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Abstract: Human health hazards caused by bisphenol A (BPA), a precursor for epoxy resins and
polycarbonate-based plastics, are well documented and are closely associated with mitochondrial
impairment and oxidative imbalance. This study aimed to assess the therapeutic efficacy of N-
acetylcysteine (NAC) on renal deterioration caused by long-term BPA exposure and examine the
signaling transduction pathway involved. Male Wistar rats were given vehicle or BPA orally for
12 weeks then the BPA-treated group was subdivided to receive vehicle or NAC concurrently with
BPA for a further 4 weeks, while the vehicle-treated normal control group continued to receive
vehicle through to the end of experiment. Proteinuria, azotemia, glomerular filtration reduction
and histopathological abnormalities caused by chronic BPA exposure were significantly reduced
following NAC therapy. NAC also diminished nitric oxide and lipid peroxidation but enhanced renal
glutathione levels, and counteracted BPA-induced mitochondrial swelling, increased mitochondrial
reactive oxygen species production, and the loss of mitochondrial membrane potential. The benefit
of NAC was related to the modulation of signaling proteins in the AMPK-SIRT3-SOD2 axis. The
present study shows the potential of NAC to restore mitochondrial integrity and oxidative balance
after long-term BPA exposure, and suggests that NAC therapy is an effective approach to tackle renal
deterioration in this condition.
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1. Introduction

Bisphenol A (BPA) is a chemical produced worldwide at a high volume as a starting
material for epoxy resins lining food and beverage containers and for the manufacture of
polycarbonate plastic products [1–3]. The impact of BPA on human health has been called
into attention by epidemiological studies revealing that humans are vulnerable to daily
BPA exposure and, most importantly, there is a positive correlation between high BPA
levels and the incidence of several human diseases such as developmental disorders, cancer,
and diabetes [2,4]. These studies encompass both prenatal and postnatal exposure and
include several study designs and population types. There is also growing evidence from
cell culture along with animal studies in many species, including primates and rodents,
showing the damaging effects of BPA on several organs such as the pancreas [5], heart [6],
brain [7], liver [8] and reproductive organs [4]. This collective body of evidence provides
increasing support that exposure to BPA can be harmful to humans.

The mechanisms of BPA toxicity are likely to be multifactorial and complicated.
However, several lines of evidence have demonstrated the depletion of antioxidants as well
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as the elevation of oxidative injury markers after exposure to BPA [7–9] and that oxidative
stress is indicated as a key point behind the pathogenesis of BPA. Emerging evidence has
also highlighted the involvement of mitochondrial dysfunction in BPA toxicity. BPA has
been reported to decrease the enzyme activities of the mitochondrial electron transport
chain, decrease ATP synthesis, and increase mitochondrial reactive oxygen species (ROS)
generation in rat liver mitochondria [8]. Regarding BPA and the kidney, our recent study
has shown that intraperitoneal injection of BPA for 5 consecutive weeks caused kidney
damage in rats [10]. Our results also showed the involvement of oxidative stress in the
damaging effect of BPA. Most importantly, using an isolated rat kidney mitochondrial
model, we provided further evidence to indicate that BPA can act directly at this level
causing abnormal mitochondrial function and, finally, whole organ damage [10].

Today, the application of BPA has extended to many consumer products in modern
society, putting humans at risk of regular and continuous exposure to BPA. This situation
increases the incidence of sustained renal degeneration and can eventually lead to end-stage
renal disease. Epidemiological data provided further support, since an association of high
urinary BPA and low-grade albuminuria was observed in both adults and children [11,12].
Finding strategies to overcome the effects of long-term BPA exposure on the kidneys is
therefore essential.

N-acetylcysteine (NAC) is generally recognized as an inexpensive human mucolytic
drug. It also has many pleiotropic effects including antioxidant, anti-inflammation, and
anti-apoptosis effects [13]. Studies have shown the therapeutic efficacy of NAC in a
variety of oxidant-mediated disorders in many organ systems [14]. In terms of the kidney,
there is substantial evidence demonstrating the effectiveness of NAC in protection against
several kidney injury models including renal ischemia-reperfusion [13], sepsis [15] and,
particularly, nephrotoxicity [14]. Clinically, NAC is accepted as a compound for toxicity
prevention, with a very low rate of adverse events, in certain scenarios such as contrast-
induced nephropathy [16].

The protective role of NAC on BPA toxicity via its antioxidant power has recently been
reported in various organ systems such as brain [7] and testis [17]. Consistent with these
studies, experiments using a BPA-treated cell line also demonstrated that cell viability was
significantly increased when treated with NAC and the improvement of oxidative stress
is thought to be a major mechanism behind these effects [18]. Importantly, there are also
increasing research data supporting the advantage of NAC as an effective mitochondrial
protective agent apart from its well-recognized powerful antioxidant effects [19]. As a high
risk of persistent BPA exposure together with oxidative stress and mitochondrial injury
contribute significantly to the pathogenesis of BPA toxicity, it is interesting to investigate
whether NAC could be an effective therapy to suppress adverse renal consequences after
long-term BPA exposure. The signaling pathway associated with renal alterations and the
potential of NAC in this condition was also explored.

2. Materials and Methods
2.1. Animal Preparations

Twenty-four male Wistar rats (130–150 g) obtained from Nomura Siam International,
Bangkok, Thailand, were housed under standard temperature (24 ± 1 ◦C) and humidity
(55 ± 5%) conditions, with a 12 h light-dark cycle, food and water given ad libitum. This
study was approved by the Institutional Animal Care and Use Committee at the Faculty
of Medicine, Chiang Mai University (Project number 38/2561) in compliance with the
guidance for the use of animals by the National Research Council of Thailand.

2.2. Experimental Designs

One week after acclimatization, rats were initially assigned to receive vehicle (corn
oil) (n = 8) or BPA (50 mg/kg/day) (n = 16) via oral gavage for 12 weeks. At the end of
week 12, the vehicle-treated control group continued to receive vehicle for further 4 weeks,
while rats treated with BPA were randomly allocated to receive different treatments, i.e.,
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vehicle or NAC (100 mg/kg/day, orally) (n = 8 each), in addition to BPA for a further 4
weeks. The dose of BPA was based on previous study showing the adverse health effect
of BPA exposure on the kidney [10], while the dose of NAC was selected according to its
protection against BPA-induced cognitive dysfunction in rats [7].

Body weight, food and water intake were recorded every day. At the end of exper-
iments (week 16), rats were placed in metabolic cages for 24 h urine collections. Blood
and kidney samples were taken thereafter under thiopental anesthesia (80 mg/kg, i.p.) for
evaluation of renal function, oxidative stress, mitochondrial function, and histopathology.

2.3. Biochemical Assays
2.3.1. Evaluations of Renal Functions

Blood urea nitrogen (BUN), serum creatinine, urine creatinine and urine protein were
assayed using an automatic analyzer (Beckman Coulter, Inc., Brea, CA, USA). Creatinine
clearance and urine protein-to-creatinine ratio were calculated.

2.3.2. Evaluation of Renal Oxidative Stress

The renal tissues were homogenized in an appropriate buffer using a Potter Elvehjem
glass-teflon homogenizer (Wheaton Science, Millville, NJ, USA). The tissue homogenates
were centrifuged at 10,000× g for 15 min at 4 ◦C, and the supernatant was collected for
oxidative stress assays. Lipid peroxidation was estimated in terms of malondialdehyde
(MDA) using TBARS assay kit (Cayman Chemical, Ann Arbor, MI, USA) according to
the manufacturer’s instruction. Nitric oxide (NO) and reduced glutathione (GSH) were
assayed using commercially available kits (Bioassay Systems, Hayward, CA, USA).

2.4. Histopathological Studies

Kidney tissues fixed in 10% neutral buffered formaldehyde were routinely processed
for light microscopic studies as described earlier [20]. The 4 µm paraffin sections were
stained with Hematoxylin and Eosin (H&E) and examined under a Leica DM750 photomi-
croscope (Leica Microsystems, Heerbrugg, Switzerland). For electron microscopic studies,
renal cortical tissues were fixed overnight with 2.5% glutaraldehyde in 0.1 M phosphate
buffer (pH 7.4, 4 ◦C) and processed according to the previously published method [20].
Sections of 60–80 nm, stained with uranyl acetate and lead citrate, were examined using a
JEM-2200 FS transmission electron microscope (JEOL, Tokyo, Japan).

2.5. Mitochondrial Studies
2.5.1. Preparation of Mitochondrial Proteins

Kidney tissues were homogenized in cold lysis buffer (230 mM mannitol, 70 mM
sucrose, 1 mM EDTA, and 10 mM Tris-HCl, pH 7.4) and mitochondria were isolated by
differential centrifugation as previously described [10]. The final mitochondrial pellets
were suspended in ice-cold respiration buffer containing 250 mM sucrose, 5 mM KH2PO4,
10 mM Tris-HCl, 2 mg/mL BSA, pH 7.2. A bicinchoninic acid (BCA) assay was used
to quantify protein content of the mitochondria, and bovine serum albumin was used
as standard.

2.5.2. Determination of Mitochondrial Reactive Oxygen Species (ROS) Production

Mitochondrial ROS were assayed using a cell-permeable fluorogenic probe 2′,7′-
dichloro-fluorescein diacetate (DCFDA) as previously described [10]. Briefly, mitochondria
were incubated at 25 ◦C with 2 µM DCFDA for 60 min. The fluorescence emission from
DCF was determined by fluorescence microplate reader with excitation and emission
spectra set at 485 nm (bandwidth 10 nm) and 530 nm (bandwidth 5 nm), respectively. The
ROS levels were expressed as arbitrary units of fluorescence intensity of DCF.
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2.5.3. Determination of Mitochondrial Membrane Potential

Mitochondrial membrane potential (∆Ψm) was assessed using a lipophilic cationic
fluorescence JC-1 dye according to the method described previously [10]. Briefly, mitochon-
dria were stained with 310 nM JC-1 and incubated at 37 ◦C for 30 min. The red J-aggregate
and green monomer forms of JC-1 were detected by a fluorescence microplate reader at
an excitation/emission of 485/590 and 485/530 nm, respectively. The ratio of red/green
fluorescence intensity was calculated and used to indicate the change in ∆Ψm, where a
decrease in the ratio reflected mitochondrial membrane potential dissipation.

2.5.4. Determination of Mitochondrial Swelling

Mitochondrial swelling was determined by measuring the change in absorbance of
mitochondria at 540 nm over 15 min [10]. Kinetic measurements were carried out every
1 min at 25 ◦C using a microplate reader (SynergyTM H4, BIOTEK® Instruments, Inc.,
Winooski, VT, USA). A decrease in absorbance indicates mitochondrial swelling.

2.6. Western Blot Analysis

Renal cortical tissues were extracted in buffer containing 20 mM Tris pH 6.8, 1 mM
sodium orthovanadate, 5 mM sodium fluoride, and protease inhibitor. The supernatants
were collected, and protein content was measured using a Bradford protein assay kit
(Bio-Rad Laboratories, Hercules, CA, USA). The protein lysates were mixed with loading
buffer and separated by 10% SDS-PAGE under denaturing conditions then transferred onto
nitrocellulose membranes (Thermo Fisher Scientific, Waltham, MA, USA). The membranes
were blocked with either 5% skim milk or 5% bovine serum albumin in Tris-buffered
saline containing 0.1% Tween (TBST) and then incubated overnight at 4 ◦C with primary
antibodies against adenosine monophosphate-activated protein kinase (AMPK), acetylated
superoxide dismutase 2 (Ac-SOD2), superoxide dismutase 2 (SOD2), sirtuin 3 (SIRT3),
pro-caspase 3, cleaved-caspase 3, B-cell lymphoma-2 (Bcl-2), (Cell Signaling Technology,
Danvers, MA, USA), phosphorylated AMPK (p-AMPKThr172), peroxisome proliferator-
activated gamma receptor coactivator-1α (PGC-1α) (Millipore Corporation, MA, USA), Bcl-
2-associated X protein (Bax) and β-actin (Santa Cruz Biotechnology, Santa Cruz, CA, USA)
followed by the appropriate horseradish peroxidase (HRP)-conjugated second antibodies
(Millipore Corporation, MA, USA) for 1 h at room temperature. Detection of protein was
performed using Bio-Rad’s Clarity ECL Western Blot Substrate kits and the blot bands were
developed in ChemiDoc Touch Imaging System (Bio-Rad Laboratories, Inc., Philadelphia,
PA, USA). Analysis of protein expression was determined by the Image J program [21].
Each protein expression was normalized with β-actin expression.

2.7. Statistical Analysis

Data are expressed as mean ± SEM. One-way analysis of variance (ANOVA) followed
by Fisher post-hoc test or nonparametric Kruskal Wallis test (as appropriate) was used
to determine differences between the groups. p < 0.05 was considered statistically signifi-
cant. All analyses were performed using SPSS software version 20.0 (SPSS Inc., Chicago,
IL, USA).

3. Results
3.1. Effects of Long-Term BPA Exposure and NAC Treatment on Body Weight, Kidney Weight,
Food and Water Intake

Body weight at the start of experiment was very similar in all groups studied (Table 1).
After 12 weeks of continuous BPA exposure, all BPA-exposed rats experienced less body
weight gain than vehicle-fed rats, although the intake of food and water was almost the
same. In addition to the lower body weight, BPA-treated rats also experienced a significant
decrease in absolute kidney weight at the end of week 16 compared with vehicle-controlled
rats. However, no significant differences were detected in terms of kidney weight to body
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weight ratio. NAC administration to BPA-exposed rats from week 12 to week 16 had no
measurable effect on the change of these parameters caused by BPA.

Table 1. Effects of long-term BPA exposure and NAC treatment on body weight, kidney weight, food and water intake.

Parameters
Week 0 Week 12 Week 16

Veh BPA BPA+NAC Veh BPA BPA + NAC Veh BPA BPA + NAC

BW
(g)

135.0 135.0 134.0 459.17 415.00 415.83 466.67 396.67 395.00
±1.83 ±0.62 ±1.53 ±5.07 ‡ ±14.61 *,‡ ±10.12 *,‡ ±10.54 ±4.94 * ±10.17 *

Food intake - - - 20.69 19.58 19.58 17.74 17.71 17.80
(g/day) ±0.82 ±0.29 ±0.28 ±1.09 ±0.36 ±0.12

Water intake - - - 20.12 20.45 20.27 20.52 21.58 20.30
(ml/day) ±1.27 ±1.35 ±1.02 ±1.12 ±0.96 ±1.59

KW - - - - - - 2.85 2.32 2.24
(g) ±0.07 ±0.01 * ±0.04 *

KW/BW - - - - - - 0.61 0.59 0.59
(* 100) ±0.02 ±0.01 ±0.01

Values are mean ± SEM (n = 6 each). Veh: vehicle-treated group; BPA: BPA-treated group; BPA+NAC: BPA plus NAC-treated group; BW:
body weight; KW: kidney weight. * p < 0.05 vs. Veh within the same week. ‡ p < 0.05 vs. their respective values in week 0.

3.2. Effects of Long-Term BPA Exposure and NAC Treatment on Renal Function
and Histopathology

Exposure to BPA for a period of 12 weeks resulted in significant increases in blood
urea nitrogen (Figure 1a) and serum creatinine (Figure 1b) compared to the vehicle control.
The levels of urea nitrogen and creatinine progressively increased and reached about 99%
and 58% above their baseline values, respectively, by the end of experiment. Consistent
with the accumulations of blood urea nitrogen and serum creatinine, BPA exposure caused
an obvious reduction (p < 0.05) in creatinine clearance by some 24% and 41% after 12 and
16 weeks of exposure, respectively (Figure 1c).

In addition, a remarkable increase (p < 0.05) in urine protein excretion of about nine-
fold from the respective baseline values was observed at week 12 following BPA exposure,
and reached approximately 19-fold within week 16 (Figure 1d). Calculation of urine protein-
to-creatinine ratio (Figure 1e) exhibited similar trend to the 24 h urine protein excretion.
It was found that the urine protein-to-creatinine ratio dramatically rose from its baseline
value in week 0 to about six-fold in week 12, and further increased to 11-fold in week 16.
Interestingly, NAC treatment showed strong potential to significantly ameliorate all renal
functional alterations caused by oral BPA exposure for 16 consecutive weeks.

Light and electron microscopic examination following long-term BPA exposure and
NAC treatment are depicted in Figure 2. The vehicle-control rat exhibited all normal
characteristics of glomerulus (first panel), renal tubules (second panel), podocytes (third
panel), and mitochondria (lower panel). In contrast, H&E-stained kidney section from the
long-term BPA-exposed rat demonstrated glomerular structural changes with some of them
becoming atrophied. A large number of apoptotic cells were found in the proximal tubules
and distributed throughout the kidneys. Consistent with light microscopy, podocyte
effacement characterized by flattening, widening, and shortening of the foot processes, and
reduction in the frequency of filtration slits were detected from electron photomicrographs
of the long-term BPA-exposed group. Besides, mitochondria within the proximal tubule
appeared swollen, fragmented, with disrupted cristae, and decreased in the number. The
morphological changes induced by BPA were significantly diminished upon treatment
with NAC for 4 weeks.
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3.3. Effects of Long-Term BPA Exposure and NAC Treatment on Renal Oxidative Stress and
Mitochondrial Function

Repeated exposure to BPA for 16 weeks produced an obvious increase (p < 0.05)
in the kidney tissue levels of nitric oxide and malondialdehyde by some 64% and 25%,
respectively (Figure 3). These increments were significantly blunted upon treatment with
NAC during the last 4 weeks of BPA exposure. The non-enzymatic antioxidant glutathione
as well as enzymatic antioxidant superoxide dismutase were also reduced significantly
following long-term BPA exposure. Again, NAC treatment was able to restore these
changes to the values that were comparable to control.
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Figure 2. Histopathological changes following long-term BPA exposure and NAC treatment. The first and second panels
show kidney sections stained with hematoxylin and eosin (H&E, 10× and 40×, respectively). The third and last panels
show transmission electron micrographs of glomerulus and renal tubules, respectively (Original magnification: 3000×).
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squares within the third panel highlight the morphology of the podocytes, especially the podocyte effacement in the
BPA-treated group.

Figure 4 demonstrates the kidney mitochondrial function in response to long-term
BPA exposure and NAC treatment. There was a considerable increase in mitochondrial
ROS production of about 30% (p < 0.05) in the BPA-exposed group compared with the
vehicle control group. Exposure to BPA for 16 weeks also produced a fall in mitochondrial
membrane potential change (p < 0.05) and a swelling of mitochondria as reflected by a
significant decrease in mitochondrial absorbance. Treatment with NAC concurrently with
BPA, started at week 12 and continued through to the end of week 16, showed a remarkable
protection against mitochondrial functional alterations induced by long-term BPA exposure
(p < 0.05).
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3.4. Effects of Long-Term BPA Exposure and NAC Treatment on Renal Cortical Expressions of
Apoptotic Markers

The impact of long-term BPA exposure and NAC treatment on apoptosis of the kidney
are presented in Figure 5. Western blotting analysis showed that the protein level of pro-
apoptotic Bax was significantly increased after long-term BPA exposure but significantly
decreased after the administration of NAC. By contrast, BPA decreased the expression
of anti-apoptotic Bcl-2 protein compared to vehicle (p < 0.05), while this reduction was
restored upon concurrently treatment with NAC. The ratio of cleaved-caspase 3/pro-
caspase 3 was also increased after exposure to BPA for 16 weeks (p < 0.05), which was
suppressed by NAC treatment.
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3.5. Effects of Long-Term BPA Exposure and NAC Treatment on Renal Cortical Expressions of
Signaling Proteins Involved in AMPK-SIRT3-SOD2 Axis

The expression of signaling proteins involved in the AMPK-SIRT3-SOD2 axis, which
is the key pathway involved in the regulation of mitochondrial biogenesis and the mainte-
nance of homeostasis in the cells, are shown in Figure 6. Although long-term BPA exposure
had no effect on the expression of AMPK total protein, it markedly decreased the phospho-
rylation of AMPK (p-AMPK), resulting in a robust decrease in the ratio of p-AMPK/AMPK
(p < 0.05) compared to the vehicle control. A significant decrease in PGC-1α as well as
SIRT3 was observed after the rats were exposed to BPA for 16 consecutive weeks. In addi-
tion, BPA exposure significantly enhanced the expression of Ac-SOD2 while decreasing
the expression of SOD2, causing an increase in the Ac-SOD2/SOD2 ratio (p < 0.05). All
these changes caused by BPA were significantly inhibited when the BPA-exposed rats were
treated with NAC.
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4. Discussion

This study evaluated the impacts of long-term exposure to BPA on the kidney with
particular attention paid to the potential therapeutic role of NAC in this condition. The
study outcomes provide compelling evidence indicating the effectiveness of NAC in
impeding the renal deterioration caused by BPA through the protection of mitochondria.

Exposure to BPA for 16 consecutive weeks leads to a deterioration of kidney function
as signified by a reduction in creatinine clearance together with the retention of blood
urea nitrogen and serum creatinine progressively over time. The development of renal
functional impairment in the current study is potentially a consequence of the actions
of BPA on both glomerular and tubular sites. The glomerular effect of BPA is suggested
based on the presence of proteinuria (increased urine protein excretion including urine
protein-to-creatinine ratio), abnormal glomerular shape, and the characteristic of podocyte
effacement; while the manifestation of apoptotic cells in the proximal tubules coupled
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with structural deformity of mitochondria observed from light and electron microscopies
reflect the influence of BPA in renal tubular damage. Our results are compatible with an
earlier report showing BPA induced podocytopathy and proteinuria in mice including a
diminished expression of the slit diaphragm proteins nephrin and podocin in cultured
podocytes [22]. In addition, a study reports degeneration of the proximal tubule epithelium
and symptoms of cell’s nucleus pyknosis after BPA exposure [23]. In accordance with
histopathological studies, we also detected increasing expressions of Bax, decreasing Bcl-2,
and increasing cleaved caspase-3/caspase-3 in the kidney tissues after 16 weeks of BPA
exposure. As these proteins are important regulators and mediators of the mitochon-
drial apoptotic pathway [24,25], it is believed that the impairment of renal function after
long-term BPA exposure is the result of mitochondrial injury caused by BPA. Evidence
obtained from the current study in which renal mitochondrial dysfunction was shown by
increased mitochondrial ROS production, decreased mitochondrial membrane potential,
and mitochondrial swelling, provided further support to this suggestion.

In recent years, the direct role of BPA on mitochondria has been revealed. The study
using both freshly isolated hepatocytes as well as liver mitochondria isolated from BPA-
treated rats showed that the dose-dependent induction of hepatotoxicity was produced
by enhancing oxidative stress and impairing complex I and III enzyme activities of the
mitochondrial electron transport chain [8]. Regarding the kidney, our previous study using
an in vitro model was able to demonstrate a dose-dependent impairment in mitochon-
drial function when BPA was applied directly onto the isolated kidney mitochondria [10].
This in vitro experiment further pointed out that BPA-induced mitochondrial oxidative
stress, as exhibited by increasing the levels of mitochondrial MDA and decreasing antioxi-
dant glutathione, is the causative factor of mitochondrial dysfunction and leads to whole
organ damage.

Interestingly, the present investigation revealed that treatment with NAC for 4 weeks
was able to offset BPA-induced renal deterioration, as seen by the improvements in
azotemia, proteinuria, mitochondrial functional impairment, renal structural changes,
and the suppression of all apoptotic protein expressions. The effectiveness of NAC was
evident even though it was given after BPA exposure for 12 weeks, when the renal damage
has already been established. The benefit of NAC was observed in association with the
restorations of all oxidative indexes (NO, MDA, GSH, and particularly SOD) within the
kidneys, suggesting that NAC exerted its renoprotection via its redox control properties.
This is compatible with several publications showing the free radical scavenging and
antioxidant properties of NAC [26–29].

An additional significant finding in the present study is the decreased expressions of
p-AMPK/AMPK ratio, PGC-1α, SIRT3, SOD2 and the increased expression of Ac-SOD2
after 16 weeks of BPA exposure, while treatment with NAC restored these alterations.
The AMPK-PGC-1α-SIRT3-SOD2 axis has been recognized as essential for the regulation
of mitochondrial oxidative stress and biogenesis [30]. SIRT3, the primary mitochondrial
NAD+-dependent protein deacetylase, plays a key role in maintaining mitochondrial redox
homeostasis by regulating the function of electron transport chain complexes I and III and
thereby prevents ROS generation within the mitochondria [30,31]. It also contributes to
ROS detoxification by deacetylation of SOD2 and, as a result, activation of mitochondrial
antioxidant enzyme SOD2 [32]. Based on our findings, it is most likely that the upregulation
of SIRT3 after NAC supplementation is a crucial mechanism responsible for the improve-
ment of mitochondrial injury induced by long-term BPA exposure. Studies in various
experimental models also show that upregulation of SIRT3 reduces mitochondrial injury
and preserves organ function, while deletion of SIRT3 exacerbates the injury [30,33–35].

Study in vitro using muscle cells and hepatocytes showed that knockdown PGC-1α
gene led to decreased SIRT3 gene expression, and knockdown SIRT3 decreased the stimu-
latory effect of PGC-1α on mitochondrial biogenesis [36]. The study concluded that SIRT3
functions as a downstream target gene of PGC-1α and is essential for PGC-1α-dependent
induction of ROS-detoxifying enzymes and several components of the mitochondrial
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respiratory chain [36]. There are also reports of AMPK-activated PGC-1α in the regula-
tion of mitochondrial biogenesis and oxidative stress [36,37]. A study of a myocardial
ischemia/reperfusion model demonstrated that inhibition of AMPK significantly reduced
the expressions of PGC-1α and SIRT3, impaired mitochondrial function, increased mi-
tochondrial oxidative damage, and promoted myocardial injury [30]. In addition, BPA-
induced toxicity has previously been shown to be related to the disruption of ETC and
decreased ATP production [8]. Based on these available data, together with the crucial role
of AMPK in the maintenance of ATP balance, it is possible that NAC may protect against
BPA nephrotoxicity in the present study via its ability to facilitate ATP production and
trigger AMPK phosphorylation and activation, which subsequently activate SIRT3 activity
and preserve mitochondrial homeostasis. As AMPK as well as PGC-1α is upstream to
SIRT3, further investigation is required to identify the definite site of action of NAC in this
circumstance. However, the findings obtained herein underscore the therapeutic efficacy
of NAC to cope with long-term BPA induced renal deterioration, at least in part, through
an activation of the AMPK-PGC-1α-SIRT3-SOD2 axis.

5. Conclusions

The present outcomes confirm the deleterious consequences of long-term BPA expo-
sure on the kidney and provide additional evidence to support that the disturbance of
mitochondrial homeostasis, via AMPK-PGC-1α-SIRT3-SOD2 axis, is a key mediator in
BPA-induced nephrotoxicity. Above all, emerging evidence from this study points towards
NAC as an effective therapeutic remedy for this disorder.
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