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LETTER TO TH E EDITOR

p21 is necessary for the beneficial effects of fasting during
chemotherapy

Dear Editor,
Short-term fasting (up to 48 hours) activates strong

physiological and molecular responses [1]. We and oth-
ers showed a p53-independent transcriptional activation of
the cell cycle inhibitor p21 upon fasting, most strongly in
the liver, muscles, and many other tissues [2, 3]. Studies
with mice [4, 5] and human patients [6] have shown the
beneficial effects of short-term fasting during anti-cancer
chemotherapy treatments.
The aim of this study was to clarify the role of p21

induction in the beneficial effects of combining fasting and
chemotherapy. For this, we first used the human colon
cancer cell lines RKO and HCT116 and the colon non-
tumoral cell line CCD-18Co. Sensitivity of colon cancer
cells RKO and HCT116 to the chemotherapeutic agent
oxaliplatin (50-100 μmol/L) was enhanced when cells
were cultured in a short-term starvation (STS) mimicking
medium, while non-tumoral CCD-18Co cells were pro-
tected from chemotherapy toxicity (Supplementary Figure
S1). The detailed methods of this study can be found in
the Supplementary Methods. We subjected p21-wild type
(WT) and p21-knockdown (p21-KD) cells to oxaliplatin
treatment with a normal or STS medium. STS and oxali-
platin single treatments induced p21mRNAand/or protein
in p21-WT cells, while p21 expression was very low in
p21-KD cells. Oxaliplatin and STS combination resulted in
the highest increase in p21 expression in both genotypes
(Figure 1A and Supplementary Figure S2A-G). Combin-
ing STS with chemotherapy sensitized p21-WT tumor cells
and protected p21-WT non-tumoral cells, and these STS
effects were lost in p21-KD cells (Figure 1B and Supple-
mentary Figure S2H-K). p53 protein levels, undetectable in
CCD-18Co cells, followed a similar trend to p21 in HCT116
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and RKO cells in p21-WT and p21-KD cells (Supplementary
Figure S2B-C), suggesting a p21-mediated regulation of p53
protein levels upon chemotherapy and/or fasting.
MC38 murine colon cancer cells were sensitized to 100

μmol/L oxaliplatin toxicity by STS (Supplementary Figure
S3A), and p21 knockdown prevented this enhancing effect
(Supplementary Figure S3B-F). p53 protein expression
followed the same trend in MC38 cells (Supplementary
Figure S3C) than in human cells, although p53 was more
strongly induced with STS in MC38 cells, which might
explain their enhanced sensitization to oxaliplatin treat-
ment. We inoculated p21-WT and p21-KD MC38 cells sub-
cutaneously into immunocompetent congenic C57BL/6
male mice. When tumors reached a certain size, the mice
were divided into four treatment groups: (1) saline; (2)
two cycles of 7.5 mg/kg oxaliplatin; (3) two cycles of 48
hours of fasting (24 hours before and 24 hours after saline
inoculation); (4) two cycles of a combination of fasting
and chemotherapy. p21-WT MC38 cells responded equally
to oxaliplatin treatment than to 48 hours of fasting, as
already shown for other cell types [7], and a combina-
tion of oxaliplatin and fasting induced the strongest effect
(Figure 1C and Supplementary Figure S3G). In contrast,
p21-KD MC38 cells did not respond to single oxaliplatin
or single fasting treatments, and only the combination of
both treatments prevented tumor growth (Figure 1C and
Supplementary Figure S3H). These results indicated that
cell-autonomous induction of p21 with fasting above a
threshold was necessary for MC38 allograft growth arrest.
p21 induction below this threshold, as attained by sin-
gle treatments in p21-KD cells, was not enough to affect
tumor growth. Apoptosis, measured by activated caspase
3, increased with fasting in p21-WT but not in p21-KD
tumors, while fasting tended to reduce cellular prolifer-
ation, measured by Ki67, in both p21-WT and p21-KD
tumors (Supplementary Figure S3I). The anti-tumor effect
of fasting has been proposed to depend mostly on an
enhanced immune response after chemotherapy [4, 7].
However, cancer cells cultured in an STS medium showed
increased apoptosis and decreased viability, as shown in
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F IGURE 1 p21 is essential for fasting-mediated enhancement of chemotherapy. (A) The colon carcinoma cell line RKO and
CCD-18Co non-tumoral colon fibroblasts were stably transfected with an shRNA targeting p21mRNA. Both p21-WT and p21-KD cells were
cultured in either normal (CTR) or fasting-mimicking (STS) medium for 24 hours and then treated with water or 50 μmol/L oxaliplatin (RKO)
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Supplementary Figure S1 and in a previous study [8], a
phenomenon termed “differential stress resistance” (DSR).
Also, allograft tumors from p21-KD cells responded dif-
ferently to fasting than allografts from p21-WT cells, even
if the host immune response was p21-WT in both models
(Figure 1C and Supplementary Figure S3G-H). Our results
indicated that, apart from an effect on the immune system,
therewas a cell-autonomous effect of fasting in tumor cells,
at least partly dependent on p21, that makes them more
sensitive to chemotherapy.
To test if the critical role of p21 could be applied to

chemotherapies different from oxaliplatin, we measured
cell viability of colon cancer cell lines cultured in control
or STSmedium and treatedwith increasing concentrations
of 5-fluorouracil (Supplementary Figure S4A), doxorubicin
(Supplementary Figure S4B) or etoposide (Supplementary
Figure S4C). Knockdown of p21 did not affect cell pro-
liferation or viability compared with p21-WT cells in any
of these cases. STS enhanced the anti-tumor efficacy of
chemotherapy in p21-WT cells, while this effect was lost
in p21-KD cells, indicating that the STS and p21 effects we
not dependent on the type of chemotherapy.
We studied the ability of fasting to protect from

chemotherapy toxicity in mice subjected to oxaliplatin
treatment. Forty-eight hours of fasting were sufficient to
increase p21 mRNA in several tissues in p21-WT mice ([2]
and Supplementary Figure S5A).Wemeasured chemother-
apy toxicity in mice subjected to oxaliplatin (15 mg/kg), 48
hours fasting or a combination of both treatments.Weused
a complete panel of biomarkers in the liver (Figure 1D and
Supplementary Figure S5B), kidney (Figure 1E and Supple-
mentary Figure S5C), small intestine (Figure 1F) and heart

(Figure 1G and Supplementary Figure S5D); hematologi-
cal parameters as hematocrit (Figure 1H); and histological
analysis in the liver (Figure 1I, J), kidney (Figure 1K
and Supplementary Figure S5E) and heart (Figure 1L and
Supplementary Figure S5F). Fasting was associated with
protection from chemotherapy toxicity in all these tissues
in p21-WT mice. In contrast, ablation of p21 abrogated
these protective effects in all tested tissues. Fasting did
not affect body weight loss after chemotherapy adminis-
tration in p21-WT mice compared with mice treated with
only chemotherapy. In contrast, fasting p21-KO mice suf-
fered a stronger body weight loss after chemotherapy than
mice treated onlywith chemotherapy, indicating increased
whole-body damage with fasting in the absence of p21
(Figure 1M). We observed the same effects in female p21-
WT and p21-KO mice, indicating that fasting-mediated
protection from oxaliplatin toxicity was not affected by sex
(Supplementary Figures S5-S7).
p21 inhibits cell cycle progression, which could explain

the fasting-mediated tumor growth inhibition. However,
p21 induction occurs in many post-mitotic tissues where
proliferation is rare, such as the heart, liver or kidney,
where the loss of p21 blunts fasting-mediated protec-
tion from chemotherapy toxicity. Therefore, cell cycle-
independent functions of p21 are probably also responsible
for this protection. p21 inhibits apoptosis by cell cycle
arrest and enhancement of DNA repair, inhibition of
caspase activation or inhibition of pro-apoptotic stress-
activated pathways [9]. This might be one mechanism by
which fasting protects from chemotherapy toxicity in non-
tumoral tissues, even though p21 enhances chemotherapy-
mediated apoptosis in tumoral cells, as shown in Figure 1

or 100 μmol/L oxaliplatin (CCD-18Co). Twenty-four hours later, total mRNA was extracted, and p21mRNA levels were measured by qPCR.
(B) The same cells described in (A) were stained with Annexin V and propidium iodide to measure apoptosis. (C) C57BL/6 p21-WT male mice
aged 12-16 weeks were inoculated with MC38 colon carcinoma cells. When tumors reached a certain size, mice were treated with two cycles
(represented by dotted squares) of vehicle (saline, Veh) or 7.5 mg/kg oxaliplatin (ChT) while being fed ad libitum (Fed) or fasted for 24 hours
before and 24 hours after chemotherapy or saline administration (Fast). Tumor size was measured periodically. Six days after the last
oxaliplatin inoculation, mice were sacrificed. (D-G)Male mice of 12-14 weeks of age were inoculated with vehicle (saline, Veh) or 15 mg/kg
oxaliplatin (ChT) while being fed ad libitum (Fed) or fasted for 24 hours before and 24 hours after chemotherapy administration (Fast). Six
days after oxaliplatin inoculation, mice were sacrificed, and mRNA expression of the indicated genes was determined in the liver (D), kidney
(E), small intestine (F) and heart (G). (H) Hematocrit (HCT) of male and female mice shown in (D-G) (males) and Supplementary Figure
S5-S6 (females) was recorded at the time of sacrifice. (I-L) Hematoxylin & eosin stainings of the liver (I, J), kidney (K) and heart (L) from
mice shown in (D-G) were analyzed to quantify histological findings related to chemotherapy toxicity-induced tissue damage. White
arrowheads represent sinusoidal dilatations; black arrowheads represent vacuoles. The size bar represents 200 μm. (M) Body weight change
each day of the protocol of the same male mice shown in D-L, normalized to initial weight before fasting. Bars represent the average of the
indicated number of replicates (A-B) or the number of mice indicated in the legend (C, H-M), or n = 6 (D-G). Individual circles represent the
value for each replicate/individual. Line-connected dots represent the average tumor size (C) or body weight (M) for the indicated number of
mice. Error bars represent the standard deviation (A, B) or the standard error of the mean (C-M). Statistical significance was assessed using
the two-way ANOVA test with Tuckey’s correction for multiple comparisons. *, P < 0.05; **, P < 0.01; ***, P < 0.001. In C, asterisk color codes
and lines indicate the groups being compared. In (M), asterisks indicate the significance between the fed oxaliplatin and the fasted oxaliplatin
groups; other significances are not represented. Abbreviations: CTR, control medium; KD, knockdown; STS, short-term starvation medium;
Veh, vehicle (saline); ChT, chemotherapy.
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and Supplementary Figures S1-S4. Finally, p21 binds to
transcriptional regulators and modulates the expression
of genes related to the S phase and mitosis during DNA
damage [10]; therefore, p21 induction with fasting might
also regulate the transcription of genes involved in toxicity
resistance.
Our mechanistic insight may help in future clinical

applications of fasting during chemotherapy: patient strat-
ification according to their p21 induction with fasting,
p21-inducing strategies to enhance chemotherapy treat-
ment, or measurement of p21 induction as a biomarker to
identify interventions enhancing chemotherapy safety and
efficacy.
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