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This Letter describes the synthesis and antiviral activity study of some glycyrrhizic acid (GL) derivatives
against influenza A/H1N1/pdm09 virus in MDCK cells. Conjugation of GL with L-amino acids or their
methyl esters, and amino sugar (D-galactose amine) dramatically changed its activity. The most active
compounds were GL conjugates with aromatic amino acids methyl esters (phenylalanine and tyrosine)
(SI = 61 and 38), and S-benzyl-cysteine (SI = 71). Thus modification of GL is a perspective route in the
search of new antivirals, and some of GL derivatives are potent as anti-influenza A/H1N1 agents.

� 2015 Elsevier Ltd. All rights reserved.
The search for new antiviral agents is one of the most important
tasks of chemistry and medicine because of wide spread of socially
dangerous viral infections such as HIV, hepatitis B and C, and the
emergence of new viral infections (‘avian flu’ and ‘swine flu’, influ-
enza A/H1N1, Ebola fever etc.).1,2 The pandemic of influenza A/
H1N1 (Spanish flu) in 1918–1919 claimed 40 million lives, Asian
influenza virus A/H2N2 in 1957 has led to death of 4 million per-
sons, and 2 million persons have been died in Hong Kong in
1968 by the pandemic influenza A (H3N2).3–5 The appearance of
novel strain of influenza A in April 2009 (‘swine flu’) caused
162,380 cases and 1154 deaths in 168 countries,6,7 and the
World Health Organization (WHO) declared the pandemic influ-
enza caused by a new strain of H1N1, which was identified as influ-
enza virus formed as a result of a triple reassortment of swine,
avian and human viruses and called influenza A/H1N1pdm09.8–10

Currently, two classes of antiviral drugs of adamantane
structure—Amantadine and Rimantadine, and the neuraminidase
inhibitors—Zanamivir/Relenza (GlaxoWellcome/Biota) and
Oseltamivir/Tamiflu (Hoffman-La-Roche/Gilead) are used in medi-
cine for the treatment of influenza, but both groups of compounds
have drawbacks and are characterized by a viral resistance appear-
ance.11,12 Numerous chemical compounds, which did not reach
clinical trials belong to the different chemical classes exhibiting
different levels of anti-influenza activity in vitro and in vivo, and
are directed at different targets in the viral life cycle.13–16 At
present an any research studies targeting the search of new
antivirals against influenza A virus are of high priority in drug
development, and are oriented to the search of new compounds
or modification of already known compounds-leaders with the
proved antiviral activity.17,18

One of the modern and innovative approaches in the search of
new antivirals is an application of available natural compounds
or plant metabolites with a new mechanism of antiviral activity.
Natural compounds and their derivatives are promising new candi-
dates for the treatment of viral, bacterial and fungal infections.19,20

Glycyrrhizic acid (GL) (1), a major triterpene glycoside isolated
from Glycyrrhiza glabra L. (licorice) and Gl. uralensis Fisher roots, is
the leading natural glycoside and promising scaffold for creation of
new antiviral agents.21–23 To date GL is a principal plant derived
metabolite suitable for the long-term treatment of HIV infection
as it does not lead to emergence of drug resistance.24,25

Preparation SNMC (Stronger neo-Minophagen Co.) containing GL
was used for a long term chemotherapy of viral hepatitis B and
C.26 GL is attractive due its ability to stimulate c-interferon produc-
tion in vitro and in vivo, and low toxicity (LD50 5000 mg/kg). But GL
is active as an antiviral agent in vivo in high doses and causes some
side effects connecting with its structural similarity to corticos-
teroids, it may influence on a water–salt interchange, intensify of
Na+-content retention and reduce K+-content in some patients.27

We reported previously that biological activity of GL could be
improved by its chemical modifications and some semisynthetic
GL derivatives were found as potent immune modulators and
anti-viral agents.28 Among GL derivatives new inhibitors of
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SARS-associated coronavirus,29 Epstein–Barr virus,30 and anti-HIV
agents31,32 were found. Structure–activity relationships study of
GL derivatives as influenza A/H1N1 virus inhibitors was not carried
out still. This Letter is devoted to the synthesis and anti-viral activ-
ity evaluation of some GL derivatives and analogs against influenza
A/H1N1/pdm09 virus in vitro.

GL 1 was isolated and purified from Gl. uralensis Fisher roots col-
lected in Siberia as was described previously27 and had a purity
95 ± 1% according to HPLC. Experimental details are given in the
References and notes.33 GL conjugates (2–4) were synthesized by
condensation of glycoside 1 with L-amino acids methyl esters at
room temperature (22–25 �C) (rt) by using N-hydroxybenzotria-
zole (HOBt) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide
hydrochloride (DEC) in the molar ratio 1/3.5/3.5/3.5.34 Yields of
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target compounds were 90–92%. Analytical and spectral data of
compounds 2–4 were similar to those received previously by using
HOBt-N,N0-dicyclohexylcarbodiimide (DCC).35

GL conjugates (5–9) with free 30-COOH were prepared by the
activated esters method by using N-hydroxysucinimide (HOSu)—
DCC and 2.0–2.5 molar ratio of reagents and at 0–5 �C as was
reported previously.31,36 Target compounds were isolated by col-
umn chromatography (CC) on silica gel (SL) with 55–60% yields.
Structures of new compounds 5–7 were confirmed by IR and
NMR 13C data. There are signals of free 30-COOH at 180.3–
180.8 ppm as in the 13C NMR GA.37 Analytical and spectral data
for new compounds 5–7 are given in the References and notes.38

Analytical and spectral data for compounds 8 and 9 were similar
to those synthesized before.23,31 Compounds (11) and (13) contain-
ing free amino acids have been synthesized previously by using
HOSu–DCC and S-benzyl(Bn)-cysteine- or Ne-carbobenzoxy(Z)-
lysine tert-butyl esters hydrochlorides.39,40 tert-Butyl ester groups
of protected conjugates 10 and 12 were deleted with 50%
CF3COOH in DCM and pure compounds 11 and 13 were isolated
by CC on SL. GL conjugate with D-galactose amine (14) connected
to the carbohydrate part of glycoside by CONH-bonds was synthe-
sized as described before.41
Stereo isomeric 18a-GL (15) was produced by the alkaline iso-
merization of GL according to method.42 Its derivatives (16, 17)
to be conjugates with methyl esters of L-aspartic acid were
described previously.23 GL analog (18) was prepared by reduction
of GL trimethyl ester with NaBH4 according to method.43

Glycoside (19) with reduced C11@O group was synthesized by
reduction of GA with NaBH4 in 2-PrOH as described before.44

GL 1 and its derivatives and analogs 2–19 were evaluated for
their inhibitory activity against pandemic influenza A/H1N1/
pdm09 virus in the MDCK cells.45 Cytotoxicity of compounds was
evaluated in MDCK cells by a cell viability assay.46 Number of
viable cells was evaluated by a microtetrazolium test (MTT)47

and CTD50 (compound concentration required to reduce 50% cell
viability) value was estimated for each compound.
Anti-viral activity of compounds was evaluated by quan-
tification virus yield using the end-point dilution method.48

Rimantadine was used as a reference compound. Assay details
are given in the References and notes.49 Anti-viral activity of the
test compounds was evaluated by their ability to decrease the virus
titer and 50% of the effective dose (ED50) (concentration of com-
pound that decreases the virus production two-fold comparing to
control) was calculated. Selectivity index (SI) was calculated as
relation of CTD50 to ED50. The compounds having SI P 10 were
considered active.

The results of experiments are shown in Table 1. As can be seen
from the data presented, GL (95 ± 1% of purity) possessed low cyto-
toxicity (high value of CTD50) and did not show anti-viral activity
against pandemic influenza A/H1N1 virus (SI = 1). Conjugates of
GL containing three residues of amino acids methyl esters 2–4
were more active. The most active among them was compound 2
with three residues of phenylalanine methyl ester (SI = 28), com-
pound 3 containing tyrosine methyl ester residues was less active
(SI = 18). Modification of glycoside part of GL by introduction of
amino acids methyl esters residues changed both cytotoxicity
and anti-viral activity of GL derivatives. The most active GL conju-
gates with free C-30 COOH were compounds 5 (EC50 = 4.3 lM,
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SI = 61) and 6 (EC50 = 6.8 lM, SI = 38). Introduction of phenylala-
nine or tyrosine methyl ester residues into the carbohydrate part
of GL almost did not change toxicity but potentiated anti-viral
activity in 61 times for conjugate 5 and 38 times for compound
6. Conjugation of GL with S-benzyl-cysteine (compound 11) led
to increase in anti-viral activity in 71 times (EC50 = 3.5 lM,
SI = 71). Compounds 5, 6 and 11 had more wide SI values than
Rimantadine (in 12.2, 7.8, and 14.2 times, respectively).
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Table 1
Antiviral activity of GL and derivatives against influenza virus A/H1N1/pdm09 in
MDCK cellsa

Compounds CD50 (lM) EC50 (lM) SI

1 364.6 364.6 1
2 133.2 4.8 28
3 159.5 8.7 18
4 16.4 2.6 6
5 262 4.3 61
6 254.8 6.8 38
7 29.1 5.7 5
8 298.1 20.4 15
9 37.3 26.6 1
11 248.1 3.5 71
13 154.7 54.6 3
14 259.4 7.2 36
15 47.5 15.2 3
16 38.0 9.9 4
17 58.3 4.7 12
18 370.8 68.1 5
19 21.4 2.1 10
Rimantadine 334.0 66.7 5

a The values of EC50 and CTD50 are mean of three different experiments, four
parallels in each.
Conjugation of GL with amino acids containing two COOH
groups such as aspartic acid dimethyl ester led to the sharp
increase of cytotoxicity, and does not confer virus-inhibiting prop-
erties (compound 9). Modification of glycoside with a long chaired
diamine acid like Z-lysine just slightly increased antiviral activity
(compound 13). Introduction of heterocyclic amino acid as his-
tidine (compound 8) almost did not influence to cytotoxicity but
potentiated anti-viral activity as compared GL in 15 times.
Conjugation of GL with D-galactose amine (compound 14) led to
significant increase of virus-inhibiting activity (SI = 36).
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Stereo isomeric 18a-GL 15 was in 7.7 times more toxic to cells
(CD50 = 47.5) than natural glycoside 1 (18b), and had a week anti-
viral activity. Its derivatives 16 and 17 to be aspartic acid methyl
esters conjugates were more cytotoxic and less active than the
similar derivative of GL 9.
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Change of the carbohydrate part of GL to b-soforoside does
not change the cytotoxicity of glycoside but reduces the EC50

in �5 times and just rises the anti-viral activity. GL analog
19 missing C11@O group and containing 9(11),12(13)-diene
system in the triterpene part was more toxic (in 17 times)
for MDCK cells than natural glycoside, and had in 174 times
less value of EC50. But its anti-viral activity was moderate
(SI = 10).
Thus according to our structure–activity study GL had no sig-
nificant anti-viral activity against influenza A/H1N1/pdm09 virus,
and two stereoisomers 1 and 15 differed substantially in their toxi-
city. Conjugation of GL with amino acids or their methyl esters, and
amino sugar dramatically changed its activity. The most active
compounds are conjugates of GL 5, 6, 11 and 14. Introduction of
cysteine or phenylalanine moieties into the carbohydrate part of
GA appeared to be the most efficient in terms of anti-viral activity
in relation to influenza A/H1N1/pdm09 virus. This result is
corresponding to our previous data concerning anti-viral activity
of GL derivatives against SARS-CoV.29 Presence of free 30-COOH
group is important for anti-viral activity of GA conjugates with
amino acids.

Previously, Utsunomiya et al.50 have demonstrated that due to
GL ability to induce interferon-c, it exerts strong protective activity
on the model of lethal influenza infection in white mouse infected
with as high virus dose as 10 LD50. In influenza-infected human
macrophages, its application resulted in dramatic decrease of pro-
duction of pro-inflammatory cytokines.51 Its mechanism of activity
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is supposed to be linked with decreasing of membrane fluidity, that
is, necessary for the fusion of viral envelope with cell membrane in
the course of viral life cycle.

Our results show that modification of GL is a perspective route
in the search of new antivirals, and some of GL derivatives are
potent as anti-influenza agents. But further studies are necessary
to decipher the exact mechanism of anti-viral activity of GA
derivatives.
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