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Abstract
COVID-19 (coronavirus disease 2019) is an ongoing global pandemic caused by severe acute respiratory syndrome coro-
navirus 2. Recently, it has been demonstrated that the voice data of the respiratory system (i.e., speech, sneezing, coughing, 
and breathing) can be processed via machine learning (ML) algorithms to detect respiratory system diseases, including 
COVID-19. Consequently, many researchers have applied various ML algorithms to detect COVID-19 by using voice data 
from the respiratory system. However, most of the recent COVID-19 detection systems have worked on a limited dataset. In 
other words, the systems utilize cough and breath voices only and ignore the voices of the other respiratory system, such as 
speech and vowels. In addition, another issue that should be considered in COVID-19 detection systems is the classification 
accuracy of the algorithm. The particle swarm optimization-extreme learning machine (PSO-ELM) is an ML algorithm that 
can be considered an accurate and fast algorithm in the process of classification. Therefore, this study proposes a COVID-
19 detection system by utilizing the PSO-ELM as a classifier and mel frequency cepstral coefficients (MFCCs) for feature 
extraction. In this study, respiratory system voice samples were taken from the Corona Hack Respiratory Sound Dataset 
(CHRSD). The proposed system involves thirteen different scenarios: breath deep, breath shallow, all breath, cough heavy, 
cough shallow, all cough, count fast, count normal, all count, vowel a, vowel e, vowel o, and all vowels. The experimental 
results demonstrated that the PSO-ELM was capable of attaining the highest accuracy, reaching 95.83%, 91.67%, 89.13%, 
96.43%, 92.86%, 88.89%, 96.15%, 96.43%, 88.46%, 96.15%, 96.15%, 95.83%, and 82.89% for breath deep, breath shallow, 
all breath, cough heavy, cough shallow, all cough, count fast, count normal, all count, vowel a, vowel e, vowel o, and all 
vowel scenarios, respectively. The PSO-ELM is an efficient technique for the detection of COVID-19 utilizing voice data 
from the respiratory system.

Keywords Mel frequency cepstral coefficients · Particle swarm optimization-extreme learning machine

Introduction

COVID-19 (coronavirus disease 2019), which is caused by 
SARS-COV-2 (severe acute respiratory syndrome corona-
virus 2), was declared a worldwide pandemic on 11 March 
2020 by the World Health Organization (WHO). COVID-19 
is considered a new infectious disease, but it is similar to 
other diseases that are caused by some coronaviruses such 

as Middle East respiratory syndrome coronavirus (MERS-
COV) and severe acute respiratory syndrome coronavirus 
(SARS-COV), which caused disease outbreaks in both years 
(2002 and 2012) [1]. Fever, dry coughs, and fatigue are the 
most common COVID-19 symptoms [2]. In addition, the 
other COVID-19 symptoms include muscle pain, joint pain, 
gastrointestinal symptoms, shortness of breath, and loss of 
taste or smell [3]. At the writing time of this manuscript, 
there were 209.9 million active COVID-19 cases worldwide, 
and there were 4.4 million deaths. The USA has recorded the 
greatest number of new COVID-19 cases (37.1 million) and 
622,263 deaths [4]. The scale of the pandemic has caused 
several health systems to be overrun due to case manage-
ment and the need for testing.

Several efforts have been made to detect early COVID-
19 symptoms by applying artificial intelligence (AI) and 
machine learning (ML) algorithms to images [5]. Extreme 
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learning machines (ELMs) have been demonstrated to 
outperform other ML algorithms, such as support vector 
machines (SVMs), convolutional neural networks (CNNs), 
and backpropagation-based neural networks (NNs), in such 
tasks [6]. For instance, the optimized genetic algorithm-
extreme learning machine (OGA-ELM) has been shown 
to be able to detect COVID-19 from X-ray images with 
100.00% accuracy [6]. In addition, the multiple kernels-
ELM based on a deep neural network has been demon-
strated to detect COVID-19 from computed tomography 
(CT) images with 98.36% accuracy [7].

Coughing is considered one of the most common COVID-
19 symptoms as well as a symptom of more than a hundred 
other illnesses, which affects the respiratory system differ-
ently [8, 9]. For instance, lung illnesses can cause either 
obstruction or restriction in the airway, which can affect 
cough acoustics [10]. Additionally, it has been assumed 
that the behavior of the glottis acts differently under various 
pathological conditions [11, 12], which makes it possible to 
distinguish among coughs due to asthma, tuberculosis (TB), 
pertussis (whooping cough), and bronchitis [13–15].

Data on the respiratory system, such as speech, sneez-
ing, eating behavior, coughing, and breathing, can be pro-
cessed via ML algorithms to detect illnesses of the respira-
tory system [16]. Therefore, many recent studies have been 
conducted to detect COVID-19 by using voice data from 
the respiratory system. For example, the authors in [17] 
presented a new application for the detection of COVID-
19 by implementing the short-time magnitude spectrogram 
features (SRMSF) and the ResNet18 classifier. The applica-
tion was tested based on the Coswara dataset using cough 
voice data. The best result was obtained in terms of the area 
under the ROC curve (AUC), which reached up to 0.72. 
In addition, the authors in [18] proposed a system for the 
detection of COVID-19 by implementing the mel-filter bank 
features (MFBF) and SVM classifier. The proposed system 
was evaluated based on speech voice data collected from 
YouTube. The experimental results revealed that the highest 
achieved result had an accuracy of 88.60%. Additionally, an 
application for the detection of COVID-19 was proposed in 
[19]. The proposed application was built by using the MFCC 
features and ResNet50 classifier. The application was tested 
based on cough voice data. The experimental results showed 
that the proposed application achieved the highest results 
with a specificity of 94.2%.

The authors in [20] proposed a COVID-19 detection sys-
tem by implementing several handcrafted features and logis-
tic regression (LR) classifiers. The proposed system was 
evaluated based on cough and breath voice data taken from 
a crowdsourced dataset. The experimental results showed 
that the highest precision was 80.00% for cough voice data 
and 69.00% for breath voice data. Moreover, a new COVID-
19 detection system was proposed in [21]. The proposed 

system uses mel-spectrogram features (MSF) and the CNN 
architecture. The system was evaluated based on the ESC-
50 dataset and a collected dataset by recording COVID-19 
samples using a mobile app. The evaluation was based on 
three different scenarios: speech, cough, and overall voice 
data. The highest results were achieved with an accuracy of 
92.00%, 92.85%, and 88.00% for speech, cough, and over-
all, respectively. In addition, the authors in [22] proposed 
a COVID-19 detection system that consists of two phases. 
The first phase applies several steps to extract the needed 
features. These steps start with MFCC followed by variable 
Markov oracle (VMO) and recurrence plot (RP) and end 
with recurrence quantification analysis (RQA). The second 
phase feeds the extracted features into the eXtreme gradi-
ent boosting (XGBoost) classifier. The proposed system was 
evaluated based on cough and vowel “ah” voice data col-
lected by Carnegie Mellon University (CMU). The experi-
mental results showed that the proposed system achieved an 
accuracy of up to 97.00% and 99.00% for cough and vowel 
voice data, respectively. Furthermore, a new COVID-19 
detection application was presented in [23]. The presented 
system was based on using MFCC features and the long 
short-term memory (LSTM) classifier. The application was 
tested by using three different scenarios: cough, breath, and 
speech voice data. The highest experimental results were 
achieved with an accuracy of 97.00% for cough, 98.20% 
for breath, and 88.20% for speech. Table 1 summarizes the 
previous works on COVID-19 detection by using respiratory 
system voice data.

Among the most common feature extraction methods 
used in the voice data processing field are linear predic-
tive coding (LPC), cepstrum coefficients derived from LPC 
(LPCC), MFCC, and perceptual linear prediction (PLP) 
[24–26]. Out of all the aforesaid methods, MFCC is gener-
ally the most popular feature extraction approach in voice 
applications and has been cited to have the highest identifi-
cation accuracy [27, 28].

Recently, the effectiveness of the ELM has been dem-
onstrated in many domains, such as foreign accent identi-
fication [29], emotion recognition [30, 31], and language 
identification [32]. In addition, the ELM is preferred by 
researchers because it is superior to traditional SVMs 
[33–35] specifically in (1) thwarting overfitting, (2) its 
implementation on multi and binary classifications, and (3) 
its similar kernel-based capability SVM and working with 
an NN structure. These factors make the ELM more efficient 
in accomplishing a better learning performance.

Hence, overall, ELM demonstrates a speedier learning 
process, better generalization devoid of overtraining, and 
greater results based on the utilized input weights. Therefore, 
researchers have integrated PSO into ELM to obtain the best 
input weights and biases that are used in the hidden layer of 
the ELM. The effectiveness of this integration (PSO-ELM) 
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has been demonstrated in many domains, including language 
identification [36], short-term temperature prediction [37], 
and breast cancer detection [38]. However, to the best of 
our knowledge, no research has used the PSO-ELM in the 
detection of COVID-19. Therefore, the aims of this study 
are as follows:

• Propose a new COVID-19 detection system based on the 
PSO-ELM classifier and MFCC features using different 
voice data of the respiratory system.

• In the proposed method, we used thirteen different sce-
narios: deep breath, shallow breath, all breaths, heavy 
cough, shallow cough, all coughs, count fast, count nor-
mal, all counts, vowel a, vowel e, vowel o, and all vowels.

• The NN, random forest (RF), and basic ELM classifiers 
are also implemented based on the MFCC features for the 
detection of COVID-19.

• Several evaluation measures, such as accuracy, recall, 
precision, specificity, F-measure, G-mean, and execu-
tion time, are used to evaluate the performance of the 
proposed system.

The remainder of this paper is organized as follows. 
“Materials and Proposed Method” section provides the 
materials and proposed method. “Experimental Setup and 
Results” section discusses the results of the experiments. 
Finally, “Discussion” section presents the conclusion of this 
paper.

Input Voice Signal

Classification

PSO-ELM

Features Extraction

Identified Voice 
Signal

Healthy

COVID-19

MFCC With 13 
Cepstral

Fig. 1  Block diagram of the proposed COVID-19 detection system

Table 2  Description of the whole dataset

Deep breath Shallow breath All breath Label

Class Number of samples Class Number of samples Class Number of samples

Healthy 39 Healthy 39 Healthy 78 1
COVID-19 39 COVID-19 39 COVID-19 78 2
Heavy cough Shallow cough All cough Label
Class Number of samples Class Number of samples Class Number of samples
Healthy 45 Healthy 45 Healthy 90 1
COVID-19 45 COVID-19 45 COVID-19 90 2
Count fast Count normal All count Label
Class Number of samples Class Number of samples Class Number of samples
Healthy 42 Healthy 45 Healthy 87 1
COVID-19 42 COVID-19 45 COVID-19 87 2
Vowel a Vowel e Label
Class Number of samples Class Number of samples
Healthy 43 Healthy 43 1
COVID-19 43 COVID-19 43 2
Vowel o All vowels Label
Class Number of samples Class Number of samples
Healthy 41 Healthy 127 1
COVID-19 41 COVID-19 127 2
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Materials and Proposed Method

The general diagram of the proposed COVID-19 detec-
tion system using the PSO-ELM method is demonstrated 
in Fig. 1. The diagram consists of various stages that are 
used to create the COVID-19 detection system based on the 
voice signals. The first stage refers to the voice datasets (i.e., 
breathing, coughing, counting, and vowels) for healthy and 
COVID-19-infected people. In the second stage, the MFCC 
method is utilized to extract the needed features from the 
voice signals. Last, in the third stage, the MFCC extracted 
features are fed into the PSO-ELM classifier to detect 
COVID-19 based on the voice signal. These three stages of 
the proposed COVID-19 detection system are deliberated 
as subsections.

Dataset

In this study, the Corona Hack Respiratory Sound Data-
set (CHRSD) is utilized to evaluate the proposed system. 
The CHRSD was downloaded from [39]. The dataset 
contains multiple categories of respiratory sounds, such 
as deep breath, shallow breath, heavy cough, shallow 
cough, count fast, count normal, vowel a, vowel e, and 
vowel o. The voice samples were recorded from healthy 
and COVID-19-infected people of both genders female 
and male. The duration of the voice samples is in the 
range of (1–25) seconds. Table 2 describes the dataset 
that was used in this study. It is worth mentioning that 
all the experiments in this study were conducted based 
on a ratio of 70% for training and 30% for testing. In 
addition, the data samples, in both training and testing, 
were shuffled.

Feature Extraction: MFCC

In this study, the MFCC features [40, 41] were extracted 
from the voice samples based on conducting several pro-
cessing steps. These steps are preemphasis, windowing, fast 
Fourier transform (FFT), mel-filter bank, log, and discrete 
cosine transform (DCT). The explanation of the processing 
steps is provided as follows:

• Preemphasis represents the first step of MFCC feature 
extraction, which aims to boost energy at high frequen-
cies.

• Windowing is the second step of the MFCC, and it seg-
ments the voice sample into frames.

• FFT denotes the third step of the MFCC, which aims 
to convert the voice signal from the time domain into a 
frequency domain because the voice data features exist 
in the frequency domain.

• The mel-filter bank is the fourth step of the MFCC, which 
aims to approximate how much energy appears in each 
area or point.

• Log indicates the fifth step of the MFCC, the goal of 
which is to assure that the low and high frequencies are 
separated, which simulates the human hearing system.

• DCT is the last step of the MFCC, which aims to convert 
the log mel spectrum back to time.

The whole process of extracting the MFCC features is dem-
onstrated in Fig. 2. Table 3 depicts the variable values of the 
MFCC that have been utilized in this paper. The frame size and 
the frameshift size in the samples are calculated as depicted 
in Eqs. (1 and 2).

Nw: the size of the frame in the samples.
Tw: the duration of the frame in time.

Ns: the size of the frameshift in the samples.
Ts: the duration of the frameshift in time.

(1)Nw = 10
−3 × Tw × Samplingrate

(2)Ns = 10
−3 × Ts × Samplingrate

Fig. 2  The process of MFCC 
feature extraction

Input Voice Signal

Pre-emphasis 
Filter

MFCC Features

Windowing
Fast Fourier 
Transform

LogDiscrete Cosine 
Transform

Mel-Filter 
Bank

Table 3  The value of the MFCC 
variables that have been used in 
this study

Variable Value

Sampling rate 44,100 Hz
Tw 25 ms
Ts 10 ms
Nw 1103
Ns 441
Number of MFCC 

features
13
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Classification: PSO‑ELM

The PSO-ELM is proposed based on the concept of the 
PSO algorithm. In the PSO-ELM, the values of both input 
weights and hidden layer biases are modified by updating 
the parameters of the PSO to achieve high accuracy. The 
PSO-ELM processing steps are provided in deep detail 
as follows alongside its flowchart, which is depicted in 
Fig. 3.

N is a group of featured samples (Xj, tj), where Xj = [xj1, 
xj2, …, xjn]T ∈ Rn, and tj = [tj1, tj2, …, tjm]T ∈ Rm.

where:
Xj = the input, which is the extracted MFCC features.
tj = the expected output (true value).
Step 1: Randomly initialize the particle swarm (P) 

in the range of ([0, 1] for the bias values of the hidden 
neurons and [− 1, 1] for the values of the input weights), 
where P = {p1, p2, …, pz} and z refer to the population size. 

ELM Training

Parameters Optimization

Initialize the particles swarm

and its corresponding position,

velocity

Train ELM and calculate the

fitness of each particle

according to Eq. (3)

Find the best position of the ith
particle Plocalid; the best

position of all particles Pg

Adjust the position, velocity

of each particle according to

Eq.(8) and Eq. (9)

Recalculate the fitness of each

particle

Reach the stopping

criteria?

Get the optimal the weights

and biases between input

layer and hidden layer.

Yes

No

Start

COVID-19 Voice Dataset

Training set Testing set

Select the activation

function, determine

the hidden layer nodes L

Calculate the output

matrix H of the hidden

layer g(x)

Calculate the output

weights β according to

Eq. (4)

Saving the predicting

ELM model

The prediction results of

crop evapotranspiration

Calculate the average

accuracy rate

End

Fig. 3  PSO-ELM algorithm flowchart
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The ith particle position shape is depicted as pi = {w11, w12, 
…, w1n, w21, w22, …, w2n, wL1, wL2, …, wLn, b1, …, bL}. 
The ith particle velocity shape is denoted as Vi = {vi1, vi2, 
…, viD}, where D = (1 + n) × L. In addition, the velocity 
of each particle is limited to the range of [− Vmax, Vmax]. 
Determine the maximum iteration number kmax.

where:
wij ∈ [− 1, 1] denotes the values of the input weights 

that link the jth input neuron and the ith hidden neuron.
bi ∈ [0, 1] represents the bias of the ith hidden neuron.
n refers to the number of input neurons.
L refers to the number of hidden neurons.
(1 + n) × L denotes the dimension of the particle, which 

requires optimizing its parameters.
Step 2: Split the dataset into two subsets (training set 

and testing set).
Set the number of hidden layer neurons as L and select 

the appropriate ELM activation function g(x) [42].

where:
� is the output weights matrix.
tj is the true value.
N is the number of training samples.
where:

H in Eq. (5) is the hidden layer output matrix of the 
ELM network; in H, the ith column is indicated to the 
ith hidden layer neuron on the input neurons. H  is the 
Moore–Penrose generalized inverse of H. The activation 
function g is infinitely distinguishable when the desired 
number of hidden neurons is L ≤ N.

Step 3: Calculate the fitness value of each particle (p) in 
the population (P) utilizing Eq. (3).

Step 4: Discover the best particle position Plocalid as well 
as the best position for all particles Pg. Subsequently, update 
them based on the following details:

(3)f (P) =

�∑N

j
��∑L

k
�kg(wkxj + bk) − tj��22

N

(4)� = HT

(5)H =

⎡⎢⎢⎣

g(w
1
.X

1
+ b

1
) ⋯ g(wL.X1

+ bL)

⋮ … ⋮

g(w
1
.XN + b

1
) ⋯ g(wL.XN + bL)

⎤⎥⎥⎦N×L

� =

⎡⎢⎢⎣

�
1

T

⋮

�L
T

⎤⎥⎥⎦L×m
and T =

⎡⎢⎢⎣

t
1
T

⋮

tN
T

⎤⎥⎥⎦N×m

(6)Plocalid =

{
pi pi better than Plocalid

Plocalid else

Step 5: Modify the position and velocity of each particle 
based on Eqs. (8 and 9) and recalculate the fitness value for 
each particle via Eq. (3).

where C1 and C2 denote acceleration coefficients, which are 
nonnegative constants; k refers to the present iteration num-
ber; i = 1, 2, …, z; d = 1, 2, …, D; and � denotes the inertial 
weight. r1 and r2 are two randomly generated numbers in 
the range of [0, 1].

Step 6: If the stopping criteria are reached, then save the 
optimal input weights and biases of the input-hidden layers; 
otherwise, go to step 4.

Step 7: The outcome results of the PSO optimization are 
utilized as input weights and biases for the ELM algorithm, 
and the hidden layer output matrix (H) is calculated by using 
Eq. (5).

Step 8: Calculate the weights of the output ( � ) based on 
Eq. (4) and save the ELM prediction model for testing.

Table 4 illustrates the parameters of the ELM and PSO 
that have been used in this study.

Experimental Setup and Results

Several experiments were conducted based on four main sce-
narios: breath, cough, count, and vowels. In the breath sce-
nario, three different scenarios were implemented: breath 
deep, breath shallow, and all breath. Additionally, three differ-
ent scenarios (i.e., cough heavy, cough shallow, and all cough) 
were applied in the cough scenario. Moreover, in the count 
scenario, three different scenarios were performed, which were 
count fast, count normal, and all count. Last, four different 
scenarios (i.e., vowel a, vowel e, vowel o, and all vowels) were 
conducted in the vowel scenario. All the experiments were 
implemented based on using 70% of the dataset as a training 
dataset and 30% as a testing dataset.

The proposed PSO-ELM was applied in several experi-
ments in each scenario based on the scenario’s dataset with a 
varying number of hidden neurons in the range of [100–600] 
with 50 increment steps, and each experiment had 100 itera-
tions. It is worth mentioning that all the experiments have been 
implemented in MATLAB R2019a programming language 
over a PC Core i7 of 3.20 GHz with 16 GB RAM and SSD 
1 TB (Windows 10). In this study, numerous evaluation meas-
urements were utilized to evaluate the proposed PSO-ELM 

(7)Pg =

{
pi pi better than Pg

Pg else

(8)vk+1
id

= �vk
id
+ C

1
r
1
(Plocalk

id
− pk

id
) + C

2
r
2
(Pk

gd
− pk

id
)

(9)pk+1
id

= pk
id
+ vk+1

id



 Cognitive Computation

1 3

approach. The evaluation measurements rely on the ground 
truth, which entails the application of the model to expect 
the answer on the evaluation dataset followed by a compari-
son between the predicted target and the actual answer. The 
evaluation measurements were used to evaluate the proposed 
PSO-ELM approach regarding true positive (TP), true negative 
(TN), false positive (FP), false negative (FN), recall, accu-
racy, specificity, G-mean, precision, F-measure, and execu-
tion time. Equations (10–15) [43–45] depict these evaluation 
measurements.

The experimental results of the four main scenarios 
(breath, cough, count, and vowels) are provided and dis-
cussed separately in detail in the following subsections.

Breath Scenario

This section provides and discusses the performance of the 
PSO-ELM in the breath scenario, where the breath sce-
nario includes three different scenarios: breath deep, breath 

(10)accuracy =
TP + TN

TP + TN + FN + FP

(11)precision =
TP

TP + FP

(12)recall =
TP

TP + FN

(13)F −Measure =
(2 × precision × recall)

(precision + recall)

(14)G −Mean =
√
recall × precision

(15)Specif icity =
TN

TN + FP

shallow, and all breath. In the breath deep scenario, we used 
the voice samples that contain only breathing deep sounds. 
The shallow breath scenario was performed by using voice 
samples that contain only shallow breathing sounds. In 
the scenario of all breaths, we used the voice samples that 
contain both deep breathing and shallow breathing sounds. 
Table 5 describes the dataset that was used in each scenario.

The best experimental results of the proposed PSO-
ELM in the deep breath, shallow breath, and all breath 
scenarios were obtained with overall accuracies of 95.83%, 
91.67%, and 89.13% for the deep breath, shallow breath, 
and all breath scenarios, respectively. Figure 4 shows the 
ROC of the best results for the deep breath, shallow breath, 
and all breath scenarios.

Cough Scenario

This section provides and discusses the performance of the 
PSO-ELM in a cough scenario where the cough scenario 
includes three different scenarios: heavy cough, shallow 

Table 4  The ELM and PSO parameters

ELM PSO

Parameters Values Parameters Values

P Input weights and biases Population (particles) Contain positions and velocities
� Output weights Position Generated randomly at the beginning, in the range of 

[− 1, 1] for input weights and [0, 1] for biases
Input weight In the range of [− 1, 1] Velocity Start with zero values, and it is limited to the range of 

[− 2, 2]
Biases values In the range of [0, 1] z 50
Input neurons number (n) Input attributes � , C1, C2 0.7289, 1.496, 1.496
Hidden neurons number (L) 100–600, with 50 increment step kmax 100
Output neurons Class values Plocalid Best particle position
Activation function Sigmoid Pg Best position of all particles

Table 5  The dataset that was used in deep breath, shallow breath, and 
all breath scenarios

Class Number of 
all samples

Number of training 
samples

Number 
of testing 
samples

Label

Deep breath scenario
Healthy 39 27 12 1
COVID-19 39 27 12 2
Shallow breath scenario
Healthy 39 27 12 1
COVID-19 39 27 12 2
All breath scenario
Healthy 78 55 23 1
COVID-19 78 55 23 2
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cough, and all coughs. In the heavy cough scenario, we 
used voice samples that contain only heavy coughing 
sounds. The shallow cough scenario was performed by 
using the voice samples that contain only shallow cough-
ing sounds. In the scenario of all coughs, we used voice 
samples that contain both heavy coughing and shallow 
coughing sounds. Table 6 describes the dataset that was 
utilized in each scenario.

The best experimental results of the proposed PSO-
ELM in heavy cough, shallow cough, and all cough sce-
narios were obtained with overall accuracies of 96.43%, 
92.86%, and 88.89% for heavy cough, shallow cough, and 
all cough scenarios, respectively. Figure 5 shows the ROC 

of the best results for the heavy cough, shallow cough, and 
all cough scenarios.

Count Scenario

This section provides and discusses the performance of the 
PSO-ELM in a count scenario where the cough scenario 
contains three different scenarios: count fast, count nor-
mal, and all count. In the count fast scenario, we utilized 
the voice samples that contain only counting fast sounds. 
The count normal scenario was performed by utilizing the 
voice samples that contain only counting normal sounds. 
In the scenario of all counts, we utilized the voice sam-
ples that contain both counting fast and counting normal 
sounds. Table 7 describes the dataset that was used in each 
scenario.

The best experimental results of the proposed PSO-ELM 
in count fast, count normal, and all count scenarios were 
obtained with overall accuracies of 96.15%, 96.43%, and 
88.46% for count fast, count normal, and all count scenarios, 
respectively. Figure 6 shows the ROC of the best results for 
the count fast, count normal, and all count scenarios.

Vowel Scenario

This section provides and discusses the performance of the 
PSO-ELM in a vowel scenario where the vowel scenario 
contains four different scenarios: vowel a, vowel e, vowel o, 
and all vowels. In the vowel a scenario, we used the voice 

Fig. 4  The ROC of PSO-ELM best results for the deep breath, shal-
low breath, and all breath scenarios

Table 6  The dataset that was utilized in heavy cough, shallow cough, 
and all cough scenarios

Class Number of 
all samples

Number of training 
samples

Number 
of testing 
samples

Label

Deep cough scenario
Healthy 45 31 14 1
COVID-19 45 31 14 2
Shallow cough scenario
Healthy 45 31 14 1
COVID-19 45 31 14 2
All cough scenario
Healthy 90 63 27 1
COVID-19 90 63 27 2 Fig. 5  The ROC of PSO-ELM best results for the heavy cough, shal-

low cough, and all cough scenarios
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samples that contain only vowel a sounds. The vowel e sce-
nario was performed by using the voice samples that contain 
only vowel e sounds. In the vowel o scenario, we used the 
voice samples that contain only vowel o sounds. In the sce-
nario of all vowels, we used the voice samples that contain 
vowel a, vowel e, and vowel o sounds. Table 8 describes the 
dataset that has been utilized in each scenario.

The best experimental results of the proposed PSO-ELM 
in vowel a, vowel e, vowel o, and all vowel scenarios have 
been obtained with overall accuracies of 96.15%, 96.15%, 
95.83%, and 82.89% for vowel a, vowel e, vowel o, and all 
vowel scenarios, respectively. Figure 7 shows the ROC of 
the best results for vowel a, vowel e, vowel o, and all vowel 

scenarios. In addition, the best overall results of the evalu-
ation measurements for all scenarios are shown in Table 9.

In addition, numerous experiments were performed 
based on the basic ELM, NN, and RF in thirteen different 
scenarios: deep breath, shallow breath, all breaths, heavy 
cough, shallow cough, all coughs, count fast, count nor-
mal, all count, vowel a, vowel e, vowel o, and all vowels. 
The ELM and NN approaches were implemented with a 
single hidden layer and the number of nodes in the range 
of [100–600] with 50 incremental steps. Note that because 

Table 7  The dataset that was used in count fast, count normal, and all 
count scenarios

Class Number of 
all samples

Number of training 
samples

Number 
of testing 
samples

Label

Count fast scenario
Healthy 42 29 13 1
COVID-19 42 29 13 2
Count normal scenario
Healthy 45 31 14 1
COVID-19 45 31 14 2
All count scenario
Healthy 87 61 26 1
COVID-19 87 61 26 2

Fig. 6  The ROC of PSO-ELM best results for the count fast, count 
normal, and all count scenarios

Table 8  The dataset that was utilized in vowel a, vowel e, vowel o, 
and all vowel scenarios

Class Number of 
all samples

Number of training 
samples

Number 
of testing 
samples

Label

Vowel “a” scenario
Healthy 43 30 13 1
COVID-19 43 30 13 2
Vowel “e” scenario
Healthy 43 30 13 1
COVID-19 43 30 13 2
Vowel “o” scenario
Healthy 41 29 12 1
COVID-19 41 29 12 2
All vowel scenario
Healthy 127 89 38 1
COVID-19 127 89 38 2

Fig. 7  The ROC of PSO-ELM best results for vowel a, vowel e, 
vowel o, and all vowel scenarios
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the number of pages is limited, we reported only the high-
est performance of the ELM, NN, and RF in each scenario 
in terms of accuracy, recall, precision, specificity, G-mean, 
F-measure, TP, TN, FP, FN, and execution time. Table 10 
provides all the experimental results of the basic ELM, NN, 
and RF techniques in the deep breath, shallow breath, all 
breaths, heavy cough, shallow cough, all coughs, count fast, 
count normal, all counts, vowel a, vowel e, vowel o, and all 
vowel scenarios. The best performance of the basic ELM 
was obtained with an accuracy of 66.67%, 70.83%, 65.22%, 
75.00%, 64.29%, 64.81%, 69.23%, 67.86%, 63.46%, 65.38%, 
61.54%, 62.50%, and 61.84% for deep breath, shallow 
breath, all breaths, heavy cough, shallow cough, all coughs, 
count fast, count normal, all counts, vowel a, vowel e, vowel 
o, and all vowel scenarios, respectively. The best perfor-
mance of the NN had an accuracy of 62.50% deep breath, 
66.67% shallow breath, 58.70% all breaths, 60.71% heavy 
cough, 60.71% shallow cough, 59.26% all coughs, 57.69% 
count fast, 71.43% count normal, 63.46% all count, 57.69% 
vowel a, 65.38% vowel e, 54.17% vowel o, and 56.58% all 
vowels. The best performance of the RF was achieved with 
an accuracy of 62.50%, 66.67%, 60.87%, 67.86%, 57.14%, 

61.11%, 65.38%, 64.29%, 59.62%, 53.85%, 57.69%, 58.33%, 
and 60.53% for deep breath, shallow breath, all breaths, 
heavy cough, shallow cough, all coughs, count fast, count 
normal, all count, vowel a, vowel e, vowel o, and all vowel 
scenarios, respectively.

Furthermore, additional experiments have been con-
ducted based on LSTM and XGBoost approaches in thirteen 
different scenarios: deep breath, shallow breath, all breaths, 
heavy cough, shallow cough, all coughs, count fast, count 
normal, all count, vowel a, vowel e, vowel o, and all vowels. 
Table 11 delivers all the experimental results of the LSTM 
and XGBoost approaches in the deep breath, shallow breath, 
all breaths, heavy cough, shallow cough, all coughs, count 
fast, count normal, all count, vowel a, vowel e, vowel o, 
and all vowel scenarios. The highest performance of the 
LSTM was achieved with an accuracy of 79.17%, 70.83%, 
60.87%, 75.00%, 57.14%, 64.81%, 65.38%, 64.29%, 65.38%, 
61.54%, 65.38%, 62.50%, and 60.53% for deep breath, shal-
low breath, all breaths, heavy cough, shallow cough, all 
coughs, count fast, count normal, all count, vowel a, vowel 
e, vowel o, and all vowel scenarios, respectively. The highest 
performance of XGBoost obtained an accuracy of 70.83% 

Table 9  The best results of the proposed PSO-ELM in all scenarios

Hidden neurons TP TN FP FN Accuracy Precision Recall Specificity F-measure G-mean Execution time (s)

Deep breath
150 11 12 0 1 95.83 100.00 91.67 100.00 95.65 95.74 119.8567
Shallow breath
300 10 12 0 2 91.67 100.00 83.33 100.00 90.91 91.29 119.5190
All breath
250 22 19 4 1 89.13 84.62 95.65 82.61 89.80 89.96 132.7839
Heavy cough
400 14 13 1 0 96.43 93.33 100.00 92.86 96.55 96.61 128.3579
Shallow cough
550 14 12 2 0 92.86 87.50 100.00 85.71 93.33 93.54 127.9549
All cough
200 26 22 5 1 88.89 83.87 96.30 81.48 89.66 89.87 176.8013
Count fast
150 12 13 0 1 96.15 100.00 92.31 100.00 96.00 96.08 124.2523
Count normal
350 13 14 0 1 96.43 100.00 92.86 100.00 96.30 96.36 125.7110
All count
150 24 22 4 2 88.46 85.71 92.31 84.62 88.89 88.95 174.0120
Vowel a
100 13 12 1 0 96.15 92.86 100.00 92.31 96.30 96.36 107.1898
Vowel e
100 13 12 1 0 96.15 92.86 100.00 92.31 96.30 96.36 108.1326
Vowel o
150 12 11 1 0 95.83 92.31 100.00 91.67 96.00 96.08 106.6515
All vowels
200 28 35 3 10 82.89 90.32 73.68 92.11 81.16 81.58 198.1815
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Table 10  The best experimental results of the basic ELM, NN, and RF techniques in all scenarios

Technique TP TN FP FN Accuracy Precision Recall Specificity F-measure G-mean Execution time (s)

Deep breath
ELM 6 10 2 6 66.67 75.00 50.00 83.33 60.00 61.24 0.5236
NN 8 7 5 4 62.50 61.54 66.67 58.33 64.00 64.05 21.5222
RF 6 9 3 6 62.50 66.67 50.00 75.00 57.14 57.74 3.3139
Shallow breath
ELM 7 10 2 5 70.83 77.78 58.33 83.33 66.67 67.36 0.5218
NN 10 6 6 2 66.67 62.50 83.33 50.00 71.43 72.17 24.5918
RF 9 7 5 3 66.67 64.29 75.00 58.33 69.23 69.44 3.3163
All breaths
ELM 18 12 11 5 65.22 62.07 78.26 52.17 69.23 69.70 0.9417
NN 16 11 12 7 58.70 57.14 69.57 47.83 62.75 63.05 33.4789
RF 17 11 12 6 60.87 58.62 73.91 47.83 65.38 65.82 3.8154
Heavy cough
ELM 11 10 4 3 75.00 73.33 78.57 71.43 75.86 75.91 0.6609
NN 11 6 8 3 60.71 57.89 78.57 42.86 66.67 67.45 22.4395
RF 10 9 5 4 67.86 66.67 71.43 64.29 68.97 69.01 3.6511
Shallow cough
ELM 8 10 4 6 64.29 66.67 57.14 71.43 61.54 61.72 0.6421
NN 6 11 3 8 60.71 66.67 42.86 78.57 52.17 53.45 22.6169
RF 7 9 5 7 57.14 58.33 50.00 64.29 53.85 54.01 3.7370
All coughs
ELM 19 16 11 8 64.81 63.33 70.37 59.26 66.67 66.76 1.0641
NN 18 14 13 9 59.26 58.06 66.67 51.85 62.07 62.22 34.6208
RF 19 14 13 8 61.11 59.38 70.37 51.85 64.41 64.64 4.1569
Count fast
ELM 8 10 3 5 69.23 72.73 61.54 76.92 66.67 66.90 0.5920
NN 4 11 2 9 57.69 66.67 30.77 84.62 42.11 45.29 28.5440
RF 9 8 5 4 65.38 64.29 69.23 61.54 66.67 66.71 4.3687
Count normal
ELM 11 8 6 3 67.86 64.71 78.57 57.14 70.97 71.30 0.6178
NN 14 6 8 0 71.43 63.64 100.00 42.86 77.78 79.77 25.1147
RF 10 8 6 4 64.29 62.50 71.43 57.14 66.67 66.82 4.4511
All count
ELM 16 17 9 10 63.46 64.00 61.54 65.38 62.75 62.76 1.0476
NN 16 17 9 10 63.46 64.00 61.54 65.38 62.75 62.76 37.9394
RF 12 19 7 14 59.62 63.16 46.15 73.08 53.33 53.99 4.8791
Vowel a
ELM 6 11 2 7 65.38 75.00 46.15 84.62 57.14 58.83 0.4631
NN 7 8 5 6 57.69 58.33 53.85 61.54 56.00 56.04 26.5335
RF 8 6 7 5 53.85 53.33 61.54 46.15 57.14 57.29 3.3466
Vowel e
ELM 7 9 4 6 61.54 63.64 53.85 69.23 58.33 58.54 0.4873
NN 9 8 5 4 65.38 64.29 69.23 61.54 66.67 66.71 30.6789
RF 5 10 3 8 57.69 62.50 38.46 76.92 47.62 49.03 3.1672
Vowel o
ELM 10 5 7 2 62.50 58.82 83.33 41.67 68.97 70.01 0.4789
NN 9 4 8 3 54.17 52.94 75.00 33.33 62.07 63.01 22.5454
RF 7 7 5 5 58.33 58.33 58.33 58.33 58.33 58.33 3.1421
All vowels
ELM 25 22 16 13 61.84 60.98 65.79 57.89 63.29 63.34 1.5370
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Table 10  (continued)

Technique TP TN FP FN Accuracy Precision Recall Specificity F-measure G-mean Execution time (s)

NN 22 21 17 16 56.58 56.41 57.89 55.26 57.14 57.15 53.8420
RF 29 17 21 9 60.53 58.00 76.32 44.74 65.91 0.6653 4.5728

Table 11  The best experimental results of the LSTM and XGBoost approaches in all scenarios

Technique TP TN FP FN Accuracy Precision Recall Specificity F-measure G-mean Execution time (s)

Deep breath
LSTM 8 11 1 4 79.17 88.89 66.67 91.67 76.19 76.98 116.448
XGBoost 10 7 5 2 70.83 66.67 83.33 58.33 74.07 74.54 63.124
Shallow breath
LSTM 8 9 3 4 70.83 72.73 66.67 75.00 69.57 69.63 113.005
XGBoost 8 9 3 4 70.83 72.73 66.67 75.00 69.57 69.63 65.930
All breaths
LSTM 17 11 12 6 60.87 58.62 73.91 47.83 65.38 65.82 128.850
XGBoost 14 15 8 9 63.04 63.63 60.87 65.22 62.22 62.24 85.102
Heavy cough
LSTM 10 11 3 4 75.00 76.92 71.43 78.57 74.07 74.12 112.323
XGBoost 10 8 6 4 64.29 62.50 71.43 57.14 66.67 66.82 55.048
Shallow cough
LSTM 7 9 5 7 57.14 58.33 50.00 64.29 53.85 54.01 114.679
XGBoost 13 8 6 1 75.00 68.42 92.86 57.14 78.79 79.71 58.063
All coughs
LSTM 17 18 9 10 64.81 65.38 62.96 66.67 64.15 64.16 127.551
XGBoost 16 18 9 11 62.96 64.00 59.26 66.67 61.54 61.58 82.043
Count fast
LSTM 8 9 4 5 65.38 66.67 61.54 69.23 64.00 64.05 117.751
XGBoost 9 8 5 4 65.38 64.29 69.23 61.54 66.67 66.71 60.707
Count normal
LSTM 10 8 6 4 64.29 62.50 71.43 57.14 66.67 66.82 115.631
XGBoost 8 10 4 6 64.29 66.67 57.14 71.43 61.54 61.72 58.609
All count
LSTM 11 23 3 15 65.38 78.57 42.31 88.46 55.00 57.66 126.962
XGBoost 15 16 10 11 59.62 60.00 57.69 61.54 58.82 58.83 90.167
Vowel a
LSTM 6 10 3 7 61.54 66.67 46.15 76.92 54.55 55.47 101.736
XGBoost 8 7 6 5 57.69 57.14 61.54 53.85 59.26 59.30 61.645
Vowel e
LSTM 6 11 2 7 65.38 75.00 46.15 84.62 57.14 58.83 103.035
XGBoost 6 10 3 7 61.54 66.67 46.15 76.92 54.55 55.47 60.859
Vowel o
LSTM 7 8 4 5 62.50 63.64 58.33 66.67 60.87 60.93 98.829
XGBoost 7 9 3 5 66.67 70.00 58.33 75.00 63.64 63.90 59.786
All vowels
LSTM 26 20 18 12 60.53 59.09 68.42 52.63 63.41 63.59 133.452
XGBoost 22 24 14 16 60.53 61.11 57.89 63.16 59.46 59.48 120.183
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deep breath, 70.83% shallow breath, 63.04% all breaths, 
64.29% heavy cough, 75.00% shallow cough, 62.96% all 
coughs, 65.38% count fast, 64.29% count normal, 59.62% 
all count, 57.69% vowel a, 61.54% vowel e, 66.67% vowel 
o, and 60.53% all vowels.

Moreover, the proposed PSO-ELM is compared with 
some recent works in terms of accuracy based on various 
scenarios (i.e., deep breath, shallow breath, all breaths, 
heavy cough, shallow cough, all coughs, count fast, count 
normal, vowel a, vowel e, and vowel o scenarios). Table 12 
demonstrates the comparison accuracy results of the pro-
posed PSO-ELM and some other previous works.

Discussion

Based on the abovementioned experimental results in 
Table 9, we can conclude a critical observation. The PSO 
can create suitable weights and biases for the single hid-
den layer of the ELM to minimize classification errors. 

Avoiding unsuitable weights and biases prevents the ELM 
from becoming stuck in the local maxima of weights and 
biases. Consequently, the performance of the PSO-ELM was 
impressive in thirteen different scenarios, with accuracies of 
95.83%, 91.67%, 89.13%, 96.43%, 92.86%, 88.89%, 96.15%, 
96.43%, 88.46%, 96.15%, 96.15%, 95.83%, and 82.89% for 
deep breath, shallow breath, all breath, heavy cough, shallow 
cough, all cough, count fast, count normal, all count, vowel 
a, vowel e, vowel o, and all vowel scenarios, respectively.

Furthermore, the additional observations can be made based 
on the results in Table 9. (a) Using a single sound of the respir-
atory system (e.g., deep breath, shallow breath, heavy cough, 
shallow cough, count fast, count normal, vowel a, vowel e, or 
vowel o) provides better results than combining two or more 
sounds of the respiratory system. (b) In both breath and cough, 
deepness and heaviness provide higher results than shallow-
ness. (c) The speed (e.g., fast and normal) in count and the 
heaviness in cough deliver almost the same accuracy results.

Moreover, based on the results in Tables 9, 10, and 11, the 
PSO-ELM outperformed the basic ELM, NN, RF, LSTM, 
and XGBoost in thirteen different scenarios: deep breath, 
shallow breath, all breaths, heavy cough, shallow cough, all 
cough, count fast, count normal, all count, vowel a, vowel e, 
vowel o, and all vowels. This demonstrates that generating 
suitable weights and biases of the ELM leads to minimized 
classification errors. However, they outperform the proposed 
PSO-ELM in terms of the execution time because the PSO-
ELM is based on PSO, which requires more time to obtain 
the best values of input weights and biases.

Lastly, based on all the results in Table 12, the PSO-
ELM outperformed all the other previous works in the deep 
breath, shallow breath, all breaths, heavy cough, shallow 
cough, all coughs, count fast, count normal, vowel a, vowel 
e, and vowel o scenarios. This finding offers a promise that 
the proposed PSO-ELM is a reliable technique for the detec-
tion of COVID-19 by using different voice data of the res-
piratory system. Although the proposed method has shown 
good performance, there are some limitations, which are 
provided as follows:

• The voice datasets of the respiratory system that were used 
in this study for training and testing purposes are small.

• This study concentrated on classifying the voice data of 
the respiratory system into two classes (healthy/COVID-
19) only, and other lung diseases were ignored.

Conclusion

In this study, we proposed a COVID-19 detection system 
based on the conventional MFCC features and PSO-ELM 
classifier. The PSO-ELM underwent thirteen different eval-
uation scenarios: deep breath, shallow breath, all breaths, 

Table 12  The comparison of accuracy between the proposed PSO-
ELM and other previous works

Technique Accuracy Technique Accuracy

All breaths All coughs
PSO-ELM 89.13% PSO-ELM 88.89%
SVM in [46] 81.50% SVM [46] 85.70%
RF [47] 75.17% RF [47] 70.69%
CNN [48] 70.37% CNN [49] 88.48%
RF [50] 86.79% Ensemble model [51] 77.10%
Technique Accuracy Technique Accuracy
Deep breath Shallow breath
PSO-ELM 95.83% PSO-ELM 91.67%
SVM [46] 62.30% SVM in [46] 62.20%
BI-ATGRU [52] 94.50%
Technique Accuracy Technique Accuracy
Heavy cough Shallow cough
PSO-ELM 96.43% PSO-ELM 92.86%
SVM [46] 72.30% SVM [46] 74.10%
Technique Accuracy Technique Accuracy
Count fast Count normal
PSO-ELM 96.15% PSO-ELM 96.43%
SVM [46] 73.50% SVM [46] 72.50%
Technique Accuracy Technique Accuracy
Vowel a Vowel e
PSO-ELM 96.15% PSO-ELM 96.15%
SVM [46] 59.30% SVM [46] 68.20%
Technique Accuracy
Vowel o
PSO-ELM 95.83%
SVM [46] 69.20
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heavy cough, shallow cough, all coughs, count fast, count 
normal, all count, vowel a, vowel e, vowel o, and all vow-
els using the CHRSD dataset. The outcome indicated the 
advantage of the PSO-ELM over some previous works (see 
Table 12) and the basic ELM, NN, RF, LSTM, and XGBoost 
(see Table 9, 10, and 11) in the thirteen different scenarios. 
The performance of the PSO-ELM was impressive in all sce-
narios, with accuracies of 95.83%, 91.67%, 89.13%, 96.43%, 
92.86%, 88.89%, 96.15%, 96.43%, 88.46%, 96.15%, 96.15%, 
95.83%, and 82.89% for the deep breath, shallow breath, all 
breaths, heavy cough, shallow cough, all coughs, count fast, 
count normal, all count, vowel a, vowel e, vowel o, and all 
vowel scenarios, respectively. However, the current study 
has been evaluated on only a small dataset. Therefore, the 
future work of this study is to implement the proposed PSO-
ELM on a larger dataset. Additionally, other optimization 
approaches for ELM will be further explored to generate the 
most suitable weights and biases for the ELM, which leads 
to the minimization of the classification errors.
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