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Abstract: The article presents the synthesis of silica aerogel from a much cheaper precursor of water
glass that was reinforced with short pitch carbon fiber by way of ambient pressure drying. Before
being added to the silica gel, the carbon fibers were surface modified to increase adhesion at the
interfacial border. We were able to obtain stable structures of the composite with the amount of fibers
above 10% by volume. The presence of fibers in the silica matrix resulted in lower synthesis time of
the composite, improved adhesion of fibers to the aerogel nanostructure, and increased mechanical
and structural parameters. An additional effect of the presence of fibers in excess of 10% by volume
was a new function of the nanocomposite—the ability to conduct electric current. The most optimal
parameters of the composite, however, were obtained for silica aerogel reinforced with 10 vol.% of
carbon fibers. This material indicated relatively low density and good physical parameters. The
paper also analyzes the results on the synthesis of fiber-reinforced silica aerogels that have appeared
in recent years and compares these to the results gained in presented work.

Keywords: silica aerogel; water glass; ambient pressure drying APD; carbon microfibers: structural
and mechanical properties

1. Introduction

The widespread interest in the synthesis of silica aerogels and their use in many
applications, including the thermal and sound insulators [1,2], catalysts and carriers of
various active substances [3–5], adsorbents and absorbents [6–9] is due to their unique
lightweight nanostructure and properties such as low thermal and sound conduction
coefficient, high porosity, and low light reflectance [3,10,11]. Nevertheless, despite many
positive features, silica aerogels are characterized by low fracture toughness, which very
often determines their wider use in many industries. The solution to this problem can be
an appropriate modification of particular stages of silica aerogels preparation (synthesis,
ageing, drying) and selection of a suitable method of its structure reinforcement leading to
the composite characterized by satisfactory chemical and physical parameters. The most
frequently used ways of reinforcing the structure of silica aerogels are presented in Figure 1.

Structural and mechanical features of the gel can be modified in ageing stage by
dissolving and repeatedly precipitating the silica from the surface of particles on to the
borderline particle—particle and connecting and/or precipitating oligomers, which were
unreacted during gelling. Another method assumes adding extra amount of precursor and
co-precursor to the solution before and after the moment of gelation, so that it builds into
the structure of the gel and, thus, reinforces it [12–14].

Apart from altering parameters of the synthesis, the mechanical properties of sil-
ica aerogels can be modified by implementing various additives to their structure, e.g.,
nanoparticles and metal nano-oxides or by applying reinforcement in the form of a short
structural fiber or fiber mats [15–18].
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Figure 1. Most frequently used ways of reinforcing the structure of silica aerogels.

There is also research carried out on covering the surface of silica aerogels with
polymers [19–21]. This action is taken before the stage of drying the gel; as a result, the
surface of silica aerogel is covered with a layer of polymer that increases the resistance of
silica structure to breaking. Nevertheless, the easiest way of increasing the strength of silica
aerogel is applying fiber reinforcement processes. The main purpose of using short fibers
in dispersed or long mat form is to strengthen the structure of the silica aerogel. Silica
aerogels are characterized by good structural parameters and relatively good compressive
strength, but they break very easily. This is characteristic of all the so-called brittle matrices
that break when the maximum stress is reached. The role of the fibers is to strengthen
the structure of the aerogel by bridging the cracks that arise during increasing stress, and,
depending on the parameters of the fibers, transferring the load through the fibers.

The properties of silica aerogel/fiber composites depend on the type of fibers and
the interaction between the fiber and matrix. Important parameters are: fiber size and
shape factors, share and distribution of fibers in the aerogel matrix, and interaction at the
fiber/silica matrix interface. Exemplary physical and mechanical parameters of composites
depending on the type of fiber are presented in Table 1 [22–34]. So far, ceramic fibers, nan-
otubes, and nanotubes have been used most often for strengthening the aerogel structure,
as ceramic fibers and nanostructures significantly improved the compressive strength of
the composite, which range from 0.030, to 0.483 MPa—depending on the preparation way
and the type of fiber. In the case of long ceramic fibers, a very high compressive strength
is obtained in comparison with other fibers and nanofibers (over 6 MPa). On the other
hand, ceramic fibers significantly worsen the density and other structural parameters of
composites. Positive effects on the mechanical parameters of aerogel composites were
also observed with the use of aramid and nanofiber polymers, e.g., of polyvinyl (PVA),
for which the maximum values of compressive strength were 0.043 MPa and 5.23 MPa,
respectively. For aerogels reinforced with polyaniline fibers, tensile strengths ranging
from 0.04, to 0.06 MPa were tested. Cellulose nanofibers and carbon nanotubes were also
used to reinforce the structure of the aerogel, obtaining an improvement in mechanical
properties, compressive strength and maximum load, which for these composites were
2 MPa and 300 N, respectively. An interesting solution is the combination of glass and
carbon fibers in a sandwich structure. Carbon fibers ranging from 5 to 15% were used as a
layer between two layers of fiber glass. Studies have shown the positive effect of such an
arrangement on both mechanical properties and optimal structural-insulation parameters.
Tensile strengths ranged from 2.889–4.39 MPa, while thermal conductivity varied from
0.031 to 0.052 depending on the amount of fibers. Recent studies indicate that organic
fibers are increasingly used to reinforce silica aerogel. The advantage of these fibers is
low density, small diameters, and much greater flexibility. The studies also indicate better
compatibility of polymeric fibers with the aerogel matrix, which may lead into improved
structural parameters and less dusting of the composite [35]. This group also includes
carbon fibers, which are characterized by very good chemical and physical parameters,
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particularly with regard to density. Unlike most polymeric fibers, they are resistant to
increased temperatures and can be surface modified.

Table 1. Physical and chemical characteristic of silica aerogel–carbon fibers composites in relations to the amount of fibers.

Precursor/
Conditions of Synthesis Bulk Density, g/cm3 Fiber Type/Amount

of Fibers
Flexural ff or Compressive

Strength fc, MPa Reference

TEOS/APD/TMCS 0.202 Nanofibers PVA ff = 1.1
fc = 5.23 [22]

TMOS/LTSD/CO2 0.071–0.079 Polyaniline
nanofibers ff = 0.04–0.06 [23]

Water glass/APD/TMCS 0.23 Multi-walled carbon
nanotubes

Max load
300 N [24]

TEOS/APD/TMCS 0.154–1.193 Silica nanofibers fc = 3.5 [25]
Water glass/APD/TMCS 0.104–0.146 Silica nanofibers fc = 0.16 [26]

TEOS/APD/TMCS 0.15–0.17 Aramid fibers fc = 0.019–0.043 [27]
TEOS/LTSD/CO2 No data WS2 nanofibers fc = 0.03 [28]

TEOS/APD 0.18–0.12 Ceramic nanotubes fc = 0.4–1.45 [29]
TEOS, ZrOCl2/HTSD/ethanol 0.274–0.419 Ceramic fibers fc = 0.286–0.438 [30]

TEOS/APD/TMCS 0.1–0.3 Cellulosic
nanofibers fc = 0.17–2 [31]

TEOS/APD/TMCS 0.15–0.162 Aramid fibers fc = 0.83–1.22 [32]
TEOS/HTSD/ethanol 0.29 Ceramic fibers fc = 6.3 [33]

TEOS/APD/TMCS 0.131–0.245 Glass/carbon fibers ff = 2.889–4.39 [34]

Therefore, in the presented article, cheap carbon fibers obtained from carbon tar pitch
were used to strengthen the nanostructure of silica aerogel. Prior to their use in silica
aerogel matrix, carbon fibers were surface modified in a nitric acid solution to increase
the amount of hydrophilic functional groups on their surface. The presented article is a
consequence of previously initiated research describing the nanocomposites based on short
carbon fiber and silica aerogels based on water glass solution [36]. In contrast to previous
studies, in this paper, the temperature of silica aerogels synthesis were decreased and
different amounts of carbon fibers determining the form of the composite were applied.
The paper focuses mainly on the structural properties of the obtained materials and their
correlation with the mechanical and insulating parameters. The paper also contains an
in-depth analysis of mechanical and structural parameters obtained for fiber-reinforced
silica aerogels that have been published by other research centers recently. These were
compared with the results obtained in this paper.

2. Materials and Methods

The synthesis of silica aerogel–carbon fiber composite was carried out by sol-gel
method using a 10% aqueous water glass solution in the presence of 1 mol/dm3 acid
catalyst (citric acid). Carbon fibers with a diameter of 13 µm and a length of 700 µm
(OSAKA GAS Co., Osaka, Japan) in an amount of 1 to 15% by volume were added to the
aqueous glass solution before the gelation moment. In order to obtain a good dispersion of
the fibers in the sol, the carbon fibers were modified in concentrated nitric acid at 105 ◦C.
Oxidation of the fiber surface was carried out for 5 h. After treatment, the fiber specific
surface area changed from 2 to 10 m2/g. The aging step was conducted for 24 h in methanol
aqueous solution followed by 7 days in methanol. The resulting composites were then
dried in a 1:4 mixture of TMCS/n-hexane for 24 h followed by air drying.

Porous structure parameters of silica aerogel composites (specific surface area, pore
diameter, total pore volume) were determined on the basis of adsorption-desorption
isotherms of nitrogen vapors using ASAP 2020 analyzer (Micromeritics Co., Livermore, CA,
USA), while temperature stability was determined using the Jupiter STA 449F3 apparatus
(Netzsch GmbH, Selb, Germany) in the temperature range 30–1000 ◦C, under a nitrogen
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atmosphere. Bulk density of the composites was determined as a mass to volume ratio on
cylindrical samples.

Mechanical characterization of the manufactured composites was carried out using an
Instron electromechanical press, ElectroPulsTM E10000, class 0.5. The test was performed
on 5 samples of silica aerogel–carbon fibers composite with 10 and 15 vol.% of fibers.
The microstructure of silica aerogel–carbon fiber composites was studied by Tescan–3–
Vega microscope (Tescan, Czech Republic). Specimens were sputter coated with Au/Pd
nanolayer prior to testing.

The thermal conduction coefficient for composites silica aerogel–carbon fibers was
made using the stationary method, by means of the FOX50 TA Instruments. Measurement
temperature was 10 ◦C. The conductivity of silica aerogel composites was determined by
means of potentiostat/galvanostat VMP3 (Bio-Logic, Seyssinet-Pariset, France). Measure-
ments were taken in a Swagelok® cell using an electrochemical impedance spectroscopy
(EIS) and linear sweep voltammetry (LSV) techniques.

3. Results

On the basis of literature study and preliminary research, it was assumed that the
sol-gel method with the use of organosilicon compounds of tetramethyl orthosilicate
type (TMOS) and tetraethyl orthosilicate type (TEOS) will contribute to producing silica
aerogel–carbon fiber composites with the assumed physicochemical parameters. Drying in
supercritical and atmospheric conditions was applied and comparable physicochemical
parameters of nanocomposites were obtained [37,38]. Based on the positive results of
the research, a decision was made that in the main phase of the research, water glass,
which is far cheaper than organosilicon compounds, was to be used as the precursor of
the silica aerogel, and the drying was to be conducted only under atmospheric conditions.
This eliminates the more costly supercritical drying that limits aerogel production on a
technical scale. Due to the potential use of silica aerogels in the construction industry, citric
acid was used as a catalyst for the sol-gel reaction instead of the most commonly used
hydrochloric acid. The literature study indicated that there are better physical parameters
of silica aerogels created in the presence of weak organic acids than those generated
in the presence of strong inorganic acids, e.g., hydrochloric acid, whose contiguity may
negatively affect other construction materials, like concrete or steel [39]. The purpose of this
phase of research was to determine conditions and methods of synthesis of silica aerogel.
Eventually, the decision was made to conduct a much faster one-step synthesis from water
glass solution, excluding the preliminary phase, i.e., obtaining silicic acid, which may allow
for an easier and cheaper method of future synthesis of this nanocomposite.

Drying in atmospheric conditions was, hence, applied; this included surface modifica-
tion of silica aerogel with trimethylsilyl chloride (TMCS) and employment of carbon fibers
to reinforce the structure of aerogel. The used coal fibers came from the much cheaper
carbon precursor, coal tar pitch, which is characterized by a relatively high tensile modulus
to bulk density, good heat stability up to 600 ◦C, compatibility, and good electrical con-
ductivity. Carbon fibers were the subject of surface modification in nitric acid to increase
the share of oxygen functional groups on their surface and to enhance the number of
connections between the silica structure and carbon fibers. The scheme of the composite
synthesis is presented in Figure 2. It was assumed that simultaneous modification of silica
aerogel with trimethylsilyl chloride and carbon fibers will help obtain the desired structural
and mechanical parameters of the composite and quicken the process of synthesis of the
nanomaterial. Moreover, we thought that the reaction between carbon fibers and silica
structure should result in lowering the contraction of silica aerogel while drying and limit
the dustiness of the composite, which occurs in aerogel mats currently produced with the
use of glass and polymer fibers. Implementing carbon fibers into the structure of silica
aerogel will also, we concluded, result in obtaining new functions of the material, e.g., its
ability to current conductivity.
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Figure 2. Synthesis of the silica aerogel–carbon fibers composite.

3.1. Structural and Chemical Characterization of Silica Aerogel

The analysis of the results presented in the Table 2 shows that a smaller amounts of
fibers, 1 and 5 vol.% shares, increases the density of the composite and the specific surface
area, whereas the bigger amounts, 10 and 15 vol.%, result in decreasing the density of the
material, giving lower values of the specific surface area than the pure silica aerogel. The
presence of carbon fibers in the structure of the aerogel positively affects shrinkage during
drying, the greater number of fibers induces a decrease of volume shrinkage of the material.
The best structural parameters were obtained for aerogel with a 5 vol.% addition of carbon
fibers, however, the sample had extensive microcracking. Only when the addition of fibers
reached 10 vol.% did the composite have dense structure without microcracking.

Figure 3 presents the infrared spectra registered for silica aerogels and silica aerogel
reinforced with carbon fiber in relation to the number of fibers. In case of all materials,
according to preliminary research and results for TEOS and TMOS with wave number
around 1100 cm−1, there is a band appearing with Si-O-Si bonds of the silica structure [40].
In the case of fiber composites in the amount of 1 and 5 vol.%, the band intensity decreases;
for fiber composites in the amount of 10–15 vol.%, the band intensity increases. The greater
number of Si-O-Si bond in composites with 10–15 vol.% of fibers may indirectly indicate
reaction between the silica structure and the surface area of carbon fibers from which the
increase of the silica chain begins. Furthermore, in all cases, there were bands at wave
numbers 1258 cm−1, 847 cm−1, and 758 cm−1 that can be assigned to Si-C bonding, and
that is connected with TMCS modification of the gel [41,42].
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Table 2. Physical and chemical characteristic of silica aerogel–carbon fibers composites in relations to the amount of fibers.

Sample Density, g/cm3 Volume Shrinkage % Specific Surface
Area, m2/g

Average Pore
Diameter, nm

Average Pore
Volume, cm3/g

AG0%CF 0.209 granulate 496.5 10.2 1.271

AG1%CF 0.336 67.5 + extensive
microcracking 551.0 12.2 1.694

AG5%CF 0.233 52.3 +
microcracking 571.3 14.6 2.091

AG10%CF 0.199 44.6 474.6 14.5 1.724

AG15%CF 0.225 44.4 467.0 12.7 1.486
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to the amount of fibers (precursor 10% solution of water glass, APD).

The thermogravimetric analysis presented in Figure 4 shows that higher heat stability
is characteristic for composites with 1 and 10 vol.% addition of carbon fibers, in that there
was a 2% loss of weight at the temperature up to 400 ◦C, whereas other configurations had
a 4% loss. Nevertheless, all materials showed high heat stability up to 700 ◦C. The physico-
chemical analysis of silica aerogel/carbon fiber composites showed that durable structures
with high heat stability were obtained with carbon fiber contents of 10 and 15 vol.%. These
showed a 6 and 10% loss of weight, respectively, and proved the effective modification of
the structure in TMCS. The explanation for the unusual behavior of composites with the
addition of different amounts of fibers is the distribution of fibers in the aerogel matrix.
These results are consistent with the structural analysis. When 1 vol.% fibers were added
to the silica aerogel, the fibers were homogeneously dispersed in the matrix. Due to the
introduction of a small amount of fibers, the specific surface area of the composite increased,
this trend was also maintained for 5 vol.% carbon fiber addition, but at this ratio the fibers
did not disperse uniformly. There were places where some fibers agglomerated and there
was no good adhesion between the fiber surface and the silica matrix. It should be noted
here that both structures were unstable and fractured and disintegrated into granular form.
Only 10 vol.% addition of carbon fibers made it possible to obtain a stable aerogel structure;
nevertheless, at this amount of fibers a decrease in the specific surface area of the composite
was observed. This is due to the much lower value of the carbon fiber specific surface area
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of about 10 m2/g. A further decrease in the specific surface area of the aerogel composite
was observed when fibers were added at 15 vol.%. Despite the durable structure, this
amount of fibers was already large enough to significantly deteriorate the temperature
stability of the composite. As with the 5 vol.% addition in this configuration, the carbon
fibers tended to agglomerate and interfere with the formation of a homogeneous silica
aerogel structure. The similar tendencies were observed by Horg et al. [34].
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3.2. Mechanical and Microstructural Characterization of Silica Aerogel Composite

The purpose of using carbon fibers was to strengthen the structure of the silica aerogel.
Physicochemical analysis showed that 10 and 15 percent addition of fibers brought about a
permanent composite structure without evident cracking. In the case of smaller amounts
of fibers, the material structure was very brittle and unsuitable for mechanical testing.
Therefore, mechanical analysis of the composites was carried out for two materials with
the highest content of fibers marked as AG 10% CF and AG 15% CF. In the first stage, the
composite samples were loaded to the maximum deformation in uniaxial compression at
the rate of stress increase of 1 mm/min. On the basis of stress-strain curves, the elastic
range of the material was determined, and, in the second stage, the dependence of stress
on deformation and stress on displacement in the elastic range was investigated. From the
stress-deformation curves, the maximum values of compression strength were obtained.
Additionally, on the basis of the height of the samples before and after the compressive load
in the elastic range, the return elasticity of the composites was assessed. This is a physical
characteristic that defines the ability of a material to recover its original shape and volume
after the removal of external deformation forces. The stress-strain curves in compression
are shown in Figure 5a,c, respectively, for aerogel composites with 10 and 15 percent
added carbon fibers. For both composites, three ranges are visible on the curves: the first
range—elastic, determining the linear increase in stress up to 20% of the specimen strain,
the second range—extra-elastic—from 20 to 30% of the specimen strain (plastic-elastic),
and the third range above 30% of the strain, during which the aerogel structure compacts
and gradual material degradation occurs. Similar material characteristics were obtained
in other composites based on silica aerogel and fibers, which were described in detail by
Yang, Li, Sedova, and others [see Table 1].
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On analyzing the stress-strain curves for composites with 10 and 15 percent fiber
addition, it can be seen that a composite with lower content shows higher stress values in
the range up to 20 percent of the specimen strain than does a composite with more fibers.
Nevertheless, in order to compare the mechanical characteristics of both composites, the
strain range up to 20% was adopted for further studies and the dependence of stress on
displacement was determined (Figure 5b,d). The values of compressive strength and return
elasticity are shown in Table 3. The aerogel composite with 10% fiber addition had much
higher compressive strength, even though both materials showed similar deformations,
and when the load was removed, the specimens returned to their original shapes at 93%.
For both materials, the specimen deflection at strain range up to 20% was 2.5 mm. Better
parameters of the composite with the addition of 10% vol. carbon fibers are the result of the
homogeneous structure of the composite; in this case, higher structural parameters of the
aerogel and higher porosity were obtained. Most of the carbon fibers act as a strengthening
of the aerogel structure by bridging the resulting micro-rises, as shown in Figure 6a,b. The
presence of higher fiber shares in the aerogel matrix means that not all the fibers are bound
to the silica skeleton and form micropores in the structure that weaken the structure of the
composite mechanically. Strength and structural results clearly indicate that more favorable
distribution of carbon fibers in the aerogel matrix was obtained for AG 10% CF composite.
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Table 3. Electrical conductivity and mechanical characteristic of silica aerogel–carbon fibers compos-
ites in relations to the amount of fibers.

Parameter AG10%CF AG15%CF

Compressive strength, MPa 0.054 ± 0.012 0.038 ± 0.008

Resilience, % 93.3 93.3

Electrical conductivity,
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Table 3 also lists the values of electrical conductivity of the silica aerogel reinforced
with carbon fibers in volumes of 10 and 15%. In order to define the conductivity of the
tested materials, Electrochemical Impedance Spectroscopy was used. Nonconductive
materials can conduct current as a result of introducing conductive fillers such as particles
or fibers into their structure in such numbers that the so-called percolation threshold
is reached. This is the amount of fillers at which particles or fibers come into contact
with each other to form a specific conductive network in a nonconductive material. It is
easier to obtain the percolation threshold for fibers than it is for spherical particles—this
is possible even by way of a few percent addition and depends strongly on the structural
parameters of the fibers and on the properties of the matrix. It is much more challenging to
achieve the percolation threshold for dielectric materials, such as silica aerogels. In this
case, the percolation threshold allowing creation of fiber net was obtained by a 10 percent
addition of fibers. Figure 6 presents the microstructure of the aerogel composite with
10% fiber addition.

While the photo shows fiber connections, part of the fibers separated from each other
by the aerogel structure remains inactive. The 15% fiber addition of fibers definitely ensures
good electrical conductivity—in this case, it was three times higher in comparison with 10%
fiber composite, and equaled 0.055 mS/cm. Both the aerogel matrix and smaller amounts
of fibers of 1 and 5% volume did not conduct current. Similar values of conductivity were
gained for aerogel composites with the addition of conductive polymer—polyaniline [23].
The highest conductivity of 0.022 mS/cm was obtained for 12 mg/mL of polyaniline, which
equaled the amount of 16.5 wt.%.

Lightweight silica aerogel composites—reinforced with short fiber or nanofiber, due
to their very large specific surface area and low volumetric density, which translates into a
low heat conduction coefficient—are ideal for both low and high temperature insulation.
The main factors influencing the change in the conductivity of a silica aerogel are the type
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of fiber carrier used, mainly the fiber density, specific surface area, and conductivity of
the fibers themselves. The results of the heat conduction coefficient obtained in the study
for the composite silica aerogel based on water glass, reinforced with carbon fibers in the
amount of 10 and 15% vol, are listed in Table 4 [43]. Additionally, the table shows the
results of heat conductivity coefficients for composites of silica aerogel reinforced with
other types of fibers and nanofibers for comparison purposes [25–27,29–32,34]. Special
attention was paid to the correlation of heat conduction coefficient values with density
and specific surface area of nanocomposites. The values of heat conduction coefficient for
the tested composites AG 10% CF and AG 15% CF depended on the number of fibers and
structural properties of the aerogel, being 0.0325 and 0.332 W/(m × K), respectively. A
higher proportion of fibers was found to prevent the formation of a homogeneous aerogel
structure, which results in a decrease in the specific surface area of the composite and lower
heat conduction coefficient values. Similar trends were observed by other researchers—
as the share of both fibers and nanofibers increased, the physicochemical properties of
aerogels deteriorated and the values of heat conduction coefficients decreased, regardless
of the method of synthesis and silicon precursor. Nevertheless, the obtained values of the
thermal conductivity coefficient were similar to those obtained by other researchers (Table 4).

Table 4. Thermal conductivity coefficient of selected silica aerogel–carbon fibers composites in relation to synthesis
parameters and densities.

Precursor/
Synthesis Conditions/Type of Fiber

Volume Density g/cm3/Specific
Surface Area m2/g

Thermal Conductivity
Coefficient, W/(m·K) Literature

Water glass/APD/TMCS/carbon fibers 10 vol.% 0.199/474.6 0.0325 This work, 43

Water glass/APD/TMCS/carbon fibers 15 vol.% 0.225/467.0 0.0332 This work, 43

TEOS/APD/TMCS/silica nanonfibers 0.154–0.193/851–899.5 0.022–0.027 25

TEOS/APD/TMCS/aramid fibers 0.14–0.17 0.022 27

TEOS/APD/ceramic nanotubes 0.12–0.18/346–526 0.028–0.038 29

TEOS, ZrOCl2/HTSD ethanol/ceramic nanotubes 0.274–0.419 0.0277–0.0273 30

TEOS/APD/TMCS/cellulose fibers 0.1 0.0226 31

TEOS/APD/TMCS/aramid fibers 0.150–0.162/955 0.023–0.028 32

Water glass/APD/TMCS/silica nanofibers 0.104–0.146/799–626 0.021–0.023 26

TEOS/APD/TMCS/glass/carbon fibers 0.131–0.245/933–335.3 0.031–0.0513 34

3.3. SEM Characterization of Silica Aerogel Composite

Selected images of the microstructure of the composite silica aerogel–carbon fibers
in a share of more than 10% by volume and the adhesion on the boundary between silica
aerogel and carbon fibers can be found in Figures 7 and 8. The SEM micrographs presented
in Figure 7 show a single carbon fiber and the phase boundary between carbon fiber and
silica aerogel. The SEM image indicates very good adhesion of the aerogel to the fiber
surface, which is the result of the reaction between the oxidized fiber surface and the
hydroxide groups located on the silica gel surface.
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While, the SEM photo presented in the Figure 8a shows two interpenetrating structures
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of silica aerogel and carbon fiber. In addition, pores with diameters between 50 and
100 µm are visible in the structure, probably due to gel contraction during drying and
to the limitation of the formation of a homogeneous aerogel structure by the presence of
large shares of carbon fibers. Figure 8 b also reveals the microstructure of the composite
silica aerogel–carbon fiber after loading. In comparison with Figure 8a, which shows the
microstructure of the composite before loading, the picture show a significant densification
of the structure and directional arrangement of the fibers. Additionally, microcracking in
the structure of the aerogel itself is visible (Figure 8c,d). SEM images confirm the strength
results and return elasticity values. Silica aerogel–carbon fiber composite does not show a
linear relationship between stress and deformation in the elastic range. After exceeding 10%
deformation, the composite is compacted and the structure is permanently micro-cracked,
which means that the material does not return to its original shapes and dimensions after
load removal.

4. Conclusions

Wide physicochemical analysis provides evidence that it was possible to gain silica
aerogel–carbon fiber composites in a simple, one-stage process with the use of atmospheric
drying. Best structural and insulating parameters were obtained for silica aerogel with 10%
addition of 0.199 g/cm3, specific surface 474.3 m2/g, and thermal conductivity coefficient
around 0.0325 W/m·K. Moreover, the material presented high resistance to temperature,
having stable structure up to 400 ◦C. This outcome is due to the effect of simultaneous
modification of the silica gel structure with carbon fibers and surface modification in the
mixture of TMCS/n-hexane in 50 ◦C. Hydrophilic functional groups located on the surface
of the oxidized fibers, after the silicon precursor was introduced, are additional active
centers where the gelation process and creation of silica gel chains begin. Thus, we receive
two interfluent nets—a silica net and a net created by carbon fibers making homogeneous
mesoporous structure.

Application of greater amount of fibers—above 10 vol.%—enabled shortening the
process of modification of silica gel in the mixture of TMCS/n-hexane down to 24 h and
contributed to receiving a stable structure of the nanocomposite with lowered contraction
during drying and good mechanical parameters.

Short carbon fibers from a cheaper precursor—coal tar pitch—were applied as the
reinforcement for silica aerogel for the first time. Fibers applied in this work combine the
advantages of inorganic fibers—they also have equally high temperature stability, and
polymer fibers—they have beneficial strength parameters and relatively low bulk density.
Moreover, carbon fibers are biocompatible and as a result of surface modification, they
can achieve solid connections with silica skeleton, which results in better parameters of
the final composite and limits dusting. Additionally, as a result of introduction of carbon
fibers into the silica aerogel structure, along reinforcement of the structure, a new feature
of the material was gained—electrical conductivity. Percolation threshold was gained for
10 vol.% of fibers; for this amount, the fibers created a conductive net within the dielectric
material—producing electric conductivity equal to 0.015 mS/cm. Greater amount of fibers
(15 vol.%) induced over three times higher electric conductivity.

The research outcome indicates that insulating and mechanical properties of the
received composite of silica aerogel and carbon fibers mainly depend on the structural
properties of the silica aerogel, especially its porosity. Carbon fibers, depending on their
volume, can either strengthen such features or weaken them. Via proper modification of
the silica aerogel microstructure and the fiber content, it will be possible in the future to
shape specific material properties, depending on potential application. The research results
also prove the significant cognitive meaning, the originality of the subject, and possibility
of practical application of the received materials.
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