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Abstract: Cellulose is the most abundant and widely used biopolymer on earth and can be produced
by both plants and micro-organisms. Among bacterial cellulose (BC)-producing bacteria, the strains
in genus Komagataeibacter have attracted wide attention due to their particular ability in furthering
BC production. Our previous study reported a new strain of genus Komagataeibacter from a vinegar
factory. To evaluate its capacity for BC production from different carbon sources, the present study
subjected the strain to media spiked with 2% acetate, ethanol, fructose, glucose, lactose, mannitol or
sucrose. Then the BC productivity, BC characteristics and biochemical transformation pathways of
various carbon sources were fully investigated. After 14 days of incubation, strain W1 produced
0.040–1.529 g L−1 BC, the highest yield being observed in fructose. Unlike BC yields, the morphology
and microfibrils of BCs from different carbon sources were similar, with an average diameter of
35–50 nm. X-ray diffraction analysis showed that all membranes produced from various carbon
sources had 1–3 typical diffraction peaks, and the highest crystallinity (i.e., 90%) was found for BC
produced from mannitol. Similarly, several typical spectra bands obtained by Fourier transform
infrared spectroscopy were similar for the BCs produced from different carbon sources, as was the Iα

fraction. The genome annotation and Kyoto Encyclopedia of Genes and Genomes analysis revealed
that the biochemical transformation pathways associated with the utilization of and BC production
from fructose, glucose, glycerol, and mannitol were found in strain W1, but this was not the case
for other carbon sources. Our data provides suggestions for further investigations of strain W1 to
produce BC by using low molecular weight sugars and gives clues to understand how this strain
produces BC based on metabolic pathway analysis.
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1. Introduction

Cellulose is the most abundant and widely used biopolymer on earth, most of which is produced
by plants [1,2]. In addition to plant origin, cellulose is also naturally produced by micro-organisms
including bacteria, fungi, and algae [3]. Due to its unique properties such as high purity, high
crystallinity, high water-capacity, low production cost, and good biocompatibility, the cellulose
produced by bacteria (i.e., bacterial cellulose, BC) has been widely used in the preparation of food
hydrocolloids, high-strength recycled paper, cosmetic moisturizer, and medical materials [4–7]. By an
additional modification, BC-based materials can also be used to prepare adsorption or filter membranes
for pollutant removal from aqueous solution [8,9] or to prepare electrochemical materials with
high-performances [5].

In the presence of glucokinase, phosphoglucomutase and uridine triphosphate (UTP)-glucose-
1-phosphate uridylyltransferase, glucose is transformed to glucose-6-phosphate, glucose-1-phosphate,
uridine diphosphate (UDP)-glucose, and finally to unbranched β-1,4-D-glucan (i.e., BC) with the aid
of cellulose synthases [10,11]. Besides glucose, all substrates which can be transformed to glucose are
theoretically available for BC production. For example, four strains of Komagataeibacter xylinus studied by
Singhsa et al. [12] showed great ability for BC production on using fructose, lactose, maltitol, sucralose,
and xylitol. Other substrates such as glycerol, sucrose, and galactose are also good carbon sources for BC
production [13–15]. Unlike sugars or their derivatives, using ethanol and acetate as the substrates for BC
production has been hardly reported [16]. More often, both ethanol and acetate are spiked in media to
enhance BC production by improving adenosine triphosphate (ATP) production, which is responsible for
energy supply in the tricarboxylic acid (TCA) cycle and sugar metabolisms. Specifically, these processes
are achieved by promoting the activities of glucokinase and fructokinase for BC production and inhibiting
the activities of gluconokinase and glucose-6-phosphate dehydrogenase in pentose phosphate metabolism
for energy production [17–22].

Since the carbon sources have different molecular weights, chemical structure, and bioavailability,
it can result in varied BC production rates and structural characteristics [12,23]. Among reported
carbon sources, glucose is considered the main source for BC production, while fructose produces
low yields of BC [14,16]. However, BC production abilities in different bacteria vary significantly,
as do the BC properties [12,14,24–26]. Moreover, the existing studies mostly focus on the utilization of
carbon sources rather than associated transformation mechanisms. Therefore, having an overview of
the utilization efficiency of different carbon sources and the associated biochemical transformation
pathways in a given BC-producing bacterium can provide good possibilities for optimization and
improvement of BC production.

Our previous study reported a BC producer Komagataeibacter sp. W1, and the BC morphology,
fibril distribution, purity, and functional groups were well characterized [3]. To understand how the
strain synthesized BC in the presence of glucose, the draft genome sequence of W1 and the associated
genes were also analyzed [3]. However, the BC synthesis using other carbon sources except for glucose
is still unknown. In this work, the carbon sources, including acetate, ethanol, fructose, glycerol, lactose,
mannitol, and sucrose were used to evaluate their potentials in BC production as compared to glucose.
The full aims were to (1) compare BC productivity and characteristics by using different carbon sources;
(2) reveal the corresponding biochemical pathways for the transformation of the above carbon sources.

2. Materials and Methods

2.1. Micro-Organism, Culture Media and Cultivation

Komagataeibacter sp. W1 used in this study was isolated from a vinegar fermentation tank in
Quanzhou, China [3].

Hestrin–Schramm (HS) medium was used as the basic medium, which consisted of 2% glucose
(C6H8O7·H2O), 0.5% yeast extract, 0.5% peptone, 0.68% Na2HPO4·12H2O, 0.115% C6H8O7·H2O and
0.051% MgSO4·7H2O [27]. The medium pH was adjusted to 6.0 using 1.0 M NaOH or HCl.
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Before testing the effects of carbon sources on BC production in strain W1, the bacteria were
pre-cultured in basic medium at 30 ◦C for 24 h under agitated condition (180 rpm) and at 30 ◦C for
7 days under static conditions. After that, the Erlenmeyer flask was vibrated rapidly to separate the
bacteria from BC membranes. The established suspension was concentrated at 8000 g for 5 min to
remove the residual glucose, followed by dilution in sterile Milli-Q to a total volume of 10 mL. Aliquots
of re-suspension were transferred to a new 250 mL Erlenmeyer flask, which contained 100 mL HS
medium with a final OD600 of 0.01. To evaluate the BC productivities in the media spiked with different
carbon sources, glucose in HS medium was replaced with acetate (C2H4O2), ethanol (C2H6O), fructose
(C6H12O6), glycerol (C3H8O3), lactose (C12H22O11), mannitol (C6H14O6), and sucrose (C12H22O11),
respectively. The structures of various carbon sources used in this study are given in Figure S1.
All setups were incubated at 30 ◦C for 14 days under static conditions.

2.2. BC Purification and Yield Calculation

The BC on the HS medium surface was collected and washed with Milli-Q water to remove
medium components. To eliminate bacterial cells inside the BC membranes or on the BC surface,
the samples were boiled at 100 ◦C for 2 h in a 0.1 M NaOH bath and anther 2 h in a Milli-Q water
bath [3]. The pre-treated BC was soaked in Milli-Q water overnight at room temperature to remove
all chemicals. After 24 h of storage at −80 ◦C, the BC was freeze-dried (FreeZone 6 plus, Labconco,
Kansas City, MI, USA) for 24 h [3] and then, weighed.

BC production was recorded as the dry weight within the volume of medium in liter (g L–1) [28].
The BC yield was calculated by Equation (1):

Yield (%) =
mce

mca
×100 (1)

where mce is dry weight of BC (g) and mca is the weight of carbon source spiked in media (g).

2.3. BC Characterization

Scanning electron microscopy (SEM, Quanta™ 250 FEG, FEI, Hillsboro, OR, USA), X-ray diffraction
(XRD, Bruker D8 ADVANCE, Karlsruhe, Germany) and Fourier transform infrared (FTIR, Thermo
Scientific Nicolet iS5, Waltham, MA, USA) spectroscopy were used to characterize BC.

Before analysis, the dried BC was treated by spray-gold and observed by SEM with the spot of 3.0,
high voltage of 15 KeV and magnification of 2000×. Subsequently, 100 nanofibrils of the BC were used
for diameter calculation by using a Nano Measurer 1.2 (Fudan University, Shanghai, China). In this
study, each 10 nm was set as a group and the data were presented as % of total nanofibrils. To have a
full prediction of theoretical diameter distribution, the statistical histograms were plotted by using
OriginPro 9.0 (OriginLab Corporation, Northampton, MA, USA).

X-ray diffraction was performed by using nickel filtered copper Ka radiation (λ = 0.15406 nm) at a
voltage of 40 kV and a filament emission of 30 mA, with 0.1◦ step, from 4◦ to 70◦ (2θ, angle). A silicon
zero background plate was used to avoid any peak resulting from the sample holder. The established
sample holder position and both of the holder and silicon zero background plate were used for
XRD analysis [23]. The d-spacing between the crystal planes and an apparent crystal size (ACS)
approximation were determined using Bragg’s law and Scherrer’s formula by Equations (2) and (3),
respectively [2]:

d =
λ

2 sin θ
(2)

ACS =
0.9λ

FWHM cos θ
(3)

where λ is the wavelength of the X-rays, θ is the angle between the plane and the diffracted or incident
beam (i.e., Bragg’s angle), and FWHM is the width of the peak at half the maximum height. FWHM was
obtained by Integrated Peaks analysis based on the Peaks and Baseline module in OriginPro 9.0.
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Crystallinity index (C.I.) and percentage of crystallinity (% crystalline) of BC were calculated by
Equations (4) and (5) [29]:

C.I. =
Ima − Iam

Ima
(4)

% crystalline =
Ima

Ima + Iam
×100 (5)

where Ima is the maximum diffraction intensity of the lattice peak between 2θ of 22◦ to 23◦ and Iam is
the minimum diffraction intensity of the amorphous peak (i.e., baseline) between 2θ of 18◦ to 19◦.

In addition to SEM and XRD analyses, FTIR was also used to evaluate the BC characteristics based
on information of the functional groups and peak annotations. Specifically, attenuated total refection
(ATR) mode with 32 scans per measurement and a resolution 0.5 cm−1 in the range of 4000–400 cm−1

was carried out. Baselines for each sample spectrum were normalized and cellulose Iα content was
calculated by Equation (6) [30]:

fα
IR =

Aα

Aα + Aβ
(6)

where Aα and Aβ are the integrated intensities (i.e., the peak heights at 750 and 710 cm−1) of the
contributions from celluloses Iα and Iβ, respectively.

2.4. Analysis of Biochemical Transformation Pathways Associated with Carbon Source Metabolisms

To have a full insight into the mechanisms of carbon source transformation and BC biosynthesis,
all associated open reading frames (orfs) based on gene prediction and Kyoto Encyclopedia of Genes
and Genomes (KEGG, Kyoto, Japan) pathway annotation were summarized. The information of
the draft genome sequence and functional genes for this aim were given in the Sequence Read
Archive (SRA) database (National Center for Biotechnology Information, NCBI, Bethesda, MD,
USA) with the accession numbers PRJNA388252 (BioProject number), SAMN07173612 (BioSample
number), and SRP108180 (SRA Study number), and the supplementary data of our previous study [3].
A comprehensive analysis was conducted by incorporating the key metabolic intermediates and
associated enzymes responsible for carbon sources transformation and BC biosynthesis in different
KEGG pathways. The schematic diagram of carbon metabolisms and BC biosynthesis pathways in
Komagataeibacter sp. W1 was plotted by using Microsoft PowerPoint 2016.

2.5. Statistical Analysis

All experiments were conducted in triplicate. The data are presented as the mean value of
the triplicate with standard error. Significant differences were determined according to two-way
analysis of variance (ANOVA) by Tukey’s multiple comparisons test at p ≤ 0.05 using GraphPad Prism
(Release 6.0, La Jolla, CA, USA).

3. Results and Discussions

3.1. BC Production from Various Carbon Sources

BC production in micro-organisms is an interesting trait as this process consumes lots of energy
to produce biomaterials rather than resulting in cell multiplication [31]. The possible purposes of
BC production are to acquire oxygen, prevent ultraviolet damage, enhance antibiotic resistance,
hold moisture, and maintain host-bacteria interactions [32–34]. Because glucose is the precursor for
cellulose synthesis, all compounds that can be transformed to glucose are capable of BC production.
Selection of the carbon substrates is one of the main requirements for efficient BC production [34].
Based on our previous study [3], the interest here in this study was to evaluate the potential of strain
W1 in utilization of different carbon sources and subsequent BC production.
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After 14 days of incubation at 30 ◦C, the BCs on the surface of media containing acetate, ethanol,
fructose, glucose, glycerol, lactose, mannitol and sucrose were collected and pre-treated as previously
described (see details in Section 2.2). As shown in Figure 1, all eight carbon sources used in this study
produced BC; among which, fructose, glucose, glycerol and mannitol produced thick membranes,
but the others produced irregular and thin membranes (Figure 1A). After freeze-drying, the membranes
produced from fructose, glucose, glycerol, and mannitol had a smooth surface and good mechanical
properties of typical BC, as did that of sucrose although the membrane content in this group was much
lower than that in the former ones (Figure 1B). However, the dried BC membranes produced from
acetate, ethanol and lactose were fragile and tough (Figure 1B), indicating that the composition and
structure of the BCs might be different.
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Figure 1. Bacterial cellulose (BC) production by Komagataeibacter sp. W1 grown in media spiked with
different carbon sources. (A) the raw samples, (B) the samples after pre-treatment with 0.1 M NaOH
for 2 h and freeze-dried for 24 h and (C) the BC yields. Different letters in red indicate no significant
difference between the setups according to Limited Slip Differential (LSD) test (p ≤ 0.05).

To compare BC productivity, the BCs were weighed and the yields were also calculated. Similar to
the findings from Figure 1A,B, the higher BC weights were observed in the groups of fructose, glucose,
glycerol, and mannitol, ranging from 1.125 to 1.529 g L−1 (Figure 1C). The values were 5.9–38 fold
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of those in the media containing acetate, ethanol, lactose or sucrose (≤0.190 g L−1; Figure 1C).
Correspondingly, strain W1 transformed 0.20–7.65% of carbon sources to BC (Figure 1C), of which,
the content in fructose was significantly higher than that in glucose, glycerol, and mannitol (p ≤ 0.05;
Figure 1C). Similarly, apparent differences in other carbon sources were also observed (Figure 1C),
suggesting that the ability of strain W1 to use different carbon sources varied significantly.

To make a comparable evaluation of BC productivity in strain W1, the carbon sources used
for BC production and BC yields in representative bacterial strains were summarized (Table 1).
Among reported carbon sources, glucose, fructose, and mannitol are best for BC production, which is
in line with our findings (Table 1; Figure 1). In some cases, however, the BC-producing bacteria prefer
to utilize sucrose, lactose or a mixture of xylose and xylulose, while other carbon sources have limited
use for BC production (Table 1). One possible reason is that both the structural isomers of glucose
(e.g., fructose) and the precursors of glucose (e.g., glycerol and mannitol) are easy to be transformed
to glucose and enter the cycles of glucose phosphorylation, glucose-6-phosphate isomerization,
UDP-glucose synthesis, and extension to form BC [35]. Unlike structural isomerization or small
molecule splicing, enzymatic cleavage of disaccharides is also a good strategy to produce glucose
(Figure S1), explaining why some bacteria have great efficiency in sucrose and lactose utilization for BC
production [12,36]. Interestingly, strain W1 was the only producer having preference to utilize fructose
among the genera Acetobacter, Gluconacetobacter, and Komagataeibacter (Table 1). In fact, this trait is often
found in other genera such as Enterobacter [37] and Rhodococcus [38]. Although strain W1 did not have
great capacity to utilize carbon sources for BC production (0.015–0.547% day−1; Table 1) as compared
to other BC producers, its preference for fructose utilization could provide useful information for
further investigations.

It is also worthy to note that the medium spiked with mannitol often produced higher BC than
that with glucose [13,39,40], with the highest yield of 9.58% day−1 (Table 1). This is different from the
view that glucose is considered to be the main source for BC production [14,16]. Additionally, for a
certain strain, the BC yields under different cultivation conditions are greatly different. For example,
G. xylinus PTCC 1734 has a relative yield of 0.947% day−1 under agitated conditions, but which
rose to 2.5% day−1 under static conditions (Table 1), suggesting the significant effects of cultivation
methods on BC production [12]. Between above two conditions, the most suitable carbon sources
for BC production were sucrose and mannitol, respectively (Table 1). As regards the BC yields with
different strains of K. xylinus (formerly A. xylinus or G. xylinus), the data vary from 0.071% to 5.29%
day−1 (Table 1). The above mentioned observations suggest that there is no similar pattern of bacterial
behavior to utilize carbon sources for BC production, selecting the most appropriate carbon source for
BC production in an individual strain is very important [41].

In our study, all used carbon sources were sugars except for acetate and ethanol, which are
well-known substrates responsible for enhancing ATP production and inhibiting the anti-BC
production processes [17]. The studies focusing on acetate and (or) ethanol addition and their
consequent effects on BC production have been well documented [17–20]. Although some studies
have tried to produce BC using acetate or ethanol as a sole carbon source, the BC yields are much
lower than for sugars [16,36]. This was supported by our study (Figure 1C; Table 1), implying that both
acetate and ethanol mainly serve as BC-producing enhancers rather than transforming to BC directly.
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Table 1. The carbon sources used for bacterial cellulose (BC) production and BC productivity in representative bacterial strains.

Bacteria Names Cultivation Conditions Carbon Sources Concentration (%, w/v) Relative Yields
(% Day−1) a References

Acetobacter sp. S-35 Static, 28 ◦C, 3 days

Sucrose, lactate, glucose, mannitol b,
gluconate, glycerol, dulcitol, maltose,

lactose, sorbose, ribose, arabinose, xylose,
fructose, galactose

4% except for dulcitol
and sorbose with 2% up to 9.58 Kojima et al. [40]

Acetobacter hansenii
ATCC 10821 Static, 30 ◦C, 30 days D-glucose b, D-xylose, D-xylulose,

D-xylose/D-xylulose
2% 0.037–1.087 Ishihara et al. [42]

Acetobacter lovaniensis HBB5 Static, 30 ◦C, 7 days Glucose b, sucrose, fructose, ethanol 2% 0.008–0.029 Çoban and Biyik [16]

Acetobacter pasteurianus
IFO 14814 Static, 30 ◦C, 30 days D-glucose b, D-xylose, D-xylulose,

D-xylose/D-xylulose
2% 0.130–0.167 Ishihara et al. [42]

Acetobacter xylinum
ATCC 10245 Static, 30 ◦C, 14 days Glucose 1.5% 5.29 Hassan et al. [39]

Acetobacter xylinum c NM d, 35 ◦C, 14 days Sucrose b, glucose, mannitol b, sorbitol,
galactose, lactose, acetic acid, maltose

5–7% ≥0.057 e Ramana et al. [36]

Acetobacter xylinus IFO 15606 Static, 30 ◦C, 30 days
D-glucose, D-xylose, D-xylulose,

D-xylose/D-xylulose b 2% 0.147–0.347 Ishihara et al. [42]

Chromobacterium violaceum
ATCC 12472 Static, 32 ◦C, 3 days Glucose 2% NM Recouvreux et al. [43]

Enterobacter amnigenus GH-1 Static, 30 ◦C, 14 days D-Glucose, D-fructose b, lactose, mannitol,
inositol, sucrose, maltose, glycerol

2% 1.0 Hungund and Gupta [44]

Enterobacter sp. Agitated, 30 ◦C, 24 days Glucose 2% 0.5 Ago et al. [37]

Gluconacetobacter intermedius
NEDO-01

Static, 30 ◦C, 3 days
Agitated, 30 ◦C, 4 days Glycerol 2% NM

4.25 Kose et al. [15]

Gluconacetobacter sacchari Static, 30 ◦C, 4 days Glucose 2% 3.375 Trovatti et al. [45]

Gluconacetobacter xylinus
ATCC 53524 Static, 30 ◦C, 2 or 4 days

Mannitol b, glucose, glycerol, fructose,
sucrose b, galactose

2% 5.10 or 4.79 Mikkelsen et al. [13]

Gluconacetobacter xylinus
CH001 Static, 28 ◦C, 14 days Xylose 1–3% up to 0.482 Yang et al. [19]

Gluconacetobacter xylinus
PTCC 1734 Agitated, 28 ◦C, 7 days Mannitol, sucrose b, glucose 2–5% ~0.947 Mohammadkazemi et al. [28]

Gluconacetobacter xylinus
PTCC 1734 Static, 28 ◦C, 20 days Glucose, fructose, mannitol b,

sucrose, glycerol
2% up to 2.5 Tabaii and Emtiazi [41]
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Table 1. Cont.

Bacteria Names Cultivation Conditions Carbon Sources Concentration (%, w/v) Relative Yields
(% Day−1) a References

Komagataeibacter medellinensis Static, 28 ◦C, 8 days Fructose, glucose b, sucrose 2% 0.238–1.75 Molina-Ramírez et al. [2]

Komagataeibacter rhaeticus PG2 Static, 28 ◦C, 15 days Fructose, lactose, xylose, sucrose,
galactose, mannitol, sorbitol, and glycerol 2% up to 2.3 Thorat and Dastager [46]

Komagataeibacter
saccharivorans PE 5 Static, 30 ◦C, 14 days Mannitol 1.5% 6.00 Hassan et al. [39]

Komagataeibacter xylinus KX,
TISTR 086, 428, 975 and 1011

Static, 30 ◦C, 7 days
Agitated, 30 ◦C, 7 days

Glucose b, fructose, lactose b, maltitol,
sucralose, xylitol

5% 0.326–0.526
up to 1.34 Singhsa et al. [12]

Komagataeibacter xylinus
B-12068 Static, 30 ◦C, 7 days Glucose b, sucrose, galactose,

maltose, mannitol
2% 0.071–1.571 Volova et al. [47]

Rhodococcus sp. MI 2 Static, 25 ◦C, 14 days Glucose, fructose b, sucrose, lactose,
sorbitol, and mannitol

2% ~2.25 Tanskul et al. [38]

Saccharomyces cerevisiae
CGMCC1670 Static, 30 ◦C, 22 days Glucose 5% ~0.118 Tan et al. [48]

Komagataeibacter sp. W1 Static, 30 ◦C, 14 days
Acetate, ethanol, fructose, glucose,

glycerol, lactose, mannitol b, sucrose
2% f 0.015–0.547 This study

a Since the amount of carbon sources used for BC production was different, the BC productivity was calculated based on the initial and final contents of carbon sources and BC within the
incubation time. b Carbon source for the highest BC production. c The bacteria have been re-classified into the genus Komagataeibacter. d Not mentioned. e Both sucrose and mannitol
(60–70 g L−1) produced similar amounts of BC with the addition of peptone or casein hydrolysate. f All carbon sources were normalized to glucose based on C element amount.
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3.2. BC Morphology and Microfibril Analysis by SEM Observation

The morphology and structural characteristics of BC membranes produced by Komagataeibacter sp.
W1 from various carbon sources were evaluated by SEM. As can be seen in Figure 2A–H, all carbon
sources used in this study produced BC pellicles with a dense morphology. Our findings were similar
to K. xylinus strains KX, TISTR 086, 428, 975, 1011, and B-12068 [12,47] but different from K. medellinensis
and K. xylinus CH001 [2,19], the latter two produced a less dense network of microfibrils with high
porosity of up to 60%. This indicates that different bacteria or bacterial strains may have a different
interwoven pattern to produce BC.
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verified that all carbon sources used in this study produced typical BC (Figure 2). However, the 

Figure 2. Morphology (A–H) and diameter distribution (a–h) of the BC produced by Komagataeibacter sp.
W1 grown in the media spiked with different carbon sources. While the BC morphology was observed
with scanning electron microscopy (SEM) with a spot of 3.0, high voltage of 15 KeV, and magnification
of 20,000×, the diameter calculation was performed on Nano Measurer 1.2 by calculating 100 nanofibrils
randomly on the SEM images.

Due to the indistinguishable differences in BC morphology, we also calculated the BC diameter
distribution by Nano Measurer 1.2 based on SEM images. The results showed that all carbon sources
could produce 30 nm or smaller microfibrils, with an average diameter of 40–50 nm except for ethanol
(Figure 2a–h). Our data were in line with the study from Volova et al. [47], suggesting that the small
microfibrils were also likely to be associated with a lower density of BC as described previously. It was
apparent that the visible component of BC in our study was cellulose ribbons (often 40–60 nm) rather
than nanofibrils because the diameter of the sub-elementary fibrils is 3–4 nm [49,50]. Although the
appearances of BCs produced from acetate, ethanol, lactose, and sucrose were different from other
substrates (Figure 1), both SEM imaging and diameter distribution analysis verified that all carbon
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sources used in this study produced typical BC (Figure 2). However, the reasons influencing BC
production efficiency in Komagataeibacter sp. W1 still warrant future investigations.

3.3. Crystalline Differences of BC Membranes Produced from Various Carbon Sources

It is well-known that BC is a homogeneous polycrystalline macromolecular compound composed
of ordered crystalline and less ordered amorphous regions [51]. To determine the crystal structure and
the crystalline contents of BC, all samples were analyzed by XRD. Figure 3 shows that different carbon
sources result in different diffraction profiles. Specifically, the BCs produced from fructose, glucose,
glycerol, and mannitol displayed two typical peaks at 2θ of 14.5◦ and 22.7◦ with strong intensity and a
weak peak at 2θ of 16.6◦ (Figure 3c–e,g). While the two broad peaks were assigned to (100) and (110)
planes of cellulose Iα or (110) and (200) planes of cellulose Iβ, respectively, the weak peak indicated the
presence of the (010) plane of cellulose Iα or the (110) plane of cellulose Iβ (Figure 3) [52]. The higher
intensity of the peak 14.5◦ than that of the peak 16.6◦ made it clear that the content of Iα was higher than
Iβ [53] and the shape of the cellulose crystallites was rectangular rather than square cross-sectional [51],
in agreement with the cases of Singhsa et al. [12] and Keshk and Sameshima [54]. It was interesting
to note that although acetate and ethanol produced limited BCs, they showed a similar XRD pattern
to the BCs produced from the above-mentioned sugars (Figure 3a,b). However, only one weak peak
was observed on BC membranes produced from lactose and sucrose (Figure 3f,h). At around 2θ of
28.6◦, a weak peak was found in the acetate and glycerol groups, which has been scarcely reported and
needs further investigations (Figure 3a,e). Our data indicated that all carbon sources could produce
BC with high crystallinity except for lactose and sucrose.
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Figure 3. Comparative X-ray diffraction (XRD) analysis of the BC produced by Komagataeibacter sp. W1
grown in the media spiked with various carbon sources. The XRD pattern was obtained using nickel
filtered copper Kα radiation, with 0.1◦ steps, from 4◦ to 70◦ (2θ).

As shown in Table 2, the interplanar crystal distance (i.e., d-spacing) of each peak of most of the
BCs was the same, assuming that peak shifts at 2θ of 14.5o did not occur and different BCs had the
same contents of cellulose Iα [23]. Due to the absence of the (100Iα) or (110Iβ) peak in the lactose group
and the (010Iα) or (110Iβ) peak in ethanol, lactose and sucrose groups, all the corresponding d-spacing
and ACSs were not available (Table 2). Unlike d-spacing, however, the ACS varied significantly in
different groups (Table 2). For instance, the ACSs of peak 1 in fructose, glucose, glycerol, and mannitol
were similar, at 7.9–8.8 nm, which reduced to 6.7–6.9 nm in acetate and ethanol and increased to
23.6 nm in sucrose (Table 2). The lower or higher ACSs in acetate, ethanol, lactose, and sucrose might
be attributed to the irregular textile structures of BC microfibrils (Figures 1 and 2). Similar to peak 1,
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most BCs had a typical ACS in peak 3, but the ACSs in lactose and sucrose were much lower than
that in the others (Table 2). However, since peak 2 was weak, the corresponding ACSs did not follow
similar trends as for peak 1 and peak 3 (Figure 3; Table 2), which again verified the high contents of Iα

in all groups as previously described.

Table 2. D-spacing, apparent crystal size (ACS), crystallinity index (C.I.). and % crystalline of BC
samples produced from different carbon sources.

Carbon Sources

Peak 1
(100Iα or 110Iβ)

Peak 2
(010Iα or 110Iβ)

Peak 3
(110Iα or 200Iβ) At 2θ Scale

C.I.
%

Crystalline
d-Spacing

(nm)
ACS
(nm)

d-Spacing
(nm)

ACS
(nm)

d-Spacing
(nm)

ACS
(nm) Iam Ima

Acetate 0.60 6.7 0.53 15.5 0.39 7.8 133 636 0.79 83
Ethanol 0.60 6.9 – a – 0.39 7.2 126 602 0.79 83
Fructose 0.60 8.2 0.53 9.4 0.39 8.9 165 1323 0.88 89
Glucose 0.60 8.8 0.53 6.8 0.39 9.2 132 844 0.84 86
Glycerol 0.60 8.6 0.53 10.7 0.39 8.9 140 978 0.86 87
Lactose – – – – 0.39 1.8 99 273 0.64 73

Mannitol 0.60 7.9 0.53 8.0 0.39 8.8 185 1674 0.89 90
Sucrose 0.60 23.6 – – 0.39 4.6 112 322 0.65 74

a Since the peak was weak, both the d-spacing and ACS were not available.

Besides d-spacing and ACS, we also determined C.I. and% crystalline of BC samples produced from
different carbon sources. In general, the C.I. ranged from 0.64–0.89, the highest and the lowest being in
mannitol and lactose, respectively (Table 2). Correspondingly, all BCs had a high crystallinity ranging
from 83–90% except for 73% for lactose and 74% for sucrose, respectively (Table 2). This followed similar
trends as for d-spacing and ACS (Table 2) but was different from BC yields (Figure 1). Moreover, our data
showed a similar crystallinity to that reported by previous studies [2,14,23]. In most cases, a lower
ACS corresponded to a higher BC crystallinity (Table 2), which was supported by a recent study from
Meza-Contreras et al. [55]. Because the peak corresponding to the (200) lattice plane often shows the
highest intensity in the diffraction patterns of native BC (Figure 3) and plays an important role in higher
crystallinity and smaller crystallite size [19], mannitol could be an ideal carbon source for BC production
in Komagataeibacter sp. W1.

3.4. Functional Groups and Cellulose Types Characterization Based on FTIR Analysis

The FTIR spectra of BCs prepared from different carbon sources are shown in Figure 4.
Although different carbon sources resulted in great differences in BC yields (Figure 1C), and XRD
patterns of BCs also varied significantly (Figure 3), all FTIR spectra exhibited several typical vibration
bands with little difference (Figure 4), implying the same chemical structure for the different BCs
prepared from various carbon sources [2]. Of the 22 peaks, most have been assigned to certain
functional groups in previous studies. For example, several typical adsorptions associated with
O–H stretching at around 3345 cm−1, C–H stretching at around 2900 cm−1, C–O–H antisymmetric
bridge stretching of 1,4-β-glucoside at around 1160 cm−1 and antisymmetric out-of-phase ring
stretching of β-glucosidic linkages between glucose units at around 900 cm−1 were observed (Figure 4;
Table 3). Similarly, we also found other adsorptions due to O–H bending at around 1360, 1280,
and 1205 cm−1, O–H in-plane bending at around 1430 and 1335 cm−1, C–O bending at around 1108,
1055, and 1031 cm−1, and O–H out-of-phase bending at the wavenumbers below 660 cm−1 (Figure 4;
Table 3). However, the adsorptions at 1430, 1335, 1108, 1055, and 1031 cm−1 might also be assigned
to CH2 symmetric bending, C–H deformation, C–C bonds of the monomer units of polysaccharide,
and C–O–C pyranose ring skeletal vibration, respectively (Table 3). Our study revealed that the BCs
produced by Komagataeibacter sp. W1 were mostly composed of cellulose I (adsorptions at around 3345,
1430, 1160, and 900 cm−1) with few cellulose II (adsorption at around 1335, 1315, and 1280 cm−1 and a
blue-shift of wavenumber from 1430 to around 1425 cm−1) (Table 3) [3].
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Figure 4. Comparative Fourier transform infrared (FTIR) analysis of the BC produced by Komagataeibacter sp.
W1 grown in media spiked with various carbon sources. The analysis was conducted on a Nicolet iS5 in
the Attenuated Total Reflectance (ATR) mode with 32 scans per measurement between 400 and 4000 cm−1.
The detailed information of peaks 1–22 is given in Table 3.
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Table 3. Fourier transform infrared (FTIR) analysis of functional groups on BC produced from different carbon sources.

Peak Number
Wavenumber (cm−1) Functional Groups

Acetate Ethanol Fructose Glucose Glycerol Lactose Mannitol Sucrose

1 3344 3343 3343 3343 3344 3345 3341 3346 O–H stretching vibration
2 2895 2896 2895 2895 2895 2897 2894 2899 C–H stretching of CH2 and CH3 groups
3 – a – – – – 1730 – 1734 UK c

4 1648 1645 – 1645 1645 1649 1642 1647 H–O–H bending of absorbed water
5 1564 1573 1574 – 1574 – – – UK
6 1424 1427 1423 1427 1423 – 1426 1423 CH2 symmetric bending or O–H in plane bending
7 1361 1360 1361 1360 1361 1355 1361 1361 C–H bending
8 1336 1335 1335 1335 1336 1336 1335 1335 C–H deformation or O–H in-plane bending
9 1315 1315 1315 1315 1315 1315 1315 1315 Out-of-plane wagging of the CH2 groups

10 1280 1281 1280 1280 1281 1281 b 1280 1280 b C–H bending
11 1248 – 1249 1249 1249 b – – 1249 b UK
12 1203 b 1205 1205 1205 1204 1203 b 1205 1202 b C–H bending
13 1160 1161 1161 1161 1161 1160 1160 1161 C–O–C antisymmetric bridge stretching of 1, 4-β-D-glucoside
14 1108 1108 1108 1108 1108 1109 1108 1108 C–C bonds of the monomer units of polysaccharide or C–O bending vibration
15 1055 1055 1054 1054 1055 1056 1055 1054 The bending of C–O–H bond of carbohydrates or C–O–C pyranose ring skeletal vibration
16 1031 1031 1031 1031 1031 1032 1030 1032
17 1003 b 1005 b 1003 b 1004 997 1002 b 1003 1002 b UK
18 899 b 899 – 899 – – 895 – Antisymmetric out-of-phase ring stretching of β-glucosidic linkages between the glucose units
19 847 835 – – – 836 – 836 UK
20 660 664 663 664 662 666 663 657

O–H out-of-phase bending vibration21 600 609 602 609 597 602 601 597
22 563 559 557 558 563 564 558 562

a Not detected. b The peaks were weak. c Unknown.
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As noted previously, BC characterization is often performed by using XRD and 13C-NMR
methods [46,55,56]. However, due to the overlap of cellulose Iα and Iβ reflections, it is difficult
to differentiate the two allomorphs by only determining the XRD peak positions [12]. Molina-Ramírez
et al. [2] showed that the FTIR could help distinguish Iα allomorph (around 3240 and 750 cm−1) from
Iβ allomorph (around 3270 and 710 cm−1). The Iα fractions of BCs produced from fructose, glucose,
and sucrose in K. medellinensis were from 0.70 to 0.74 [2], which were higher than A. xylinus 23769 of
0.36–0.43 [23], A. xylinus strains ATCC 10245, IFO 13693, IFO13772, IFO13773, IFO14815, and IFO15237
of 0.38–0.43 [54], and Komagataeibacter sp. W1 of 0.51 for all groups in our study. However, our
data were in accordance with the well-known fact that for Iα it is as high as about 64% in BC [57].
We hypothesized that strain W1 possessed the capacity to produce both allomorphs at the same time,
and the ability to produce Iα and Iβ was stable irrespective of the spiked carbon sources.

3.5. Insights into the Biochemical Pathways for Carbon Sources Utilization and BC Synthesis

In micro-organisms, several metabolic pools are involved in BC biosynthesis. One direct pathway
to produce BC is to pre-generate hexose phosphate by the phosphorylation of exogenous hexoses [35].
To this aim, the isomers fructose and glucose are ideal carbon sources for BC production, which was
supported by our findings (Figure 1 and Figure S1). As to other carbon sources, transforming to
the above two hexoses is the first and important step to produce BC through the pentose cycle and
gluconeogenic pathway [58]. In addition to physio-biochemical observation and evaluation of BC
synthesis in micro-organisms, it is also important to understand the metabolic network of carbon
sources [41]. However, this is scarcely reported in existing studies.

Our previous study obtained the genome information of strain W1 and annotated some associated
enzymes in glucose transformation and BC synthesis [3]. To explore how strain W1 utilized other
carbon sources and then produced BC, this study also summarized the orfs responsible for various
carbon source metabolisms and BC production. As shown in Figure 5 and Table S1, strain W1 had
157 orfs corresponding to various carbon source metabolisms, most of which had been studied in this
work except for mannose, glycogen/starch, and trehalose. In fact, besides those orfs responsible for
encoding the enzymes involved in direct glucose transformation and cellulose synthesis and regulation,
we also found more indirect orfs aiming for these processes (Table S1). In general, strain W1 had 27 orfs
associated with alcohol (ethanol) metabolism, being the highest among 11 groups, followed by glucose
metabolism of 24 and glycerol metabolism of 22 (Figure 5). This was understandable because strain W1
was an acetic bacterium used for vinegar production (alcohol metabolism) and a typical BC-producer
capable of BC production (glucose metabolism) [3]. Unlike normal carbon substrates, glycerol not only
can be transformed to glucose, it is also easily degraded and used as a source of energy to enhance
the TCA cycle [23,24,41]. It was interesting to note that both orfs corresponding to fructose and
mannitol metabolism were less than for the others except for trehalose and glycogen/starch (Figure 5).
Apparently, the number of orfs did not follow the trend of BC productivities as described previously
(Figure 1C), suggesting that carbon source metabolism might also be impacted by other factors such as
enzymatic activity, substrate preference, and metabolic fluxes [2,59].
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Figure 5. The number of orfs associated with carbon source metabolisms and BC biosynthesis and 
regulation. The orfs shown here were retrieved from the genes and corresponding protein annotation 
data. While the numbers on the top of the bars indicate the total number of predicted genes involved 
in carbon source metabolisms and BC biosynthesis and regulation, the ones below the line indicate 
the number of the genes that can be annotated to certain Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways. It’s worthy to note that the description ‘others’ indicates the key metabolic 
intermediates during the transformation between glucose and glycerol or fructose and glycerol. 
More details can be found in Tables S1 and S2. 

To have a full understanding of carbon source metabolism and BC production in strain W1, we 
further provided an overview of the orfs that could be annotated to certain KEGG pathways (Figure 
5; Table S2). Based on the coupling analysis of the orfs-KEGG pathway, the schematic diagram of 
carbon source metabolism and BC biosynthesis pathways in Komagataeibacter sp. W1 were also 
provided (Figure 6). As expected, most orfs could be annotated to a certain KEGG pathway (Figure 
5), and all corresponding enzymes are given in Table S2 and labeled in Figure 6. Specifically, 
fructose, mannitol, and glycerol could be enzymatically transformed to glucose, and then produce 
BC, through the pentose phosphate pathway or gluconeogenesis pathway [59], but lactose and 
sucrose did not (Figure 6). Although acetate and ethanol were able to generate acetyl coenzyme A 
(acetyl-CoA) and functioned in the TCA cycle and glycerol transformation, we did not find any 
possible pathway linking them to glucose or other sugars (Figure 6). Since media glucose was 
removed before seed solution transfer, it was possible that both acetate and ethanol were not the 
precursors of glucose and the few BCs observed in our study might be due to the release of cell 
glucose and subsequent BC production (Figure 1). We also noticed that glycerol, mannitol, and 
fructose had two pathways (i.e., the pyruvate pathway and glycerate-phosphate pathway) to 
produce oxaloacetate and enter the TCA cycle [24], thereby enhancing energy generation and 
carbon sources utilization for BC production (Figures 1 and 6). However, our results were different 
from Molina-Ramírez et al. [2] in that glucose obtained 86% higher BC than fructose, again showing 
that different bacterial strains had different traits for carbon source utilization and BC production 
(Table 1). 

Figure 5. The number of orfs associated with carbon source metabolisms and BC biosynthesis
and regulation. The orfs shown here were retrieved from the genes and corresponding protein
annotation data. While the numbers on the top of the bars indicate the total number of predicted
genes involved in carbon source metabolisms and BC biosynthesis and regulation, the ones below
the line indicate the number of the genes that can be annotated to certain Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways. It’s worthy to note that the description ‘others’ indicates the
key metabolic intermediates during the transformation between glucose and glycerol or fructose and
glycerol. More details can be found in Tables S1 and S2.

To have a full understanding of carbon source metabolism and BC production in strain W1, we
further provided an overview of the orfs that could be annotated to certain KEGG pathways (Figure 5;
Table S2). Based on the coupling analysis of the orfs-KEGG pathway, the schematic diagram of carbon
source metabolism and BC biosynthesis pathways in Komagataeibacter sp. W1 were also provided
(Figure 6). As expected, most orfs could be annotated to a certain KEGG pathway (Figure 5), and all
corresponding enzymes are given in Table S2 and labeled in Figure 6. Specifically, fructose, mannitol,
and glycerol could be enzymatically transformed to glucose, and then produce BC, through the pentose
phosphate pathway or gluconeogenesis pathway [59], but lactose and sucrose did not (Figure 6).
Although acetate and ethanol were able to generate acetyl coenzyme A (acetyl-CoA) and functioned
in the TCA cycle and glycerol transformation, we did not find any possible pathway linking them to
glucose or other sugars (Figure 6). Since media glucose was removed before seed solution transfer,
it was possible that both acetate and ethanol were not the precursors of glucose and the few BCs
observed in our study might be due to the release of cell glucose and subsequent BC production
(Figure 1). We also noticed that glycerol, mannitol, and fructose had two pathways (i.e., the pyruvate
pathway and glycerate-phosphate pathway) to produce oxaloacetate and enter the TCA cycle [24],
thereby enhancing energy generation and carbon sources utilization for BC production (Figures 1
and 6). However, our results were different from Molina-Ramírez et al. [2] in that glucose obtained 86%
higher BC than fructose, again showing that different bacterial strains had different traits for carbon
source utilization and BC production (Table 1).
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4. Conclusions 

In this study, Komagataeibacter sp. W1, which is a typical BC-producer, was subjected to media 
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Figure 6. Schematic diagram of carbon metabolism and BC biosynthesis pathways in
Komagataeibacter sp. W1. The comprehensive analysis was conducted by incorporating the key
metabolic intermediates and associated enzymes responsible for carbon source transformation and
BC biosynthesis in different KEGG pathways. The numbers in the figure are the Enzyme Commission
number, while the red and black ones indicate the associated enzymes present and absent respectively
in Komagataeibacter sp. W1. The asterisks indicate the enzymes absent in the labeled pathways but
present in other pathways in our study, thus it is unknown whether they work in the labeled pathways.
The question mark indicating whether the pathway is present, is unclear based on our data and
remains for future investigations. More information of the enzymes and the associated genes and
pathways (ko numbers) are listed in Table S2. P, phosphate; GDP, guanosine diphosphate; UDP, uridine
diphosphate; PRPP, phosphoribosyl pyrophosphate; ThPP, thiamine diphosphate; TCA, tricarboxylic
acid cycle; Acetyl-CoA, acetyl coenzyme A.

4. Conclusions

In this study, Komagataeibacter sp. W1, which is a typical BC-producer, was subjected to media
spiked with various carbon sources including acetate, ethanol, fructose, glucose, lactose, mannitol,
and sucrose and the BC productivity, BC characteristics and biochemical transformation pathways
associated with carbon source transformation and BC production were investigated. This strain
preferred to use fructose, glucose, glycerol, and mannitol for BC production, with the highest BC
yield being 1.529 g L−1 on fructose. SEM analysis suggested that the membranes produced from
all carbon sources were composed of nanofibrils with an average diameter of 35–50 nm, which is
a typical characteristic of BC, consistent with the results from XRD and FTIR analyses. Based on
genome annotation and KEGG analysis, all biochemical transformation pathways associated with the
utilization of and BC production from fructose, glucose, glycerol, and mannitol were found. Our data
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provided suggestions to further investigations of strain W1 to produce BC by using the above carbon
sources and gave clues on understanding how this strain produces BC at the metabolic pathway scale.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/10/9/963/s1,
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