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Abstract: This review provides insight into the importance of understanding NETosis in cows, sheep,
and goats in light of the importance to their health, welfare and use as animal models. Neutrophils
are essential to innate immunity, pathogen infection, and inflammatory diseases. The relevance of
NETosis as a conserved innate immune response mechanism and the translational implications for
public health are presented. Increased understanding of NETosis in ruminants will contribute to
the prediction of pathologies and design of strategic interventions targeting NETs. This will help to
control pathogens such as coronaviruses and inflammatory diseases such as mastitis that impact all
mammals, including humans. Definition of unique attributes of NETosis in ruminants, in comparison
to what has been observed in humans, has significant translational implications for one health and
global food security, and thus warrants further study.

Keywords: neutrophil extracellular traps NETs; neutrophils; pathogens; humans; ruminants;
health; therapy

1. Introduction

The welfare and production of ruminant animals such as cows, sheep, and goats are
impacted by pathogen induced and metabolic inflammatory diseases. Furthermore, species
like cattle, sheep, and goats are useful model animals as they can be both target species for
pathogens and reservoirs for human disease [1]. Neutrophils are granular leukocytes that
are central to the inflammatory response. They are the most abundant innate immune cells,
making up 50–70% of all leukocytes in humans [2], however, in ruminants such as cattle
they comprise less than half of total circulating leukocytes [3,4]. Similarities have been
reported in function of ruminant and human neutrophils [5]. Increased understanding of
phenotypes and functions of neutrophils of different ruminant species will contribute to
animal and public health.

Neutrophils are the first line of defense deploying sophisticated antimicrobial strate-
gies [6] and also contributing to shaping adaptive immune responses [2,7]. The immune
regulatory functions of neutrophils against pathogens include phagocytosis, release of
antimicrobial molecules, production of reactive oxygen species (ROS), degranulation, and
the formation of neutrophil extracellular traps (NETs), a process referred to as NETosis [8].
NETosis is a form of cell death, which is different from apoptosis and necrosis [9,10].

2. NETosis Mechanisms and Functions

NETs are large extracellular web-like structures [8] decorated with histones, antimicro-
bial proteins and DNA allowing them to trap and kill pathogens extracellularly [9,11–14]
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(Figure 1). When neutrophils undergo NETosis, nuclear and granular membranes dis-
integrate, the chromatin de-condenses, and it diffuses into the cytoplasm, mixing with
cytoplasmic proteins [15]. Neutrophil components including neutrophil elastase (NE),
myeloperoxidase (MPO), reactive oxygen species (ROS) [16], and peptidyl arginine deimi-
nase 4 (PAD4) which citrullinates histones help to facilitate de-condensation and release
of chromosomal DNA [6]. Both NADPH oxidase (NOX)-dependent and independent
NETosis have been reported [17]. In addition to their role in host defense NETs are associ-
ated with pathologies acting as a double-edged sword in diseases [18–20]. As knowledge
about NET’s increases, they are recognized as biomarkers of disease [21] for diagnosis
and targeted therapy. Establishing efficient and accurate methods for quantifying NETosis
under a variety of experimental conditions holds the potential to further elucidate the role
of NETs and similar structures in normal and pathological processes [22].

Figure 1. (I) Several stimuli (e.g., bacteria, viruses, fungi) initiate NETosis by binding to neutrophil receptors (e.g., Fc
receptors, TLRs), which activate the endoplasmic reticulum to release stored calcium ions. (II) Elevated cytoplasmic
calcium levels increase PKC activity, which induces NADPH oxidase to assemble into a functional complex (PHOX). (II-a)
Subsequently, PHOX (or alternatively the mitochondrial respiratory chain) generate ROS. (III) ROS generation leads to
the rupture of granules and the nuclear envelope. (III-a) Meanwhile, NE and MPO translocate to the nucleus. (III-b) As a
result, histone deamination and chromatin de-condensation contribute to the formation of NETs. (IV) Finally, the rupture of
the plasma membrane causes neutrophil lysis and allows the release of NETs.

3. Mammalian Neutrophil Extracellular Traps
3.1. Triggers and Phenotpes of Extracellular Traps

Neutrophils from different mammalian species including humans, horses, dogs, sheep,
mice, as well as from invertebrates, form ETs [23–36]. In addition to neutrophils, ETs
are formed by other immune cells such as mast cells, monocytes, macrophages, and
eosinophils following stimulation with mitogens, cytokines, pathogens, or by interaction
with neighboring cells and platelets [37]. Three different pathways result in ET formation:
(1) release of nuclear DNA and cell death- suicidal cell pathway [12,38]; (2) release of
nuclear DNA by viable cells—nonsuicidal vital NETosis [8,26,39–42]; and (3) release of
mitochondrial DNA [43,44]. Genetic, species, and breed differences in mechanisms and
efficiency of the NETosis response to pathogens have been reported [23–25] (Table 1).

Table 1. Summary of mechanisms of neutrophil extracellular trap formation in different species.

Microorganisms Species Mechanism Types of NETosis References

BACTERIA

Staphylococcus
aureus

Mice
Humans
Bovine

Dependent on TLR2 and Complement C3 in mice
PAD4 dependent

Response to virulence factor, PVL in a ROS
independent manner

DNA extruded via vesicles
Unknown

Vital
Vital

Unknown

[26]
[40]
[27]
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Table 1. Cont.

Microorganisms Species Mechanism Types of NETosis References

E. coli
Humans *

Mice *
Bovine

* Mediated via platelet TLR4
Histone H3 citrullination by PAD4

Vital in the
presence of

platelets

[39]
[28]

E. coli LPS Humans * * Mediated via platelet TLR4 and present HMGB1
to neutrophils Vital in vivo [29]

VIRUS

Influenza A
Influenza H1N1

Mice
Humans

Not dependent on PAD4
ROS and PAD4 dependent

Suicidal
Suicidal [30]

PARASITES

Eimeria bovis Bovine
Recognition by CD11b

Dependent on NAPDH oxidase, NE and MPO
Requires p38 MAPK and ERK1/2 phosphorylation

Unknown [31]
[32]

Eimeria arloingi Goat NADPH oxidase dependent Unknown [33]

Besnoitia besnoiti Bovine Dependent on NAPDH oxidase, NE and MPO Unknown [34]

Toxoplasma
gondii

Humans
Mice

ERK-MEK dependent
* NADPH oxidase/ROS dependent Suicidal [35]

TLR, toll-like receptor; C3, complement 3; PAD4, peptidyl arginine deiminase 4; PVL, Panto-Valentine leukocidin; HMGB1, high mo-
bility group box 1; ROS, reactive oxygen species; NE, neutrophil elastase; MPO, myeloperoxidase; MAPK, mitogen-activated protein
kinase, ERK1/2; extracellular signal regulated kinase 1

2 , NADPH; nicotinamide adenine dinucleotide phosphate. * Mechanism found in
specified species.

Microbial pathogens that infect man and domestic animals can induce NETosis as part
of the host’s innate immune response (Table 2) [8]. Diverse pathogen associated molecular
patterns (PAMPS) such as the bacterial cell surface components LPS, lipoteichoic acid, and
their breakdown products can trigger NETosis [36]. Formation of NETs can immobilize and
kill microbes or inactivate microbial “virulence factors” and alter host cell function [9,16,40].
Microbes are able to circumvent NETosis using diverse mechanisms such as degrading
NETs using nucleases [45]. Encapsulated pathogens or those that can change their surface
charge to escape entrapment result in inflammation [46].

Table 2. Microbial inducers of NETosis.

Inducer Type Reference

Staphylococcus aureus [40,47]

Streptococcus sp. [48]

Haemophilus influenzae [49]

Klebsiella pneumoniae [16]

Listeria monocytogenes [50]

Mycobacterium tuberculosis [51]

Shigella flexneri [9]

Aspergillus nidulans

[52–54]Aspergillus fumigatus

Candida albicans

Porphyromonas gingivalis [55]

V. cholera [45]

Aeromonas hydrophila [56]

E. arloingi sporozoites, B. besnoiti, C. parvum, Spermatozoa, H. contortus, N. caninum, D (-) lactic acid, M. bovis,
E. ninakohlyakimovae, T. gondii, S. uberis [24,31–34,57–72]
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Formation of NETs contributes to the pathogenesis of inflammatory and autoimmune
diseases in man. Pathologies associated with NET formation have been reported in sys-
temic lupus erythematosus, rheumatoid arthritis [73], vasculitis [74,75], diabetes [76,77],
atherosclerosis and cancer [78]. Excessive NET formation during sepsis [15,79], pro-
motes thrombosis [80], thus enhancing coagulation and may also contribute to organ
failure [81,82].

The purpose of this review is to present the current knowledge about the mechanisms
of NETosis and its role in the pathogenesis of different diseases affecting three ruminants
cows, sheep, and goats [8]. Further the aim is to present and discuss strategies to control
parasites and inflammatory diseases by modulating NETosis through dietary or other
interventions to promote animal welfare/health, product quality and translational efforts.

3.2. Extracellular Traps in Ruminants

Cattle, sheep, and goats are the major food-producing livestock worldwide [83].
Concerns regarding food insecurity are associated with inflammatory diseases and animal
production [84,85]. The cost of parasitic disease is estimated at tens of billions of dollars
worldwide [86]. Drug resistance impacts control of pathogens [87,88]. The innate immune
system, primarily leukocytes, serves as the first line of host defense and plays a crucial
role in early recognition and the proinflammatory response [89]. Understanding and
interpreting neutrophil immune functions in different species [90] is essential to defining
early defense mechanisms for better disease management.

Neutrophils are very important first line responders in inflammatory diseases which
are associated with pathogen infection and metabolic disorders. They are central to the
defense against pathogens causing disease such as mastitis, metritis, and parasitic infec-
tions as reviewed by Neumann et al., (2020) [36]. Impairments in neutrophil function
such as during the periparturient period are associated with impaired animal health and
welfare [91–98]. Furthermore, increased understanding of the regulation of neutrophil
function is essential to the control of tissue damage resulting from cell activation and
NETosis [99].

NETs have been characterized in several mammals including cows, sheep and goats,
although not as extensively as in humans and mice [11]. Proinflammatory components
of NET formation are associated with tissue damage in human lung [100] and in cow
mammary epithelial cells [101]. It has been observed that direct proinflammatory ef-
fects on airway epithelial cells might contribute to recruitment of more neutrophils and
perpetuation of inflammation, to cause lung tissue damage [101].

Understanding conserved and different responses of neutrophils from different species
is essential to understanding host pathogen interactions to control diseases [90]. Compara-
tive studies on NETosis are helping to advance knowledge about the role of neutrophils
in reproduction to improve successful fertilization [102,103]. Understanding NETosis in
ruminant species will aid in better definition of pathogenesis of diseases and designing of
targeted therapeutics. Moreover, analyzing the responses of neutrophils of different species
and NETs formation is relevant in light of zoonotic disease and the use of animal models for
health [104–106]. Neutrophils are associated with lesions in the lungs and gastrointestinal
tract of cows, sheep, and goats infected by coronaviruses and diverse pathogens [107].
Understanding NETosis in these species may help understand the pathophysiology and
adaptability of animal and zoonotic pathogens while contributing to animal and public
health through new targets for control [107].

NET Triggers in Cattle, Sheep and Goats

Cattle, sheep and goats are susceptible to inflammatory diseases caused by pathogens
and as a result of metabolic disorders. These diseases are important limiting factors in
production systems around the world resulting in economic losses [108]. The mechanism of
activation, migration into tissue and immune modulation in response to stimuli, microbial
killing and NETosis of cow, sheep and goat neutrophils is similar to other species [109].
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In cows, stimulation of neutrophils with bacteria common to mammary gland infec-
tions leads to neutrophil extracellular traps formation in milk [27]. Studies in sheep have
shown that NETosis is associated with changes in proteins such as TLR in response to
pathogens that cause mastitis [72]. Pisanu et al., (2015) described NET formation in vivo
where milk and tissues collected from the mammary gland of sheep that developed acute
mastitis after experimental Streptococcus uberis infection, demonstrated the presence of extra
nuclear DNA co-localizing with antimicrobial proteins, histones, and bacteria [72]. Histone
citrullination formation plays a role in NETs found in mammary alveoli in response to S.
uberis infection [72]. Studies on bovine mammary epithelial cells have implicated NET
formation and in particular histones to be involved in mammary epithelial cell damage
in vitro [101]. Targeted inhibition of excess NET formation may aid in combatting tissue
damage [101,110]. In this study NET markers were markedly increased, 1095 unique
proteins were identified, with 287 being significantly more abundant in mastitic milk [72].
These markers may aid in targeted inhibition of excess NET formation [72,110].

Cacciotto et al., (2016) described NET formation in vivo in the mammary gland and
milk of sheep naturally infected by Mycoplasma agalactiae [111]. Sheep neutrophils formed
NETs through binding of the lipoprotein to TLR2. Furthermore, the authors suggested that
M. agalactiae may circumvent NETosis by degrading the DNA component of NETs through
its surface nuclease MAG_5040. Thus promoting its survival and the establishment of
persistent infections [111]. Understanding of microbial virulence factors may aid in design
of novel diagnostics and therapeutics for the control of pathogens such as mycoplasma.
Pathogens such as Mycoplasma bovis, can escape NET-mediated killing [57,58]. Relative
senescence of individual cow neutrophils was associated with increased NET formation in
response to repeated exposure to M. haemolytica [112]. Viable and heat-killed M. tuberculosis
bacteria and unilamellar liposomes, as well as Mycobacterium bovis BCG were efficient NET
inducers [51]. Although bacteria remained viable it was postulated that in vivo, neutrophils
might propitiate recruitment and activation of more efficient microbicidal cells [51]. In
addition to their direct interactions with invading pathogens, NETs can exert a direct
enhancement or dampening effect on the inflammatory responses [11].

Neutrophils release ETs as a defense strategy against pathogens [24,27,28,31,32,65,
67,68,70,113–115]. These parasites include Eimeria bovis [31,32,67], Neospora caninum [59],
trypomastigotes [116] and Haemonchus contortus [64]. Pathogens can be entrapped and
killed within NET-like structures in a ROS-dependent or independent manner [32,59,63].
The extracellular, haemoflagellate parasite Trypanosoma brucei is a cause of trypanosomiasis
resulting in mortality and morbidity in cattle, sheep, goats, and horses. The entrapment
of trypmastigotes in aggregated NETs was purinergic-dependent and maybe important
in trypanosomiasis-related immune-pathological disorders [116]. Neospora caninum is an
apicomplexan intracellular parasite of cattle and dogs that also cause clinical infections
in horses, goats, sheep, and deer. It causes severe reproductive disorders in cattle world-
wide. Neospora caninum, induced classical mammalian NET formation in cow and goat
neutrophils [117,118]. N.caninum-induced NETosis appears to be influenced by MPO and
CD11b, but independent of NADPH oxidase, store-operated calcium entry, ERK1/2 and
p38 MAPK activities [117,118]. Toxoplasma gondii, a protozoan parasite that causes toxo-
plasmosis in warm-blooded animals triggers NETs in human, mouse, sheep and cattle
neutrophils [68]. T. gondii-induced NETosis was dependent on tachyzoite concentrations
and incubation time in both sheep and cattle. NETs structures released from sheep neu-
trophils caused mechanical immobilization of T. gondii tachyzoites. NETs structures and
MPO may have a lethal effect on T. gondii tachyzoites in vitro [36,68]. Yildiz et al., (2017)
reported that NET structures produced by sheep neutrophils may only ensnare T. gondii
tachyzoites, whereas cattle neutrophils had lethal effects in vitro [68].

Cattle sheep and goats are infected with different species of the genus Eimeria a proto-
zoan parasite causing coccidiosis. Eimeria bovis in cattle or Eimeria arloingi in goats are associ-
ated with health problems and economic losses especially in young
animals [63–65]. Eimeria arloingi triggered the release of ROS-dependent caprine neu-
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trophil ET fibers and were entrapped within the meshwork [33]. Although E. arloingi were
immobilized within the NETs, this did not affect the viability of the parasites [33]. Findings
from several studies reported that triggering of NETs is dependent on incubation time in
bovine and caprine neutrophils against parasites such as E. bovis, C. parvum and E. arloingi
sporozoites [32,33,65] contradicting what was reported with tachyzoites of B. besnoiti [34].
The induction of caprine NETs by E. arloingi was confirmed by Munoz-Caro et al., (2016),
who reported colocalization of extracellular DNA with neutrophil elastase and histones in
Eimeria-infected tissue samples [66]. Citrullinated histone H3, a typical NET marker for
human and mouse NETs [119], was found in close proximity to Eimeria in different stages
of replication. NADPH-oxidase-dependent NETosis was described in response to viable
sporozoites, sporocysts, and oocysts of Eimeria ninakohlyakimovae, in association with
increased IL-12 and TNFα in goats [61,62]. The authors hypothesized that the released
DNA structures immobilized rather than killed the parasites. Moreover, caprine monocytes
also released ETs [61,62].

Many species of parasitic helminths are impacted by NETosis as part of the early im-
mune response of the host. The abomasal parasite Haemonchus contortus is a gastrointestinal
nematode with worldwide distribution causing significant economic losses particularly
in small ruminants. In cow and sheep neutrophils L3 larvae of Haemonchus contortus [64]
induce different phenotypes such as aggregated NETs, spread NETs and diffuse NETs. Both
disseminated and aggregated NETs entrapped L3 [64]. The viability of H. contortus was not
affected by entrapment [68]. Studies have demonstrated that cow neutrophils release NETs
in response to the free-living soil nematode Caenorhabditis elegans, that NET production may
be a conserved mechanism against a broad range of nematodes. The cattle stomach worm
O. ostertagi-induced NET formation by a ROS-independent and NADPH oxidase dependent
pathway [120]. Fascioliasis is a zoonotic disease caused by infection with the trematode Fas-
ciola hepatica, resulting in hepatitis in humans and livestock. Pathogens employ virulence
factors and molecular mimicry to avoid detection or trigger immune modulatory factors to
impact the NETotic response [121]. Fasciola hepatica secretes parasite-specific molecules to
either resolve NETs or to impair NETosis signaling pathways to possibly impact disease
pathology in vivo [122].Thus more studies are needed on pathogen recognition to shed
light on mechanisms of immune evasion related to NETosis.

Exposure to molecular stimuli other than pathogens is also associated with the NET
formation. For example, PMA, ionomycin or milk each induced NETosis in contrast to
inhibition of phagocytosis and oxidative burst observed in cow blood [27]. The release of
NETs, inhibition by milk components, and association of relevant proteins with the milk
fat has been reported [27]. Beta-hydroxybutyrate, produced during ketosis or hyperke-
tonemia, reduced phagocytosis and NET-mediated killing of E. coli P4 by neutrophils [28].
Alarcon et al., (2020) reported that nonesterified fatty acids (NEFAs), by inducing NET
formation may contribute to postpartum diseases in cows. The effect of NEFA in cow
neutrophils was faster than reports for human neutrophils [123]. Alacron et al., 2017 [60].
Reported that activation of NETosis with d (-) lactic may contribute to neutrophil-derived
proinflammatory processes, such as aseptic laminitis and/or polysynovitis in animals
suffering from acute ruminal acidosis [60]. Histamine regulates the immune response in
allergic diseases such as asthma, rhinitis in man and laminitis in cows through regulating
immune responses. Histamine-triggered NETosis increased ERK and p38s proteins and
activation of NADPH oxidase in cows [124]. Thus changes in the host microenvironment
that impact NETosis can impact disease outcome.

4. Prediction, Modulation and Therapy

The innate immune response involves evolutionarily conserved pathogen recognition
receptors (PRR) that recognize PAMPS. This is exemplified by toll-like receptors (TLR),
which recognize specific PAMPS such as LPS [125]. In light of reports of the role of TLR in
NETosis, understanding the mechanisms underlying regulation of the inflammatory re-
sponse to PAMPs in diseases such as mastitis and metritis may aid in the design of tailored
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therapeutics that target pathogen recognition and inflammation [126]. For effective use of
NETs as biomarkers and targets for therapy, continued efforts are needed to identify and
define the function of genes involved in innate immunity. Furthermore, we need to develop
tools that identify and predict NETosis phenotypes in cattle, sheep and goats. Anti-NET
therapeutics that target induction or inhibition of NET formation are being studied in
human neutrophils [106]. The machine learning algorithm called convolutional neural
network was used to quantitate and identify NETotic and non-NETotic classes with an
accuracy of greater than 94% [127]. The design of new and implementation of improved ma-
chine learning tools may help capture unique attributes/features of NETosis in ruminants
in comparison to what has been observed in human for increased understanding [127].

Development of novel anti-NET therapeutic strategies might help to reduce disease
and improve animal welfare and production. Dietary modulation that targets NETosis
may enhance the functional benefits while regulating harmful consequences [123]. Diverse
stimuli are associated with differential and temporal modulation of gene expression in
ruminant blood and in immune cells such as neutrophils [92,99,106].

Phytochemicals and probiotics [99,105,128,129] are being studied to augment innate
immunity against microbes and gastrointestinal parasites to address concerns regarding
antibiotic resistance. These include extracts such as: garlic, neem, wormwood, tobacco,
cowpea [87,130,131] and Sericea lespedeza [132]. [Table 3]. As reported by Vong et al.,
(2014) probiotic bacteria inhibit both PMA- and S. aureus-induced NETosis [110]. Further-
more, this inhibition of NETosis is an additional benefit of PAMPS expressed by health
beneficial microorganism playing a role in maintaining homeostasis and gastrointestinal
health [95,108]. Genes associated with innate and adaptive immunity are differentially
regulated in cows and goats receiving probiotics [95,108]. Adjei-Fremah et al., (2016) in-
vestigated the in vitro effect of LPS using blood samples collected from probiotics-treated
animals. Global gene expression analysis identified 13,658 differentially expressed genes
(fold change cutoff ≥ 2, p < 0.05), 3816 upregulated genes and 9842 downregulated genes in
blood in response to LPS [133,134]. The regulation of the genes involved in inflammation
signaling pathway suggests that probiotics may stimulate the innate immune response of
animal against parasitic and bacterial infections [95] The effect of probiotics on NETosis in
ruminants needs investigation.

Antioxidants can inhibit ROS-associated NET release [135,136]. Studies are needed
to evaluate the effect of antioxidants as modulators of NETosis in cows, sheep and
goats [110,131,133,134]. Polyphenolic extracts from cowpea (Vigna unguiculata) [98] have
been shown to change gene expression [137] and activate signaling pathways such as the
toll-like receptor pathway, inflammation response pathway and MAPK cascade pathways,
among others [130,138]. Animal feed rich in phenolic constituents has immuno-regulatory
effects in ruminants [139,140]. Forages rich in polyphenol such as Sericea lespedeza and
cowpea also changed gene expression in goat blood [128,130,132,141]. Asiamah et al., [92]
showed extracts from Sericea lespedeza modulated the expression of innate and adaptive
immune and WNT signaling pathway genes including TLR2, TLR4, WNT5A and FZD.
Table 3 shows genes, modulated as a result of probiotic and phytochemicals supplementa-
tion in goats [108,142], that may impact NETosis.

Table 3. Selected immunomodulators tested in goat blood.

Modulator (s) Sample Type (s) Cytokines Innate Immune
Response Reference

Probiotics Whole blood, serum IL2, IL5, IL10, IL8, IL18 TLR4, TLR6,
TLR7, TLR9 [96,143]

Cowpea Whole blood, serum, plasma
TNFα, IL1α, ILβ, IL8 IL10RA,

IL15, IP10,
GCSF, Rantes and IFNγ

TLR2 [139]

Sericea lespedeza Whole blood, Serum TNF-α, IFNr, GCSF, GMCSF,
IL-1α, IP-10 TLR2 and TLR4 [132]
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Table 3. Cont.

Modulator (s) Sample Type (s) Cytokines Innate Immune
Response Reference

Mushroom Neutrophils, Whole blood,
serum

IFNr, Rantes, GCSF, and
GM-CSF

TLR1, TLR2,
TLR3, TLR4,
TLR5, TLR6,
TLR7, TLR8,
TLR9, TLR10

[142]

Lipopolysaccharide
Mammary epithelial cells,

whole blood, blood
leukocytes

IL1B, CCL3 and IL8, CCL2,
CXCL6, IL6, CXCL8

PTGS2, IFIT3,
MYD88, NFKB1, and

TLR4
[92,144]

IL2, interleukin 2; TLR, Toll-like receptor; TNFα, tumor necrosis factor α; GCSF, granulocyte colony stimulating factor; IFNγ, interferon γ;
GMCSF, granulocyte macrophage colony stimulating factor; IP-10, IFN-γ-induced protein 10; IFNr, interferon regulator; CCL3, macrophage
inflammatory protein-1 α, MIP-1α; CXCL6, chemokine (C-X-C motif) ligand 6.

Dietary modulation to improve immuno-suppression during the periparturient period
can impact NETosis and immune function [123] Global gene expression profiles of blood-
derived neutrophils from periparturient cows revealed that 249 genes out of 44,000 were
differentially expressed (fold change ≥ 2, p < 0.05). Eighty-seven (87) genes were down-
regulated and among the top 20 downregulated genes were genes essential to neutrophil
response and immunity [145], such as PGLYRP1 and SERPINB4. The observed down-
regulation of adhesion genes could lead to impaired NETosis during the periparturient
period. Erpenbeck et al., (2019) reported a correlation between neutrophil adhesion/contact
area and NETosis [99]. They demonstrated that, PMA induced NETosis is independent of
adhesion and LPS-induced NETosis was dependent on adhesion to specific surfaces in the
body [99].

Changes in neutrophil gene expression and function due to supplementation of the
cow’s diet with rumen-protected methionine (Met) aid in alleviating immune suppression
during the periparturient period [146–149]. A study by Stella et al., (2018) revealed that NET
formation does not appear to be affected by limited amino acids during the periparturient
period [150]. In vitro, addition of Met, as a scavenger of hypochlorous acid, a product
of MPO, had no effect following stimulation with PMA or bacteria [151]. Methionine
sulfoxidation is a post-translational modification observed in PMA- and LPS-induced
NETs [152]. In cows Asiamah et al., (2019) reported an association between dietary Met
supplementation and galectin gene expression and secretion [153].

Galectins are soluble β-galactoside-binding lectins that regulate immune function [154].
Galectin-9 is reported to co-localize with corpses of neutrophils following NETosis, suggest-
ing a potential role in the clearance of neutrophils [155]. Supplementation of dairy cows
with Met reduced the galectins involved in inflammation (galectins 1, 2, 3, 4 and 12) [143].
The increase of galectin 8 to Met supplementation in the presence of LPS in vitro, however,
shows a possible pro-inflammatory role of this galectin in cows [156]. Furthermore, Met
supplementation may improve neutrophil migration and phagocytic capacity in part by
increasing the expression of galectin 8 in cow neutrophils [91,93]. Galectin 8 is involved
in activating anti-bacterial autophagy [157]. Nishi et al., (2003) reported that galectin 8
induces a firm and reversible adhesion of peripheral blood neutrophils in vitro [156], which
suggests that they play a vital role in neutrophil migration. It is possible that cows with
more Met may respond better to infection through enhancement of adhesion in response to
LPS and formation of NETs [153].

Breed and species-specific patterns of NETosis offer an opportunity to harness genomic
technologies for targeted intervention and immunomodulation of conserved receptor sig-
naling pathways using ruminants as models [125,158]. Studies are showing that NETs
induced in different conditions may have different biological effects [152]. Using proteome
analysis, it was shown that NETs induced by different stimuli had heterogeneous protein
composition and post-translational modifications [152]. Changing the proteome by degrad-
ing NETs using deoxyribonuclease to reduce inflammation is a therapeutic approach with
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implications in both human and animal diseases [151]. In cattle sheep and goats, changes
in NET markers and the proteome are associated with disease of concern to animal health
and production [72]. Increased definition of the proteomes, associated post-translational
modifications, and markers of NETosis in sheep cattle and goats will contribute to the devel-
opment of therapeutics for inhibition of excess NETs formation to ameliorate pathologies
associated with diseases [101,129,152,158].

5. Conclusions

In cattle, sheep, and goats NETosis is associated with the response to diverse zoonotic
pathogens and those impacting animal health and welfare. Pathophysiological damage
has been reported from NETosis in humans and ruminants. Increased understanding of
NETosis in ruminants will help in interventions to control diseases such as mastitis that
impact all mammals, including humans. Species specific responses to pathogens such as
coronaviruses in relation to NET formation in ruminants, may contribute to definition of the
role of neutrophils in pathophysiology and severity of diseases such as COVID-19. Studies
on the innate immune response to pathogens and their modulation using natural products
can serve as a springboard for definition of NETosis signatures and their modulation in
ruminants. Furthermore, NETosis is associated with impaired fertilization, periparturient
health, and diet. Improvements in methodology such as application of machine learning
tools are essential to decipher and harness the components of the double edge sword
of NET formation as biomarkers for disease and as targets for therapeutic intervention.
Studies on the innate immune response to pathogens and their modulation using natural
products can serve as a springboard for application of anti-NETosis therapeutics for cows,
sheep and goats. Breed and species-specific patterns of NETosis offer an opportunity
to harness genomic technologies for targeted intervention and immunomodulation of
conserved receptor signaling pathways using ruminants as models. Definition of the NET
proteome and its unique attributes/features in ruminants in comparison to what has been
observed in humans has significant implications for the design of therapeutics for health
and global food security, and thus warrants further study.
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Abbreviations

IFN interferon
IP-10 IFN-γ-induced protein 10
IFN-α interferon α

IL interleukin
MPO myeloperoxidase
NE neutrophil elastase
ETs extracellular traps
NETs neutrophil extracellular traps
Nox NADPH-oxidase
PMA phorbol-12-myristate-13-acetate
ROS reactive oxygen species
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
SLE systemic lupus erythematosus
TNF-α tumor necrosis factor-α
BPI bactericidal permeability-increasing factor
ERK1/2 extracellular signal-regulated kinases 1/2
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LPS lipopolysaccharide
TLR Toll-like receptor
C3 complement 3
PAD4 peptidyl arginine deiminase 4
PVL Panto-Valentine leukocidin
HMGB1 high-mobility group box 1
MAPK mitogen-activated protein kinase hi
NADPH nicotinamide adenine dinucleotide phosphate
PAMPs pathogen-associated molecular patterns
CD 11b cluster of differentiation molecule 11b
CD14 cluster of differentiation antigen 14
PMNs polymorphonuclear leukocytes
CH3 citrullinated Histone H3
NEFAs nonesterified fatty acids
ICAM-1 intercellular Adhesion Molecule 1
PVD purulent vaginal discharge
MAC-1 macrophage-1 antigen
FC fold change
NFkB nuclear factor kappa-light-chain-enhancer of activated B cells
IL1B interleukin 1 beta or lymphocyte activating factor (cytokine protein)
FZD frizzled
PGLYRP1 gene peptidoglycan recognition protein 1 gene
SERPINB4 protein serpin family B member 4 protein
PMNL polymorphonuclear leukocytes
Met methionine
RPM rumen-protected Met
GCSF granulocyte colony stimulating factor
GMCSF granulocyte macrophage colony stimulating factor
CoV coronavirus
BCoV bovine CoV
PRRs pattern recognition receptors
CNN convolutional neural network
NEFAs nonesterified fatty acids
CCL3 macrophage inflammatory protein-1 α, MIP-1α
CXCL6 chemokine (C-X-C motif) ligand 6
SOCE store-operated calcium entry
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