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Abstract: While there are various kinds of drugs for type 2 diabetes mellitus at present, in this review
article, we focus on metformin which is an insulin sensitizer and is often used as a first-choice drug
worldwide. Metformin mainly activates adenosine monophosphate-activated protein kinase (AMPK)
in the liver which leads to suppression of fatty acid synthesis and gluconeogenesis. Metformin
activates AMPK in skeletal muscle as well, which increases translocation of glucose transporter
4 to the cell membrane and thereby increases glucose uptake. Further, metformin suppresses
glucagon signaling in the liver by suppressing adenylate cyclase which leads to suppression of
gluconeogenesis. In addition, metformin reduces autophagy failure observed in pancreatic β-cells
under diabetic conditions. Furthermore, it is known that metformin alters the gut microbiome and
facilitates the transport of glucose from the circulation into excrement. It is also known that metformin
reduces food intake and lowers body weight by increasing circulating levels of the peptide hormone
growth/differentiation factor 15 (GDF15). Furthermore, much attention has been drawn to the fact
that the frequency of various cancers is lower in subjects taking metformin. Metformin suppresses
the mechanistic target of rapamycin (mTOR) by activating AMPK in pre-neoplastic cells, which leads
to suppression of cell growth and an increase in apoptosis in pre-neoplastic cells. It has been shown
recently that metformin consumption potentially influences the mortality in patients with type 2
diabetes mellitus and coronavirus infectious disease (COVID-19). Taken together, metformin is an
old drug, but multifaceted mechanisms of action of metformin have been unraveled one after another
in its long history.

Keywords: metformin; AMPK; glucagon signaling; autophagy; GDF15; gut microbiome; mTOR;
COVID-19

1. Introduction

Pancreatic β-cell dysfunction and insulin resistance in insulin target tissues such as
the liver, skeletal muscle and adipose tissues are the two main characteristics of type 2
diabetes mellitus. The number of subjects with type 2 diabetes mellitus is markedly
increasing all over the world due to changes in lifestyle such as overeating and lack
of exercise. Such an increase in subjects with type 2 diabetes has become a financial
burden in many countries. So far, various kinds of drugs for type 2 diabetes mellitus
have been developed, and at present, there are many kinds of anti-diabetic drugs from
which we can choose depending on each patient’s pathophysiological conditions. Incretin-
related drugs (dipeptidyl peptidase-IV (DPP-IV) inhibitors and glucagon-like peptide-1
receptor activators (GLP-1RA)) and sodium-glucose cotransporter 2 (SGLT2) inhibitors are
relatively new drugs and have been drawing much attention in various aspects. In contrast,
metformin is an old drug, but its pleiotropic mechanisms of action have been gradually
clarified in its long history. There were times when the reputation of metformin was not
very high, but due to various discoveries about new mechanisms of action of metformin,
the Association for the Study of Diabetes (the American Diabetes Association and the
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European Association for the Study of Diabetes) consensus guideline on the management
of type 2 diabetes stipulates that metformin should be used as a first-choice drug for type 2
diabetes mellitus. Indeed, it is very often used as a first-choice drug in clinical practice all
over the world. In addition, since metformin is quite cheap compared to other anti-diabetic
drugs, usage of metformin reduces the financial burden on subjects with type 2 diabetes
mellitus. In this review article, we focus on metformin which is an old but marvelous drug.

2. Glucose Toxicity Is an Underlying Mechanism for Type 2 Diabetes Mellitus

It is well known that insulin is secreted from pancreatic β-cells and the main insulin
target tissues are the liver, skeletal muscle and adipose tissues. Type 2 diabetes mellitus
is characterized by β-cell dysfunction and insulin resistance. Chronic exposure of β-cells
and insulin target tissues to hyperglycemia leads to the deterioration of β-cell function
and aggravation of insulin resistance [1–6]. Such phenomena are well known as glucose
toxicity. First, overeating and/or obesity lead to the development of insulin resistance.
Although pancreatic β-cells produce and secrete insulin in response to high glucose con-
centrations under healthy conditions, β-cells are compelled to secrete larger amounts of
insulin to compensate such increased insulin resistance under diabetic conditions. Once
hyperglycemia becomes apparent and β-cells are chronically exposed to hyperglycemia,
β-cell function is gradually deteriorated due to some grueling overwork. Insulin pro-
duction and secretion are progressively reduced, accompanied by reduced expression of
insulin gene transcription factors MafA [7–12] and PDX-1 [13–18]. Insulin signaling in
insulin target tissues is also weakened by the burden of glucose toxicity, which leads to
the aggravation of insulin resistance. Such debilitation of β-cell function and development
of insulin resistance lead to further aggravation of type 2 diabetes mellitus. In clinical
practice, it is very essential to alleviate such β-cell glucose toxicity in order to forestall the
aggravation of diabetes mellitus.

In response to ingestion of food, glucagon-like peptide-1 (GLP-1) and glucose-
dependent insulinotropic polypeptide (GIP) are released from the gastrointestinal tract,
which augment glucose-stimulated insulin secretion, reduce β-cell apoptosis and facil-
itate β-cell proliferation. Under diabetic conditions, however, GLP-1 and GIP receptor
expression levels are reduced, which is likely bothersome for β-cells [19–21]. While tran-
scription factor 7-like 2 (TCF7L2) is an important transcription factor of GLP-1 and GIP
receptors and plays a crucial role in the maintenance of β-cell function, decreased expres-
sion of TCF7L2 under diabetic conditions is likely involved in such reduction in both
incretin receptors [22–24]. Even when GLP-1 and GIP are secreted and come close to β-
cells, they cannot function fully due to a reduction in their receptor expression on the
β-cell membrane.

In addition, there are several reports showing the essence of insulin signaling in en-
dothelial cells [25–30]. Insulin binds to insulin receptors in the endothelial cell membrane,
which activates insulin signaling in endothelial cells. After the binding, insulin receptor
substrate (IRS), phosphatidylinositol 3-kinase (PI3-K), 3-phosphoinositide-dependent pro-
tein kinase-1 (PDK1) and protein kinase B (Akt) are phosphorylated sequentially. Such
activation of insulin signaling finally increases expression of endothelial nitric oxide syn-
thase. Therefore, activation of insulin signaling in endothelial cells augments the amount of
nitric oxide production, which finally leads to the increase in blood flow and angiogenesis
in islets. Since endothelial cell dysfunction is observed under diabetic conditions, it is
possible that endothelial dysfunction leads to hypoxia and ischemia through reduced
production of nitric oxide. In addition, since pancreatic islets are particularly vulnerable
to hypoxia and/or ischemia, endothelial dysfunction can more easily lead to aggravation
of β-cell function compared to other cells or tissues. Indeed, we recently reported that in
vascular endothelial-specific knockout mice of PDK1, one of the important molecules in
insulin signaling, β-cell mass became smaller and β-cell function was impaired [30]. Such
ablation of endothelial PDK1 reduced vascularity in islets, which led to hypoxia, ER stress
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and inflammation in β-cells. Therefore, we think that endothelial dysfunction is also, at
least in part, involved in β-cell dysfunction found in type 2 diabetes mellitus.

3. Various Agents for Type 2 Diabetes Mellitus Protect Pancreatic β-Cells against
Glucose Toxicity

There are various kinds of drugs for type 2 diabetes mellitus such as insulin secreta-
gogues and insulin sensitizers. Among several insulin secretagogues, incretin-related drugs
have most often been used in clinical practice. Dipeptidyl peptidase-IV (DPP-IV) inhibitors
as well as glucagon-like peptide-1 receptor activators (GLP-1RA) enhance insulin secretion
and suppress glucagon secretion, leading to amelioration of glycemic control. We have
reported that DPP-IV inhibitors or GLP-1RA ameliorated glycemic control and protected
β-cells against glucose toxicity in type 2 diabetic mice [31–35]. In addition, incretin-related
drug liraglutide increased β-cell function and mass only at an early stage of diabetes but
not at an advanced stage [35]. Only at an early stage, insulin biosynthesis and secretion
were significantly enhanced by liraglutide, accompanied by augmentation of MafA and
PDX-1 expression [35]. We think that it is very essential to use incretin-based drugs at an
early stage of diabetes in order to make the most of such drugs. In addition, much attention
has been drawn recently to the anti-arteriosclerosis effects of incretin-related agents in
the basic research area [36–41] as well as in clinical practice [42–52]. In the basic research
area, we recently reported that incretin expression was down-regulated under diabetic
conditions [39] and that incretin-related drugs exerted more beneficial anti-arteriosclerosis
at an early stage of diabetes [41]. There have been many large-scale clinical trials regarding
the protective role of incretin-based agents against atherosclerosis or cardiovascular events
in subjects with type 2 diabetes mellitus [42–52].

Metformin and thiazolidine are insulin sensitizers. Metformin, one of the insulin
sensitizers, is often used as a first-choice drug worldwide. Metformin is known to have
pleiotropic roles in a variety of tissues such as the liver and skeletal muscle, and a variety
of mechanisms of its action have been elucidated so far, as described below in detail.
Thiazolidine also has multifaceted effects such as enhancement of insulin sensitivity, β-cell
protective effects, miniaturization of visceral fat cells, enhancement of adiponectin secretion
and anti-arteriosclerosis effects [31,34,35,53,54].

Furthermore, recently, sodium-glucose cotransporter 2 (SGLT2) inhibitors have been
drawing much attention in the diabetes research area as well as in clinical practice. SGLT2
inhibitors function in an insulin-independent manner and ameliorate glycemic control
through an increase in urinary glucose excretion. We have reported that SGLT2 inhibitors
protect β-cells against glucose toxicity in type 2 diabetic mice [55–57]. Indeed, SGLT2
inhibitors increased insulin biosynthesis and glucose-stimulated insulin secretion, as well
as increasing β-cell mass through the reduction in β-cell apoptosis and the enhancement of
β-cell proliferation. In addition, we recently showed that SGLT2 inhibitor luseogliflozin
exerted more protective effects at an early stage of diabetes compared to an advanced stage.
Furthermore, we reported that longer-term use of luseogliflozin exerted more beneficial
effects on pancreatic β-cell function and mass compared to short-term use [57]. In addition,
since several potential side effects of SGLT2 inhibitors, about which many clinicians were
previously concerned, have substantially been wiped out at present, we should start SGLT2
inhibitors at an early stage of diabetes in subjects to whom therapy with SGLT2 inhibitors is
thought to be appropriate in clinical practice as well. SGLT2 inhibitors are known to exert
beneficial effects on insulin target tissues such as the liver, skeletal muscle and adipose
tissues. Indeed, it was reported that SGLT2 inhibitors improved muscle insulin sensitivity,
although it enhanced endogenous glucose production, and that SGLT2 inhibitors improved
insulin resistance in skeletal muscle and accelerated lipolysis in adipose tissues [58–61].
Furthermore, it has been elucidated that SGLT2 inhibitors have preventive effects on heart
failure and proteinuria and thereby have cardio-protective and renal protective effects,
both of which have drawn much attention recently, although we did not describe these
points in detail in this review article.
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4. Metformin Activates Adenosine Monophosphate-Activated Protein Kinase (AMPK)
in the Liver and Skeletal Muscle Which Leads to Suppression of Gluconeogenesis in
the Liver and Increase in Glucose Uptake into Skeletal Muscle

Metformin enhances insulin sensitivity and ameliorates glycemic control mainly
through a reduction in hepatic glucose production and enhancement of glucose utilization.
AMPK is one of the major cellular regulators for glucose and lipid metabolism. It was
reported that metformin activated AMPK in the liver, leading to a reduction in acetyl-CoA
carboxylase (ACC), enhancement of fatty acid oxidation and suppression of lipogenic
enzyme expression [62–65]. Metformin-mediated AMPK activation suppresses expression
of sterol regulatory element binding protein-1c (SREBP-1), an important lipogenic tran-
scription factor, leading to suppression of fatty acid synthesis (Figure 1). Further, while
phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase) are
key gluconeogenic enzymes, metformin-mediated AMPK activation reduces both enzymes’
expression, leading to suppression of gluconeogenesis in the liver. Metformin also activates
AMPK in skeletal muscle which increases translocation of glucose transporter 4 to the cell
membrane and thereby increases glucose uptake. These effects finally ameliorate fatty liver
and insulin resistance. It was reported recently that metformin inhibited mitochondrial
respiratory complex I, leading to an increase in the ratio of adenosine monophosphate
(AMP) to adenosine triphosphate (ATP). Such alteration likely leads to inactivation of
AMPK [63]. It was also reported that metformin inactivated mitochondrial glycerol-3-
phosphate dehydrogenase which was likely involved in suppression of gluconeogenesis in
the liver [64].
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Figure 1. Metformin activates AMP-activated protein kinase (AMPK) in the liver which leads to
suppression of fatty acid synthesis and gluconeogenesis. Metformin also activates AMPK in skeletal
muscle which increases translocation of glucose transporter 4 to the cell membrane and thereby
increases glucose uptake. SREBP-1c, sterol regulatory element binding protein-1c; PEPCK, phospho-
enolpyruvate carboxykinase; GAPase, glucose 6-phosphatase; GLUT 4, glucose transporter 4.

5. Metformin Suppresses Glucagon Signaling in the Liver by Suppressing Adenylate
Cyclase Which Leads to Suppression of Gluconeogenesis in the Liver

Glucagon is secreted from pancreatic α-cells and functions as one of the counter-
regulatory hormones, leading to an increase in blood glucose levels. As one main mech-
anism of glucagon action, it is known that glucagon binds to the glucagon receptor in
the liver, which activates adenylate cyclase and converts adenosine triphosphate (ATP) to
cyclic AMP (cAMP). Increased cAMP activates protein kinase A (PKA), which facilitates
gluconeogenesis. Thereby, glucagon leads to the aggravation of glycemic control. It was
reported that metformin antagonized such action of glucagon, which led to amelioration
of glycemic control. Metformin treatment led to the accumulation of AMP, which finally
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inhibited adenylate cyclase. Inactivation of adenylate cyclase reduced cyclic AMP levels
and PKA activity and suppressed glucagon signaling, leading to suppression of gluconeo-
genesis (Figure 2) [66]. These findings clearly support the new mechanism of action of
metformin as a suppressor of glucagon signaling in the liver. In addition, it was reported
recently that metformin inhibited mitochondrial respiratory complex I, leading to an in-
crease in the AMP/ATP ratio. Such alteration likely inactivates adenylate cyclase activity,
leading to suppression of glucagon signaling in the liver [63]. Thereby, such inhibition
of mitochondrial respiratory complex I suppresses gluconeogenesis through activation of
AMPK, as well as suppressing glucagon signaling through inactivation of adenylate cyclase
activity. Such alteration leads to amelioration of glucose metabolism and a reduction in
insulin resistance in the liver, which finally leads to amelioration of glycemic control.
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6. Metformin Reduces Autophagy Failure Observed in Pancreatic β-Cells under
Diabetic Conditions

Autophagy is involved in a variety of phenomena in our body and has been paid
much attention to in various research areas. For example, in the diabetes research area, it
has been reported, so far, that autophagy failure is observed in pancreatic β-cells under
diabetic conditions [67–72]. In the process of autophagy, formation of autophagosomes and
proteolysis of autolysosomes are main and important steps. When the autophagy system
functions normally, insulin resistance enhances autophagy in β-cells, which finally leads
to compensatory hypertrophy of β-cells. However, when the autophagy system does not
function well, autophagy in β-cells is not enhanced by insulin resistance and compensatory
hypertrophy of β-cells is not observed. Further, in human pancreatic islets with type 2
diabetes mellitus, larger numbers of vacuoles were observed compared to the control,
suggesting an increase in autophagosomes. In addition, expression levels of various
lysosome-related enzymes were reduced under diabetic conditions. These data suggest
that autophagy failure is involved in β-cell dysfunction found in type 2 diabetes mellitus.

Furthermore, it was reported that metformin reduced autophagy failure observed
in pancreatic β-cells under diabetic conditions [72]. When healthy β-cells were treated
with free fatty acids (FFA), autophagosomes were increased and lysosome-related enzyme
expression was reduced. However, when β-cells were treated with FFA and metformin,
autophagosomes were not increased and lysosome-related enzyme expression was not
reduced, indicating that the autophagy system was recovered. These data suggest that met-
formin mitigates pancreatic β-cell autophagy failure observed under diabetic conditions.
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7. Metformin Alters the Gut Microbiome and Glucose Absorption from the Intestine

Much attention has been drawn to the fact that alteration of the gut microbiome
has a variety of influences on various tissues in our body. It was recently reported that
metformin altered the gut microbiome which, at least in part, contributes to the therapeutic
effects of metformin [73]. In a double-blind study, the authors randomized subjects with
treatment-naive type 2 diabetes mellitus to metformin or placebo for 4 months and showed
that metformin had strong effects on the gut microbiome. Furthermore, transfer of fecal
samples from metformin-treated donors to germ-free mice showed that glucose tolerance
was improved in mice that received metformin-altered microbiota. These findings support
the idea that the altered gut microbiota is, at least in part, involved in the anti-diabetic
effects of metformin. We think that the presence of such an underlying mechanism of
metformin indicates that metformin would be very promising.

In addition, it was very recently reported that metformin altered glucose absorp-
tion from the intestine [74,75]. Indeed, positron emission tomography (PET)-computed
tomography has shown that metformin facilitates the intestinal accumulation of [18F] fluo-
rodeoxyglucose (FDG), a non-metabolizable glucose derivative. In this study, accumulation
of [18F] FDG was evaluated in different portions of the intestine. As a result, [18F] FDG
accumulation in the ileum and hemicolon was also larger in subjects with metformin.
Furthermore, the maximum standardized uptake value for the intraluminal space of the
ileum and hemicolon was larger in subjects with metformin. Taken together, metformin
treatment is likely associated with increased accumulation of [18F] FDG in the intraluminal
space of the intestine, indicating that metformin facilitates the transport of glucose from
the circulation into excrement.

8. Metformin Reduces Food Intake and Lowers Body Weight by Increasing Circulating
Level of the Peptide Hormone Growth/Differentiation Factor 15 (GDF15)

Weight gain and obesity are serious global health concerns, and pharmacological ther-
apies or bariatric surgery have been performed for subjects with severe obesity. Metformin
is known to lower body weight, and thus it seems that metformin has a health benefit
beyond its glucose-lowering effect. Although its molecular mechanism remained unclear
for a long time, it has been reported recently that metformin increases circulating levels
of GDF15, a member of the transforming growth factor β superfamily, which leads to a
reduction in food intake and body weight [76–85]. GDF15 is produced by various cells
responding to a variety of stresses or stimuli, and GDF15 functions through its receptor
which is expressed in the hindbrain and thereby reduces food intake. A recent clinical study
showed that there was a close association between metformin usage and circulating levels
of GDF15. Recent basic research also demonstrated that metformin increased circulating
GDF15 in mice, accompanied by an increase in GDF15 expression in the intestine, colon
and kidney. In addition, metformin suppressed body weight gain in mice treated with a
high-fat diet, but such phenomena were not observed in mice lacking GDF15. Similarly,
such phenomena were not observed in mice lacking GDNF family receptor α-like (GFRAL),
which is known as a receptor of GDF15. In mice treated with a high-fat diet, the weight
reduction effects of metformin were reduced by a GFRAL-antagonist antibody, although
the glucose-lowering effect of metformin was not influenced by that antibody. These data
further strengthen the idea that GDF15 is involved in the reduction in food intake and body
weight in subjects with type 2 diabetes mellitus who are treated with metformin.

9. Metformin Suppresses Mechanistic Target of Rapamycin (Mtor) by Activating
AMPK in Pre-Neoplastic Cells and Thereby Suppresses the Onset and/or
Development of Various Cancers

Much attention has been drawn recently to the fact that the frequency of various
types of cancer in subjects with diabetes mellitus is higher compared to that in healthy
subjects [86–93]. In particular, the frequency of hepatocellular carcinoma and colorectal can-
cer is higher under diabetic conditions compared to healthy conditions. Thus, malignancy
has been recently regarded as one of diabetic complications in addition to acute and chronic
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complications such as microangiopathies (diabetic nephropathy, retinopathy and neuropa-
thy) and macroangiopathies (ischemic heart diseases, stroke and arteriosclerosis obliterans).
There are several possible reasons why the frequency of malignancy is increased under
diabetic conditions. First, chronic hyperglycemia increases various inflammatory cytokines
and thereby activates nuclear factor-kappa B (NF-kB) and/or signal transducer and activa-
tor of transcription 3 (STAT3), which finally leads to the onset of neoplastic cells. Second,
hyperinsulinemia, which is often observed in obese subjects with type 2 diabetes mellitus,
activates insulin receptors in pre-neoplastic cells, leading to the onset of neoplastic cells.
In addition, hyperinsulinemia decreases expression of insulin-like growth factor binding
proteins 1 and 2 (IGFBP1 and IGFBP2) and thereby activates insulin-like growth factor-1
(IGF-1), which could also lead to the onset of neoplastic cells.

Furthermore, attention has been drawn to the fact that the frequency of various
cancers is lower in subjects taking metformin. Indeed, there is a large amount of clinical
evidence showing the possibility that usage of metformin decreases the risk of neoplastic
transformation and enhances the response to some chemotherapies [94–100]. Metformin
suppresses mTOR by activating AMPK in pre-neoplastic cells which leads to suppression
of cell growth and an increase in apoptosis in pre-neoplastic cells (Figure 3) [94,95]. It seems
that metformin exerts potential anti-tumorigenic effects independently of its hypoglycemic
effects. In general, insulin and IGF-1 activate PI3-K, Akt and mTOR, which finally leads
to enhancement of cell growth and suppression of apoptotic cell death in pre-neoplastic
cells. There are several potential mechanisms concerning how metformin can suppress
the development of neoplastic cells. First, metformin activates the AMPK pathway in
pre-neoplastic cells which leads to suppression of mTOR activation. Such a pathway finally
leads to suppression of cell growth and an increase in apoptosis in pre-neoplastic cells.
Second, since metformin is an insulin sensitizer, it reduces circulating insulin levels, which
is also, at least in part, involved in the anti-tumorigenic effects of metformin. Inhibition
of protein synthesis, inhibition of the unfolded protein response (UPR), activation of the
immune system and eradication of cancer stem cells are also possibly involved in the
anti-tumorigenic effects of metformin.
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Figure 3. Metformin suppresses the mechanistic target of rapamycin (mTOR) by activating AMPK
in pre-neoplastic cells which leads to suppression of cell growth and an increase in apoptosis in
pre-neoplastic cells. IGF-1, insulin-like growth factor; PI-3K, phosphatidylinositol-3 kinase; Akt,
protein kinase B.

Taken together, while the frequency of various types of malignancies in subjects
with diabetes mellitus is higher compared to that in healthy subjects, much attention has
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been drawn to the fact that the frequency of various cancers is lower in subjects taking
metformin.

10. Metformin Consumption Potentially Influences the Mortality in Subjects with
Type 2 Diabetes Mellitus and Coronavirus Infectious Disease (COVID-19)

Coronavirus infectious disease (COVID-19) has caused a new pandemic all over
the world. The mortality in patients with COVID-19 is extremely high, and the main
reason for deaths is severe pneumonia [101]. In subjects with COVID-19, large amounts of
inflammatory cytokines are produced which likely causes a cytokine storm and is involved
in the development of various complications such as serious pneumonia. The defense
mechanism and immune system against inflammation are very vulnerable in senior subjects
or subjects with diabetes mellitus, respiratory tract diseases, malignancy or coronary heart
disease. Therefore, the infection risk and severity become very high in such subjects with
comorbidities. It was reported that the mortality was very high in subjects with both
COVID-19 and diabetes mellitus [102,103]. Since it is known that diabetic subjects have
low-grade inflammation, we assume that such inflammation is, at least in part, involved
in the vulnerability of diabetic subjects to COVID-19 and the severity of COVID-19 under
diabetic conditions.

It has been reported that metformin is associated with lower mortality in subjects
with COVID-19 and diabetes mellitus [104,105]. In that study, several medical databases
(Pubmed, EuropePMC, EBSCOhost, Proquest, Cochrane library) and two health science
preprint servers (preprint.org and Medrxiv) were systematically searched for relevant
literature. As a result, the meta-analysis with more than 10,000 subjects showed that
metformin was associated with lower mortality in a pooled non-adjusted model (odds
ratio (OR), 0.45; confidential interval (CI), 0.25–0.81) and a pooled adjusted model (OR,
0.64; CI, 0.43- 0.97). The analysis clearly indicates that metformin consumption is closely
associated with lower mortality in subjects with COVID-19.

There are several possible mechanisms concerning how metformin exerts beneficial
effects on mortality in subjects with COVID-19. First, it is known that metformin reduces
pro-inflammatory cytokine levels such as tumor necrosis factor-α or interleukin-6. In addi-
tion, it was shown that metformin had some beneficial effects on viral infections such as
hepatitis C virus or severe acute respiratory syndrome coronavirus 2 [106–108]. Therefore,
it is possible that metformin has some favorable effects on COVID-19 by altering inflam-
matory cytokine levels. Second, as described above, metformin alters the gut microbiome
and mitigates autophagy failure, both of which likely lead to the activation of the immune
response and defense mechanism against an inflammatory cytokine storm. Finally, as
described above as well, it is known that metformin blocks the mTOR pathway, while
mTOR plays a crucial part in the pathogenesis of influenza and Middle East respiratory
syndrome coronavirus infection. Therefore, it is possible that blocking the mTOR pathway
by metformin, at least in part, contributes to the beneficial effect of metformin on the
mortality in subjects with type 2 diabetes mellitus and COVID-19. Although further studies
are necessary to conclude such possible mechanisms of action of metformin, the possibility
that metformin is associated with lower mortality in subjects with COVID-19 and diabetes
mellitus brings some emerging hope to us amid the current worldwide pandemic situations
caused by COVID-19.

11. Conclusions

In this review article, we featured various mechanisms of action of metformin which
have been elucidated so far. First, metformin activates AMPK in the liver which leads to
suppression of fatty acid synthesis and gluconeogenesis. Metformin also activates AMPK in
skeletal muscle which increases translocation of glucose transporter 4 to the cell membrane
and thereby increases glucose uptake. Second, metformin suppresses glucagon signaling in
the liver by suppressing adenylate cyclase which leads to suppression of gluconeogenesis.
Third, metformin reduces autophagy failure observed in pancreatic β-cells under diabetic
conditions. Fourth, metformin alters the gut microbiome and glucose absorption from the
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intestine and facilitates the transport of glucose from the circulation into excrement. Fifth,
metformin reduces food intake and lowers body weight by increasing circulating levels
of GDF15. Sixth, much attention has been drawn to the fact that the frequency of various
cancers is lower in subjects taking metformin. Metformin suppresses mTOR by activating
AMPK in pre-neoplastic cells, which leads to suppression of cell growth and an increase
in apoptosis in pre-neoplastic cells. Finally, while COVID-19 has caused a new pandemic
all over the world, it has been reported recently that metformin consumption potentially
influences the mortality in subjects with COVID-19 and type 2 diabetes mellitus, which
brings great hope to us amid the current worldwide pandemic caused by COVID-19. Taken
together, metformin is a medicine with a long history, but the multifaceted mechanisms
of action of metformin have been elucidated one after another in its long history, and the
usefulness of metformin is very promising from clinical points of view as well as in the
basic research area.
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