer, as shown in Ta-

ble 2, leverages the fitness function to guide the search process ef-

ficiently. The iterative process of selection, mutation, and evaluation 
allows Silver Surfer to continuously improve the generated sequences 
until a satisfactory solution is found or a predefined stopping criterion 
is met.

This cycle repeats until a stopping condition, such as reaching a 
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maximum number of generations or achieving a fitness score below a 
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specified threshold, is met. The use of the weighted MAE-based fitness 
function with frozen region constraints allows Silver Surfer to efficiently 
explore the vast sequence space and generate novel proteins that closely 
match the user-defined target properties while preserving critical re-

gions of the sequence.

3. Results

3.1. Key functionalities and user interface of PS-GO

PS-GO offers a comprehensive suite of functionalities for protein 
search, analysis, and visualization, all accessible through a user-friendly 
web interface. The primary feature of PS-GO is its parametric search 
capability, which allows users to search for proteins based on a combi-

nation of sequence, structure, and physicochemical properties. Users 
can specify search criteria using a flexible parameter selection tool, 
which includes options for amino acid composition, hydrophobicity, 
secondary structure propensities, and various geometric features.

In addition to parametric search, PS-GO also supports natural lan-

guage search, enabling users to query proteins using plain text descrip-

tions of desired properties or functions. The natural language search 
engine employs advanced NLP techniques to interpret user queries and 
retrieve relevant protein entries from the database.

Fig. 4 showcases PS-GO’s user-friendly search interface, which al-

lows users to easily input their search criteria and view the resulting 
protein information.

With PS-GO, users can visualize protein 3D structures directly from 
the search results page. The structure viewer provides various repre-

sentation options, such as cartoon, surface, and ball-and-stick models. 
Users can interact with the displayed structure by rotating, zooming, 
and panning to examine it from different angles.

Furthermore, PS-GO integrates the PROFASA (Protein Fragment and 
Structure Analysis) tool for protein structure visualization and analysis. 
PROFASA is a web-based platform that offers a range of functionalities 
for exploring and understanding protein structures [26].

PROFASA’s analysis tools, accessible through PS-GO, enable users to 
investigate protein structural features in detail. These tools include sec-

ondary structure analysis, structural alignment, binding site prediction, 
and structural superposition.

Fig. 5 illustrates an example of protein structure visualization and 
analysis using PS-GO and PROFASA.

PS-GO efficiently calculates a range of protein parameters, including 
RC.Score, hydrophobicity, instability, molecular size, isoelectric point, 
and solvent accessibility. These parameters offer valuable insights into 
the physicochemical properties and potential functions of proteins.

The calculated parameters are presented in an intuitive and visually 
appealing manner within PS-GO’s interface (Fig. 4). Users can easily 
view and analyze the parameter values, facilitating the interpretation 
of protein characteristics and the identification of proteins with desired 
properties.

3.2. Advantages and potential impact of PS-GO

PS-GO introduces a novel protein search framework based on para-

metric protein design principles. By integrating sequence, structure, and 
physicochemical property information, PS-GO provides users with a 
unique perspective to search and explore proteins. Different from ex-

isting methods that rely on sequence or structure alignment, PS-GO’s 
parametric search approach allows users to find proteins that satisfy 
specific criteria based on a combination of various properties. This inno-

vative search paradigm complements traditional methods by enabling 
the discovery of proteins that might be difficult to identify using se-

quence or structure similarity alone.

One of the major strengths of PS-GO is its flexibility and customiz-

ability. The parametric search engine allows users to define their own 

search criteria and parameter combinations, tailoring the search process 
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Table 2

The genetic algorithm employed by Silver Surfer.

Initial Population: The process begins with a set of protein sequences, which can be randomly generated or seeded from existing 
sequences. Each sequence is represented as a string over a finite alphabet, in the case of protein sequences, this consists of 20 
amino acids. All sequences constitute a continuous individual pool.

Fitness Function: A fitness function is used to evaluate the quality of each sequence. This function uses a weighted sum of MAEs 
and a penalty for frozen region violations to measure how well the protein sequence performs. Based on the results of the fitness 
function evaluation, each sequence is assigned a fitness score.

Selection and Mutation: In each iteration, the sequences with the lowest fitness scores are selected from the individual pool for 
reproduction and mutation. The selected sequences undergo mutation operations, generating a series of new sequences. During 
the mutation process, certain parts can be set as “frozen”, remaining unchanged.

Sequence Evaluation: The newly generated sequences are evaluated using the fitness function, and their fitness scores are 
calculated.

Population Update: The new sequences are added to the population, replacing the sequences with higher fitness scores. The size 
of the population remains constant throughout the iterations.

Iterative Process: The process continues to iterate, selecting the sequences with the lowest fitness scores for mutation and 
updating the population with the newly generated sequences. This process goes on until a sequence meeting the specified criteria 
is found or a predefined number of iterations is reached.

Fig. 4. PS-GO protein search engine. A. Parametric search page, select the corresponding parameter and give the filter range to search. B. Search result list, showing 
the model picture, sequence, and parameter of the protein.
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Fig. 5. Structural visualization of protein models and graphical representation of parameters using PS-GO and PROFASA.
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Table 3

Comparison of features and characteristics between PS-GO and other protein search methods.

Method Search Mechanism Protein Representation Flexibility Interpretability

PS-GO Parametric protein 
design-based

Integration of sequence, structure, 
and physicochemical properties

Allows user-defined parameter 
combinations and search criteria

Provides insights into key 
parameters contributing to similarity 
or difference

Dali [14] Structure-based 3D coordinates of protein 
backbone

Limited to structural similarity Focuses on global structural 
alignment

Foldseek [36] Structure-based 3D coordinates of protein 
backbone

Allows different distance measures 
and alignment modes

Provides local alignment information

PSI-BLAST [37] Sequence-based Amino acid sequence Allows iterative search and 
position-specific scoring matrices

Focuses on sequence similarity

Table 4

The average performance of PS-GO in handling different tasks.

Task Average Operation Time (s)

Parametric Search 0.84

Natural Language Search 1.62

New Sequence Generation 5.10

Parameter Calculation 6.4 s per 50 items
to specific research questions or application scenarios. This flexibility 
empowers researchers to explore protein relationships from different 
angles and to uncover novel insights that might be missed by fixed, pre-

defined search methods.

Another key advantage of PS-GO is its interpretability. By providing 
detailed parameter profiles and visualizations, PS-GO helps users un-

derstand the key factors contributing to protein similarity and function. 
This interpretability is particularly valuable for tasks such as protein 
function prediction, rational protein design, and evolutionary analysis, 
where understanding the underlying mechanisms are crucial.

Table 3 provides a summary comparison of the features and charac-

teristics of PS-GO and other representative protein search methods.

The modular architecture of PS-GO also makes it a valuable platform 
for integrating new protein tools. As new methods for protein represen-

tation and comparison are developed, they can be easily incorporated 
into the PS-GO framework, allowing researchers to complement their 
work.

3.3. Performance evaluation

To assess the performance of PS-GO in handling various tasks, we 
conducted benchmark tests using a script that iteratively executes para-

metric searches, natural language searches, and new sequence gener-

ation functions for 100 times. The benchmark script is available at 
github (https://github .com /Atobelin /psgo -benchmarking). In each it-

eration, we randomly generated or selected different parameter values, 
query statements, and target conditions to simulate the diversity of real-

world usage scenarios. The test results are presented in Table 4.

For the parametric search task, PS-GO achieves an average response 
time of 0.84 seconds. This demonstrates that PS-GO is capable of pro-

cessing complex multi-parameter queries within sub-second latency, ex-

hibiting exceptional retrieval efficiency. Even under dynamic variations 
of parameter values, PS-GO maintains stable and rapid performance, 
which can be attributed to our optimized indexing structure and query 
algorithms.

In the natural language search task, PS-GO yields an average re-

sponse time of 1.62 seconds. Although natural language queries involve 
more semantic understanding and matching computations, PS-GO still 
manages to return precise results within 2 seconds. This is primarily due 
to the advanced natural language processing techniques we employ, 
such as deep learning-based semantic representations and intelligent 
query expansion, enabling PS-GO to efficiently handle natural language 
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queries.
Regarding the new sequence generation task, we conducted 50 iter-

ations of testing, resulting in an average operation time of 5.10 seconds. 
Generating new sequences is a computationally intensive task that re-

quires searching and optimizing within a vast sequence space, thus 
taking relatively longer time. Nevertheless, PS-GO completes the gen-

eration of new sequences within a short period, owing to the heuristic 
search strategies and parallel computing techniques we adopt, which 
significantly accelerate the sequence generation process.

We did not include benchmark tests for the parameter calculation 
task. This is because parameter calculation is a one-time operation 
performed during database construction, mainly involving feature ex-

traction and statistical analysis on large-scale protein data. Although 
computationally intensive, this process can be efficiently completed in 
the background through preprocessing and caching optimizations. Once 
the parameter calculation is finished, subsequent search and analysis 
tasks can directly utilize the pre-computed results without repetitive 
calculations. Therefore, assessing the performance of parameter calcu-

lation is less relevant to evaluating PS-GO’s real-time responsiveness 
and user experience.

Overall, the benchmark test results demonstrate that PS-GO exhibits 
outstanding performance and stability in key tasks such as parametric 
search, natural language search, and new sequence generation. Even 
under dynamically changing query conditions, PS-GO consistently de-

livers efficient service, providing researchers with a fast, reliable, and 
user-friendly platform for protein analysis, which has the potential to 
greatly enhance the efficiency and depth of protein research.

4. Discussion and outlook

Parametric protein design has emerged as a powerful technique for 
precisely manipulating protein structure and function by computation-

ally adjusting key parameters in protein molecules [38]. This approach 
has gained significant traction across multiple fields, including drug dis-

covery, biotechnology, and synthetic biology, owing to rapid advance-

ments in computer science and experimental techniques [39]. However, 
the full potential of parametric protein design is often hindered by the 
limitations of traditional protein structure databases, which face chal-

lenges in search efficiency and computational complexity.

One major hurdle is the time-consuming data processing and sig-

nificant computational power required to search through vast protein 
databases [18]. Additionally, identifying proteins with substantial se-

quence differences using sequence-based methods or discerning the 

functional similarity of proteins with varying sequences using structure-

https://github.com/Atobelin/psgo-benchmarking
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based methods can be complex and computationally intensive [19]. 
These challenges underscore the need for an enhanced, accurate, and 
adaptable search strategy to complement parametric protein design ef-

forts.

Parametric protein search engines, such as PS-GO, offer a promis-

ing solution to these challenges by incorporating advanced algorithms, 
optimizing computational resources, and improving protein feature un-

derstanding. These search strategies aim to efficiently navigate the vast 
protein sequence and structure space, enabling researchers to quickly 
identify promising candidates for further optimization through para-

metric protein search.

By integrating parametric protein search with parametric protein 
design, researchers can unlock the untapped potential of these tech-

nologies and fuel research progress in related fields. The development 
of efficient protein search engines not only enhances the speed and 
efficiency of protein design but also opens up new avenues for ground-

breaking discoveries in bioinformatics and computational biology.

In essence, the symbiotic relationship between parametric protein 
design and parametric protein search holds the key to overcoming the 
limitations of traditional protein structure databases and accelerating 
innovation in protein engineering. As these technologies continue to 
evolve and integrate, they promise to revolutionize our understanding 
of proteins and their applications in various domains.

PS-GO, as a search method based on parametric protein design, has 
significant advantages over traditional protein structure databases in 
the following areas:

• Highly accurate search capabilities: PS-GO allows users to spec-

ify specific parameters and constraints to meet different research 
needs through a parametric protein design approach. This precise 
search capability improves control over protein structure and func-

tion and is of great academic value to the field of protein design.

• Optimized computing efficiency: Using parallel computing and 
fast algorithms, PS-GO is able to process a large number of pro-

tein structure parameters in a short time. Compared to traditional 
search methods, PS-GO’s computational efficiency is significantly 
improved, speeding up the experimental process.

• User-friendly interface and customization: PS-GO provides an 
intuitive graphical interface and natural language processing tech-

nology for easy user input and interaction. At the same time, it 
allows users to customize parameters and optimization conditions 
according to their needs, adapting to various research requirements 
and application scenarios.

• Integration with other bioinformatics tools: Combined with the 
Silver Surfer service, PS-GO supports users to freeze partial residues 
of protein sequences and integrates with PROFASA to form a com-

plete protein design and research ecosystem with other bioinfor-

matics tools and data resources, providing a one-stop protein de-

sign and research platform.

Despite its many significant advantages, PS-GO has a number of lim-

itations in practical application. PS-GO has a relatively high demand 
for computational resources, which requires a certain level of compu-

tational power from the user. In particular, more accurate algorithm 
design and powerful computational support are required when dealing 
with complex protein structure parameters. The performance and ac-

curacy of PS-GO are limited by the quality and quantity of the protein 
database. If specific types of proteins are missing from the database, or 
if there is incorrect or inaccurate information, the performance and ac-

curacy of PS-GO may be compromised. The number of parameters that 
PS-GO can currently handle is still limited, which means that continued 
research and development of new algorithms is required to broaden the 
range of computable parameters.

As shown in Fig. 6, in order to continuously improve the efficiency 
and accuracy of PS-GO, the future development direction can include 
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Fig. 6. PS-GO’s future development will focus on refining algorithms, expanding 
the database, and using advanced computing technologies to optimize protein 
design performance.

In order to improve the search accuracy of PS-GO, algorithms can be 
optimized for specific types of parameters in the future. This includes 
the introduction of more advanced machine learning and artificial intel-

ligence techniques, such as deep learning, as a means of automatically 
learning and recognizing complex patterns in proteins to improve the 
effectiveness and accuracy of parametric design. Finer parametric de-

sign methods can help users better control the structure and function of 
proteins to meet different research needs.

Meanwhile, PS-GO’s database can be expanded by exchanging data 
with other bioinformatics databases or automatically extracting protein 
data from literature and the web through data mining and machine 
learning methods. This expansion can provide richer and more accurate 
protein search results. The expansion and management of the database 
can be done by applying advanced database management systems and 
data mining techniques, which can further improve the efficiency and 
accuracy of the search.

Since PS-GO needs to deal with a large amount of protein data 
and complex computational tasks, the combination of cloud comput-

ing and distributed computing technologies will greatly enhance its 
computational capability. Specifically, cloud computing provides elastic 
computing resources that can be dynamically adjusted to meet differ-

ent computational needs. Distributed computing, on the other hand, 
can break down large-scale data processing tasks to multiple comput-

ers, greatly improving the efficiency and stability of computation.

In addition, PS-GO plans to initiate deeper collaborations with 
more computational biology tools to enhance its search capabilities 
and broaden the scope of its services. Among them, collaboration with 
protein-related tools will be especially critical. For example, with the 
help of more protein structure prediction tools, PS-GO can design new 
protein sequences while at the same time predicting and displaying the 
many possible 3D structures of the protein. Through integration with 
protein function annotation tools, PS-GO can further provide informa-

tion on the possible biological functions of proteins and their roles in 
biological processes. Integration with protein interaction network anal-

ysis tools will help PS-GO to demonstrate the interaction of proteins 
with other molecules in the search results, helping researchers to under-

stand the behavior and function of proteins in cells. Such cooperation 
and integration will not only provide users with more comprehensive 
information, but also improve the search accuracy of PS-GO.

The PS-GO parametric protein search engine, while not directly en-

gaging in drug development, protein interaction studies, or bioengineer-

ing, serves as a pivotal tool in expediting and refining protein research 
across these disciplines. It significantly impacts the pharmaceutical field 
by enhancing the efficiency of identifying proteins for early-stage drug 
discovery, even though it doesn’t discover drug molecules itself. In 
the bioengineering sector, PS-GO proves instrumental by enabling re-

searchers to find proteins with specific functions and properties relevant 
to their work, albeit not designing proteins or directly supporting syn-

thetic biology. For bioinformatics and structural biology, PS-GO boosts 
research progress in areas like protein folding, protein dynamics, and 
disease-related mutations, not through direct contributions to protein 
structure prediction or functional annotation, but by facilitating the 

rapid location of proteins of interest. Hence, PS-GO, with its ability 
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to swiftly locate relevant proteins based on specified parameters, indi-

rectly strengthens protein research across various domains.

In conclusion, PS-GO, as an innovative parametric protein search 
engine, is expected to play a significant role in various fields. In the 
biomedical field, PS-GO can accelerate the process of drug screening 
and design, helping researchers quickly find protein molecules with spe-

cific functions, thereby shortening the drug development cycle and re-

ducing research and development costs. In the field of synthetic biology, 
PS-GO can assist in designing entirely new artificial protein molecules, 
creating novel functions and features that do not exist in nature, thus 
promoting the development of synthetic biology. In proteomics and 
structural biology research, PS-GO can improve the efficiency of protein 
database retrieval and homology analysis, deepening the understand-

ing of the relationship between protein structure and function. Through 
continuous optimization and upgrading, PS-GO is expected to become 
an important research tool in the life sciences.
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[19] Gligorijević V, Renfrew PD, Kosciolek T, Leman JK, Berenberg D, Vatanen T, et 
al. Structure-based protein function prediction using graph convolutional networks. 
Nat Commun 2021;12(1):3168.

[20] Schnoes AM, Brown SD, Dodevski I, Babbitt PC. Annotation error in public 
databases: misannotation of molecular function in enzyme superfamilies. PLoS Com-

put Biol 2009;5(12):e1000605.

[21] Pearson WR. An introduction to sequence similarity (“homology”) searching. Curr 
Protoc Bioinform 2013;42(1):3.1.1.

[22] Aderinwale T, Bharadwaj V, Christoffer C, Terashi G, Zhang Z, Jahandideh R, et al. 
Real-time structure search and structure classification for alphafold protein models. 
Commun Biol 2022;5(1):316.

[23] Xia C, Feng S-H, Xia Y, Pan X, Shen H-B. Fast protein structure comparison through 
effective representation learning with contrastive graph neural networks. PLoS Com-

put Biol 2022;18(3):e1009986.

[24] Lee J-W, Won J-H, Jeon S, Choo Y, Yeon Y, Oh J-S, et al. Deepfold: enhancing 
protein structure prediction through optimized loss functions, improved template 
features, and re-optimized energy function. Bioinformatics 2023;39(12):btad712.

[25] Tilahun S, Jeong MJ, Choi HR, Baek MW, Hong JS, Jeong CS. Prestorage high 
co2 and 1-mcp treatment reduce chilling injury, prolong storability, and maintain 
sensory qualities and antioxidant activities of “madoka” peach fruit. Front Nutr 
2022;9:903352.

[26] Mi Y, Marcu S-B, Tabirca S, Yallapragada VV. Profasa-a web-based protein frag-

ment and structure analysis workstation. Front Bioeng Biotechnol 2023;11:1192094. 
https://doi .org /10 .3389 /fbioe .2023 .1192094.

[27] Kapcha LH, Rossky PJ. A simple atomic-level hydrophobicity scale reveals protein 
interfacial structure. J Mol Biol 2014;426(2):484–98.

[28] Kumar TA. Cfssp: Chou and fasman secondary structure prediction server. Wide 
Spectrum 2013;1(9):15–9.

[29] Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: 
freely available python tools for computational molecular biology and bioinformat-

ics. Bioinformatics 2009;25(11):1422.

[30] Guruprasad K, Reddy BB, Pandit MW. Correlation between stability of a protein 
and its dipeptide composition: a novel approach for predicting in vivo stability of a 
protein from its primary sequence. Protein Eng Des Sel 1990;4(2):155–61.

[31] Zacharias J, Knapp E-W. Protein secondary structure classification revisited: pro-

cessing dssp information with pssc. J Chem Inf Model 2014;54(7):2166–79.

[32] Ding J, Arnold E. Naccess; 2006.

[33] Achiam J, Adler S, Agarwal S, Ahmad L, Akkaya I, Aleman FL, et al. Gpt-4 technical 
report, arXiv preprint. arXiv :2303 .08774, 2023.

[34] Dahlgaard S, Knudsen M, Thorup M. Practical hash functions for similarity estima-

tion and dimensionality reduction. Adv Neural Inf Process Syst 2017;30.

[35] Yellavula N. Building RESTful Web services with Go: Learn how to build powerful 
RESTful APIs with Golang that scale gracefully. Packt Publishing Ltd; 2017.

[36] van Kempen M, Kim SS, Tumescheit C, Mirdita M, Gilchrist CL, Söding J, et al. 
Foldseek: fast and accurate protein structure search, Biorxiv 2022, 2022–02.

[37] Bhagwat M, Aravind L. Psi-blast tutorial. Comp Genomics 2008:177–86.

[38] Korendovych IV, DeGrado WF. De novo protein design, a retrospective. Q Rev Bio-

phys 2020;53:e3.

[39] Wei W, Cherukupalli S, Jing L, Liu X, Zhan P. Fsp3: A new parameter for drug-

likeness. Drug Discov Today 2020;25(10):1839–45.
1509

https://doi.org/10.1016/j.csbj.2024.04.003
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1016/S0022-2836(05)80134-2
https://doi.org/10.1038/s41580-019-0163-x
https://doi.org/10.1021/acs.jctc.7b00125
https://doi.org/10.1021/acs.jctc.7b00125
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib78B86DA21947FED3D09CD0D1681ABA18s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib78B86DA21947FED3D09CD0D1681ABA18s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib78B86DA21947FED3D09CD0D1681ABA18s1
https://doi.org/10.1126/science.1219021
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibDD7B86B9BA3893B5CD2ABE59A7B8158Cs1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibDD7B86B9BA3893B5CD2ABE59A7B8158Cs1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibDD7B86B9BA3893B5CD2ABE59A7B8158Cs1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibC6DEFFEAAF242D84D47D6E8BFF7D76FCs1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibC6DEFFEAAF242D84D47D6E8BFF7D76FCs1
https://doi.org/10.1002/prot.25825
https://doi.org/10.1002/prot.25825
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib1410320FF4FF8BDF098AD74988E6A0F9s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib1410320FF4FF8BDF098AD74988E6A0F9s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib1410320FF4FF8BDF098AD74988E6A0F9s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib93D337AC6D956DB2B1D45BBEE936B125s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib93D337AC6D956DB2B1D45BBEE936B125s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib7C2E5001FFE5A6A0CC5AC591E70A9A04s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib7C2E5001FFE5A6A0CC5AC591E70A9A04s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibAFE30BB4FB8E4D98B0BF11E484FF6AD6s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibAFE30BB4FB8E4D98B0BF11E484FF6AD6s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibAFE30BB4FB8E4D98B0BF11E484FF6AD6s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib48E942E326736EA2865C1F5AA773BE94s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib4249A2868A7EAB488A09D84934DEA331s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib4249A2868A7EAB488A09D84934DEA331s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib06D9E2809ECA5BF8321C07DCF95518C6s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib06D9E2809ECA5BF8321C07DCF95518C6s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibA4EB19273D0047584F4CC8412D9301E6s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibA4EB19273D0047584F4CC8412D9301E6s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib942368732F6CF5BA7957C013C28738ADs1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib942368732F6CF5BA7957C013C28738ADs1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib3D932334D2816CF74C238262BC737EF7s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib3D932334D2816CF74C238262BC737EF7s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib3D932334D2816CF74C238262BC737EF7s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibCB0082B05F711E5DFD6356197B27DB00s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibCB0082B05F711E5DFD6356197B27DB00s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibCB0082B05F711E5DFD6356197B27DB00s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib25B063F29A183F2993EA3D804F471E38s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib25B063F29A183F2993EA3D804F471E38s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibB58060E1B68F59FF8AB75CBE4F19B230s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibB58060E1B68F59FF8AB75CBE4F19B230s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibB58060E1B68F59FF8AB75CBE4F19B230s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib672CB81E974A2A5DE67E9191BA4A1F21s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib672CB81E974A2A5DE67E9191BA4A1F21s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib672CB81E974A2A5DE67E9191BA4A1F21s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibF2D7EC4D4E9D588AC47FAC56865F8E3Fs1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibF2D7EC4D4E9D588AC47FAC56865F8E3Fs1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibF2D7EC4D4E9D588AC47FAC56865F8E3Fs1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib2E4C638F21EB6C9054A23BE0B6C9A203s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib2E4C638F21EB6C9054A23BE0B6C9A203s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib2E4C638F21EB6C9054A23BE0B6C9A203s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib2E4C638F21EB6C9054A23BE0B6C9A203s1
https://doi.org/10.3389/fbioe.2023.1192094
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibD54DC88E5E4F110786F91999BDEEECC6s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibD54DC88E5E4F110786F91999BDEEECC6s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib427D92A2AA4312FE3486BAC2E4D92C57s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib427D92A2AA4312FE3486BAC2E4D92C57s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib5B6372EC12E9D2579F5B8925691E3F78s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib5B6372EC12E9D2579F5B8925691E3F78s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib5B6372EC12E9D2579F5B8925691E3F78s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib8789705CEC2C5FAD006A151BBDCE2E2Bs1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib8789705CEC2C5FAD006A151BBDCE2E2Bs1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib8789705CEC2C5FAD006A151BBDCE2E2Bs1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib08CD2F508DC7FE469DB05C7F6CE90700s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib08CD2F508DC7FE469DB05C7F6CE90700s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibF3C2B524FDE593539793B90231D11727s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibDA9CDA5343842AA89CB2B312230C560Bs1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibDA9CDA5343842AA89CB2B312230C560Bs1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib5FE133701B2CA56138F4B2D734722799s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib5FE133701B2CA56138F4B2D734722799s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibA95EFE22BBBBE2ACF99CDA7238266FECs1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibA95EFE22BBBBE2ACF99CDA7238266FECs1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibC177A3C892324E79A4BB1E5F49315A1Fs1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibC177A3C892324E79A4BB1E5F49315A1Fs1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bibAA89670A3FC0C6B62BC818B68240B474s1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib6F57B7EAE896921ABFB9E4B44A59DD3Bs1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib6F57B7EAE896921ABFB9E4B44A59DD3Bs1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib4A6B3E30D5BC31E3F4849D1EC28741DEs1
http://refhub.elsevier.com/S2001-0370(24)00088-6/bib4A6B3E30D5BC31E3F4849D1EC28741DEs1

	PS-GO parametric protein search engine
	1 Introduction
	1.1 Topology of protein landscape
	1.2 Parametric protein design
	1.3 Challenges and bottlenecks in searching the protein space
	1.4 PS-GO - transforming protein exploration with a breakthrough search method
	1.5 Parametric search strategy

	2 Methods
	2.1 Parametric search algorithm
	2.2 Protein database construction
	2.3 Silver surfer

	3 Results
	3.1 Key functionalities and user interface of PS-GO
	3.2 Advantages and potential impact of PS-GO
	3.3 Performance evaluation

	4 Discussion and outlook
	5 Funding
	Declaration of competing interest
	Appendix A Supplementary material
	References


