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Abstract

The criterion to determine residue contact is a fundamental problem in deriving knowledge-based mean-force potential
energy calculations for protein structures. A frequently used criterion is to require the side chain center-to-center distance or
the Ca-to-Ca atom distance to be within a pre-determined cutoff distance. However, the spatially anisotropic nature of the
side chain determines that it is challenging to identify the contact pairs. This study compares three side chain contact
models: the Atom Distance criteria (ADC) model, the Isotropic Sphere Side chain (ISS) model and the Anisotropic Ellipsoid
Side chain (AES) model using 424 high resolution protein structures in the Protein Data Bank. The results indicate that the
ADC model is the most accurate and ISS is the worst. The AES model eliminates about 95% of the incorrectly counted
contact-pairs in the ISS model. Algorithm analysis shows that AES model is the most computational intensive while ADC
model has moderate computational cost. We derived a dataset of the mis-estimated contact pairs by AES model. The most
misjudged pairs are Arg-Glu, Arg-Asp and Arg-Tyr. Such a dataset can be useful for developing the improved AES model by
incorporating the pair-specific information for the cutoff distance.
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Introduction

The accurate identification of inter-residue contact is a crucial

step in the understanding of protein structure. The residue

contacts observed in crystal structures of globular proteins are

generally considered the intrinsic inter-residue interactions. Based

on this commonly accepted assumption, structures from the

Protein Data Bank (PDB) [1] have been used to elucidate two-

body residue contact and packing potentials since 1970s [2].

Miyazawa and Jernigan developed the theory of effective inter-

residue energy from protein crystal structures [3,4] based on the

Bethe Approximation [5,6,7,8] and quasi-chemical approximation

[9,10,11,12,13]. Applying Boltzmann’s law, Sippl proposed an

approach to yield mean force potential of residue interactions as a

function of distance [14]. In addition to the residue-distance-

dependence studies [15,16], the effect of relative orientations on

contact energy has been investigated [17,18]. In order to include

the influence of multi-residue interactions and local environmental

dependence, development of tri-residue [19,20,21], four-residue

[22,23,24,25,26,27,28,29,30] and secondary structure-related

energy [31] have been the focus of recent research.

For the sake of simplicity and computational efficiency, mean

force potential are widely used in various applications, such as

assessment of protein structures [32,33,34,35,36], folding recogni-

tion and threading [37,38,39,40,41,42,43], detection of native

protein conformation [44,45,46,47,48], native topologies [49,50,51]

and protein structure prediction [52,53,54,55]. Mean force

potentials use reduced representations for side chains.

The contact models can be classified into two broad categories:

the all atom model and the reduced representation model. In the

all atom model, a pairs of residues are considered in contact if any

two non-hydrogen side chain atoms (NHSA) from residues i,j are

within a specified cutoff distance [56,57,58,59]. This model is

expected to have accurate determination of the contact pairs

[15,47,60,61]. The drawback is that it requires the knowledge of

location of all the atoms on the side chains, and that is

computationally expensive in structure prediction. Popular

reduced representation of the side chains have been proposed

through the use of Ca atom [62,63], Cb atoms, the centroid of

amino acid and the centroid of side chain. Models with all atom

main chain backbone and a single united atom for side chain have

been proposed [53]. Another advanced model has been proposed

with hydrogen bonds and flexible ellipsoidal side chains

[64,65,66]. However, a more accurate description is required to

capture atom-atom interactions in detail.

Two residue side chains are considered to be in contact if the

side chain center or the Ca atom distance is less than a specified,

pre-determined threshold distance [2,3,4,14,25]. The influence of

a residue over surrounding medium can be effectively character-

ized at a limit distance [67,68,69,70]. A cutoff distance of 8.0 Å

has been used in multi-body potentials [27], folding rate of

proteins [71] and protein stability [72,73]. Other various
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contacting distances have also been used for protein-folding

studies. A commonly used side chain center distance threshold is

6.5 Å [3,4,18]. Spatial contact is considered to exist if Ca atom

pair or Cb atom pair distance is less than 7.0 Å [74,75,76,77].

In order to avoid the drawbacks of arbitrary cutoff distance, Yang,

et. al. proposed the parameter-free elastic network model (pfENM) to

improve the estimation of B- factor [78]. Although the artificial cutoff

distance are not as perfect as we expected, these convenient criteria

still find their applications in many fields, especially in protein

structure networks [79,80,81]. Cutoff distance is crucial to the contact

degree distribution function describing the network behavior.

It is challenging to find a cutoff distance due to the variation in

sizes, the preferred orientations and the anisotropy nature of the

side chains. However, it can be more and more accurate as the

mechanism of the contact is more and more understood. This

study compares the following three models: the surface-to-surface

model based on the side chain Atom Distance Criteria (ADC), the

Isotropic Sphere Side chain (ISS) model and the Anisotropic

Ellipsoid Side chain (AES) model using a dataset of 424 high

resolution proteins from the PDB. We derive a dataset and

illustrate the pairs that were wrongly estimated using the AES

model for future study to improve the AES model.

Results and Discussion

It is known that side chains tend to have preferred orientations and

exist as certain energetically favorable rotamers [82,83,84,85,

86,87,88,89]. This anisotropic nature of the side chains proposes

challenges in the determination of the contact. In general, there are

side chain overlaps (as defined by van der Waals radii) in

experimentally determined NMR and crystallographic protein

structures [90,91]. But the number of steric clashes is low. Side

chain overlaps defined by covalent radii are even less. We investigated

the overlaps in the high resolution PDB structures using three side

chain models. The dataset was used in our previous work [49] and it

includes 424 protein structures with single-chain, higher than 1.5 Å in

resolution, less than 30% sequence identity structures from the PDB

that are determined using X-ray crystallography technique [1]. Some

PDBs with missed NHSAs are excluded.

Residue-contact distribution for the ADC model
In the ADC model, two amino acids overlap if any pair of

atoms, one from each amino acid, is within the overlap cutoff

distance. Two non-overlapping amino acids are in contact if any

pair of atoms, one from each amino acid, is within the contact

distance.

We calculated the overall residue contact degree l nrð Þ and the

overlap degree lovl nrð Þ for 424 high-resolution PDBs based on

ADC model. l nrð Þ denotes the total number of contacts among all

nr residues in a protein. The overlap degree lovl nrð Þ means the

total number of side chain overlaps for a protein with nr residues.

Since it is not expected to find large number of residue overlaps in

the test dataset, the lower the lovl nrð Þ, the more accurate contact

model. The total number of residues falling within the contact

distance of residue i is recorded as the contact degree ncnt ið Þ.

ncnt ið Þ~
Xnr

j~1

Aij , ð1Þ

Aij~
1 if residue i and j are in contact

0 otherwise

�
: ð2Þ

Here nr is the total number of residues in the protein. Residue i
and its surrounding neighbors form a residue-contact cluster. This

cluster is related to residue i and contains ncls ið Þ~ncnt ið Þz1
residues, in which the residue immediately before and after i on

the protein sequence are excluded.

An overall residue contact degree l nrð Þ can be described by the

size of the contact network.

l nrð Þ~
Xnr

i~1

Xnr

j~iz1

Aij : ð3Þ

l nrð Þ provides an intuitive understanding of the compactness and

overall connectivity. In the same way, overlap degree lovl nrð Þ can

be defined to describe the side chain overlaps.

lovl nrð Þ~
Xnr

i~1

Xnr

j~iz1

Bij , ð4Þ

Bij~
1 if residue i and j overlap

0 otherwise

�
: ð5Þ

The ADC model reveals a linear relation between the contact

degree l nrð Þ and the protein length nr (Figure 1 (A)). Linear

fitting formula l nrð Þ~knrzb reveals a spontaneous collapse

character of protein structures in different sizes. If all data points

are matched simultaneously, the linear relationship can be

described by l nrð Þ~0:6nr{8:79 (the lower matching line in

Figure 1 (A)) with a confidence R2 = 0.73. R2 is the fitting

coefficient of determination. The data fitting is facilitated by the

Matlab fit function [92]. The relatively low fitting confidence is the

result of the deviation of some ‘escaping’ data points.

An interesting observation is that the ADC model has the ability

to classify protein structures. The ‘escaping’ data points, depicted

in Figure 1 (A), constitute another group and have a distinct

linear slope. Thus, l nrð Þ is divided into two separate groups with

obviously different slopes. Here we use the linear slope k as a

criterion. To separate the data into two groups, we used the line

that fit all the data points as a reference, where kall~0:6 and

ball~{8:79. The slope of the data point i is calculated as

ki~
li nrið Þ{ball

nri

. If kiwkallz0:2, the data point i is placed in

another group. When all the ‘escaping’ data points are fitted as a

separate group, the linear regression is l nrð Þ~1:3nr{8:81 with a

confidence R2 = 0.93 (the upper matching line in Figure 1 (A)).

Detailed evaluation suggests that proteins with steeper increas-

ing slopes are highly compact and can be considered dense-core

proteins [93]. These well-packed structures can roughly be

classified into three categories: (1) nearly-perfect globular proteins

with short and flexible secondary structures; (2) proteins composed

of a bundle of tightly packed alpha helixes; (3) proteins composed

of curly b sheets.

Figure 1 (B) shows the distribution of the overlaps in the test

data set. The fact that very few proteins have overlaps in the

dataset suggests that ADC is an accurate side chain model that can

be used to reflect the anisotropic effect of the residue side chains.

In fact, the largest number of overlaps is 4 in one protein among

the entire dataset. In addition, the sparse and random data

distributions suggest that systematic misinterpretation of side chain

overlaps is avoided in the ADC model.

The residue contact number depends on the rgap, which is

included in the definition of residue contact cutoff distance r
ij
cnt

Anisotropic Side Chain Representations
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(Equation (9)). Here rgap is a gap distance between atom surfaces

in ADC criteria (see Methods section). In order to investigate the

influence of rgap on overall residue-contact distributions, l nrð Þ
and lovl nrð Þ are calculated for rgap~0.5 Å, 1.0 Å, 1.5 Å and

2.0 Å, respectively. The contact cutoff distance r
ij
cnt increases as

the rgap increases. Residue pairs with larger distance, which were

considered as separated-residues pair, are included as contact

pairs. Not all these extra contact pairs reflect intrinsic residue

interactions. An appropriate rgap value is required to eliminate

unexpected contacts. In the ADC fixed length model section, the

derivation of the optimal rgap is presented. Since the overlap

cutoff distance is independent of the rgap, the number of residue

overlaps remain unchanged as the rgap increases.

Residue-contact distribution for the ISS model
The ISS model uses a sphere to represent the side chain. This

simple model can result in spurious side chain overlap as shown in

Figure 2(A)–(B).

Figure 1. Residue contact distribution by ADC/ISS/AES contact model. l nrð Þ and lovl nrð Þ denotes the total number of contact and overlap
among all residues in the protein. Surface gap distance rgap = 0.0 Å is used here. Data points for all-a helix, all-b sheet, a helix-b sheet proteins are
plotted in different marker styles. (A)(B) ADC model; (C)(D) ISS model; (E)(F) AES model.
doi:10.1371/journal.pone.0019238.g001
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In this study, we used the geometry center x0 of heavy-atoms as

the center of side chain.

x0~
1

n

Xn

i~1

xi: ð6Þ

Here xi is the coordinate of atom i. n is the number of heavy

atoms.

In the ISS method, the error caused by neglecting side chain

anisotropy can also be observed in the distributions of lovl nrð Þ,
which increases linearly with respect to protein size (Figure 1(D)).

It is not surprising that the bulky side chains, such as Trp and

Arg, lead to more significantly spurious overlaps. For example,

phenyl rings (Figure 2(A)) prefer to form parallel or vertical

orientations, and the spherical representation can overestimate the

size of it. We also observed that the two lines fitted in the contact

degree (Figure 1(A)) appear as one line (Figure 1(C)) in a linear

regression of l nrð Þ~1:9nr{51 with a confidence R2 = 0.99. The

sensitivity to anisotropy and ability to discriminate among different

structure packings are lost in the ISS model. The l nrð Þ behavior of

the ISS model with a surface-gap distance rgap = 0.0 Å appears to

be equivalent to that in the ADC model with an atom surface-gap

distance of rgap = 1.0 Å or rgap = 1.5 Å.

We also calculated the distributions of l nrð Þ and lovl nrð Þ with

rgap~ 0.5, 1.0, 1.5 and 2.0 Å respectively for the ISS model (data

not shown). The increase in rgap leads to a simultaneous increase in

the residue-contact cutoff distance r
ij
cnt. As a consequence, more

residue side chain pairs are considered to be within the contact

range. However, lovl nrð Þ distributions do not change with different

rgap for the reason that the overlap cutoff distance r
ij
ovl is

independent of rgap (see Equation (15)). For all types of rgap, ISS

model has significantly more overlaps than ADC model.

Residue-contact distribution for the AES model
In AES model, the residue side chain is represented as an

ellipsoid with anisotropic radii in three principal dimensions. An

ellipsoid collision-detection algorithm [94,95] was used to

determine the side chain contact and overlap. With the anisotropic

Figure 2. Residue side chain contact model. (A) All-atom sidechain model; (B) Simple isotropic sphere side chain model will cause spurious
overlaps; (C) Effective overlap radius and contact radius of residue side chain atoms in the ADC contact model. (D) Effective overlap radius and
contact radius in the ISS model.
doi:10.1371/journal.pone.0019238.g002
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radii in three principal dimensions, the AES model is much more

accurate than the ISS model. Although the AES still has false

positive determination of overlaps, the number of misjudgements

is less than 5% of that in the ISS model.

Figure 1(E)–(F) show the distribution of l nrð Þ and lovl nrð Þ
calculated by the AES model. The lovl2nr ratio for the AES

(Figure 1(F)) is much less than that in the ISS model

(Figure 1(D)). With the ellipsoid overlap criterion, more than

95% of the false residue overlaps in the ISS model have been

avoided, and most of the lovl are less than 10. This number appear

to be less than that in previous works [96].

Although the side chain anisotropy is taken into consideration to

some extent, the 20 types of side chain conformations are still

encompassed in a quadratic surface. The bulky side chain volume

will lead to an underestimation of residue side chain distances. As a

result, many closely packed residue pairs are mistakenly judged as

overlaps. The anisotropic ellipsoidal radii help to improve

accuracy in discriminating contact-residue pairs from separate-

residue pairs in the AES model. However, the AES model still

encounters difficulties in assessing the difference between overlap

and contact. Part of residue contacts are taken as overlaps.

We analyzed contact determination algorithms with the three

models (see method section). The ISS model is the least

computationally intensive, followed by ADC and then AES. The

accuracy rank is ADC, AES, ISS from high to low respectively.

Algorithm accuracy/computing-cost ratio suggests that the ADC

model is a cost effective model with the best accuracy. AES model

is the most computational method among the three because the

detection of ellipsoid collision algorithm is the most intensive step

and needs to be improved in the future.

An analysis of the number of overlaps determined using the

three models show that less than 50% of the total pairs of ADC

contact are correctly predicted by ISS model. Whereas most of the

424 proteins have more than 95% ADC contacts shared by AES

model. Figure 3 shows the overlap number distribution for the

20620 pairs of residues using the AES model. It appears that AES

model is successful in determination of contact for most of the

pairs. However, AES fails in most of the pairs involving Arg-Glu,

Arg-Asp and Arg-Tyr. Arg-Glu pair is one of the most frequently

seen false positive overlaps due to their large side chains. Figure 4
(A) illustrated the ellipsoids calculated for an Glu-Arg pair. It

appears that the overlapping volume is not much in this case. In

another example of Asp-Arg (Figure 4(C)), the false positive

overlap involves quite a lot of overlapping volume. Figure 4(B)(D)

show the all-atom side chain positions of residue pair Glu260-

Arg286 in 1IO0 (PDB ID) and residue pair Asp49-Arg51 in 1C7K

(PDB ID). It is possible to develop an improved AES model that

involves pair-specific and relative orientation dependent distance

criteria for more accurate representation of the side chains.

Pair-specific contact cutoff distance
A popular contact cutoff is 5 Å between two NHSA atoms. We

investigate if this threshold is a good estimation for all pairs of

residues in this section. In theory, the cutoff distance in the ADC

model should depend on the specific radii of atoms that are in

contact and the atom surface gap distance rgap. This is because the

two residues can interact through different pairs of atoms. For

example, the minimal distance of Val–Phe may occur either

between atom pairs CG1–CE1 or CG2–CZ. The contact/overlap

distances are distributions, rather than a single value (such as 5 Å).

Figure 3. Overlap distributions of 20620 residue pairs for AES model. AES-determined overlaps emerge in 277 out of 424 PDBs.
doi:10.1371/journal.pone.0019238.g003
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The relation between r
ij
cnt distributions and the 5 Å model is an

interesting topic. In addition, the method of how to estimate an

appropriate rgap value for the cutoff distance is discussed in this

section.

The interactions between two residues have preferred distances

and orientations, rather than a random packing. For any two

residues, the most frequently occurring residue distance is

considered its major contact distance. As the two residues depart

from, or come close to, each other, the occurrence probability

decreases gradually and the interaction energy becomes relatively

unstable till the contact distance increases to the upper limit, the

cutoff distance.

Figure 5 depicts the contact-distance distribution of Val-Phe

pair. The histogram of packing distances between Val and Phe is a

Gaussian-shaped function with a peak close to 3.9 Å. The peak

position, i.e. the preferred contact distance, is almost independent

of the cutoff distance. Only when the gap distance rgap is beyond

3 Å will a second peak arise gradually. From the linearly

increasing manner and peak-position shift, we ascertained that

this peak (‘non-local contact’) is the result of the increase of cutoff

distance, rather than an intrinsic interaction between Val and Phe.

We further investigated all the pairs involving Val. The peak

distributions of all residue pairs containing Val confirm the steady

behavior of residue contact (Figure 6). As the gap distance rgap

increases, the peak positions corresponding to the preferred Val–

XXX contact distance remain constant. While the positions of

‘non-local contact’ peak increase linearly with respect to rgap.

The peak distributions allow us to set the cutoff distance for

residue contacts. Between the two contact peaks, there is a low

occurrence valley close to 5 Å (Figure 5). The valley position

provides a rough estimation of the cutoff distance. We determined

the cutoff distance for all the 210 pairs of residues using the

position of the valleys (Table 1). The popular cutoff distance of

r
ij
cnt = 5 Å appears to be effective in most of the pairs. However,

some residue pairs such as Gly-XXX have complicated distribu-

tions with multiple valleys. In such cases, a larger cutoff distance

will be chosen as the optimal value such that all the preferred

contact distances (the stable peaks) can be included.

Figure 4. Examples of the ellipsoid overlap and side chain positions in PDB structures. (A) Glu-Arg overlap in 1IO0; (B) Glu260-Arg286 side
chain postions in 1IO0 ; (C) Asp-Arg overlap in 1C7K; (D) Asp49-Arg51 side chain postions in 1C7K.
doi:10.1371/journal.pone.0019238.g004
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A proper estimation of the gap distance rgap is crucial in the

ADC model. The optimal rgap is expected to cover the most

intrinsic contact distance between two residues, especially the

major preferred contact distance. Meanwhile, the optimal rgap

must be small enough to exclude the fake ‘‘preferred contact

distance’’ (the linearly increased peak position in Figure 6). The

appropriate rgap values are estimated statistically from the optimal

cutoff distance r
ij
cnt. First, r

ij
cnt are selected from the valley positions

under different gap-distance conditions (Figure 5). The valley

position does not shift drastically when the gap distance rgap

increases. This stable behavior aids us to identify a statistically

optimal r
ij
cnt. Then, from among all gap distances, there should be

one critical value at which all contact-pair distances are less than

the optimal r
ij
cnt. The critical value is the appropriate gap distance

rgap.

Take Val–Phe for example, Figure 5 shows the valley position

near 5 Å, i.e. the optimal cutoff distance r
ij
cnt = 5 Å. When the rgap

varies from 0 to 8 Å, the positions of occurrence bin extend from 4

to 12 Å along the horizontal axis. At the critical gap-distance value

rgap&1 Å, all bin positions are lower than 5 Å. In such cases, the

optimal gap distance is rgap&1 Å. Although small fluctuations do

occur, we note that the optimal gap distance for all 210 residue

pair types is around 1 Å.

Instead of the fixed value of 5 Å, the optimal cutoff distances in

Table 1 provide pair-specific cutoff distances. The ADC model

uses the cutoff distance r
ij
cnt, which depends on the specific atom

pairs between two side chains (see Equation (9). For the same type

of residue pair, such as Val–Phe, the minimal side chain distance

may occur between different pairs of atoms and hence the cutoff

contact distances are usually different. The maximal and minimal

cutoff-distance variations can be seen in Figure 5. No matter

what cutoff distances are used, either the popular 5-Å criterion or

the optimal ones in Table 1, single-value cutoff distances can

hardly deal with various atom-to-atom contact cases. The 5 Å may

be a good choice for two atoms surrounded by hydrogen atoms.

However, it may be too large for two atoms that have no hydrogen

atoms attached to them. A fixed, large cutoff-distance value is

more convenient for most residue side chain contact, but over-

estimation can happen when the cutoff distance is adopted for

heavy atom pairs in more compactly packed side chains.

Conclusion
The influence of residue side chain anisotropy has been studied

for three side chain contact models. The atom distance criteria

(ADC) contact model shows high accuracy in the determination of

residue contact and overlaps. Protein structures can be classified as

Figure 5. The contact distance distribution for residue pair Val–Phe at difference gap distances. The stem with circle indicates the
minimal cutoff distance r

ij
cnt. The stem with a square indicates the maximal cutoff distance. The stars indicate high occurrence peaks. The diamonds

indicate occurrence valley position. The r
ij
min is the minimal atom-to-atom distance between Val and Phe side chains. As the gap distance rij

gap

increases from 0 to 8 Å, the cutoff distance r
ij
cnt increases simultaneously.

doi:10.1371/journal.pone.0019238.g005
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closely packed and loosely packed groups with the help of two

different linear fit of l nrð Þ by ADC method. The isotropic sphere

side chain (ISS) model has systematically misjudgements in

determining of both residue contact and overlaps. The residue

surface distances are underestimated and more side chain overlaps

emerged. With the different radii in three principle directions,

anisotropic ellipsoid side chain (AES) model is more accurate than

ISS in determining residue contact. The number of misjudgement

is less than 5% of that in ISS method. However, AES need much

more computations than ISS model. Based on the algorithm

accuracy and complexity analysis, ADC model is recommended as

the best all-atom side chain contact determination method. And

AES is the most promising coarse-grained method.

Methods

Atom distance criteria (ADC) for residue side chain
contact and overlap

Two atoms can be considered in ‘contact’ when they are in close

interaction. Van der Waals interaction, a commonly employed close

interaction, decreases rapidly with the distance between atoms.

Residue contact can be defined when any two non-hydrogen side

chain atoms (NHSA) from two residues are in the range of van der

Waals interaction. This interaction-based contact definition are

usually converted to distance-based contact definition by a cutoff

distance of van der Waals interaction [56,57,58]. A popular cutoff

distance between atoms from different residues is 5 Å [97]. We

discuss the atom distance criteria in details in this section.

X-ray crystallography can barely resolve hydrogen atoms in

most protein crystals. As a consequence, hydrogen atoms are

absent in most PDB files. Thus the influence of hydrogen atoms

that are attached at the NHSA has to be approximately included

in determining residue-contact relations. we define the contact

radius Rcnt as in the following (Figure 2 (C)).

Rcnt~RvdwzdH dH : ð7Þ

Where Rvdw is the van der Waal’s radius of the side chain atom;

dH denotes the additional volume thickness if this atom has an

attached hydrogen atom; dH~0:4RH
vdw was used in the current

study; RH
vdw denotes the van der Waals radius of hydrogen atom;

and dH is a constant value , which is defined as:

dH~
0 Has attached hydrogen atom

1 No attached hydrogen atom

�
: ð8Þ

Atom interactions are confined to a limited range, such as the

contact radius of an atom. If the distance rij between atom i and j

satisfies the criterion rijvr
ij
cnt, the atoms are considered to be in

contact. Other than a predetermined fixed value, the atom-contact

cutoff distance r
ij
cnt is calculated based on side chain atom-surface

distance, which reflects the anisotropy in side chain orientations.

r
ij
cnt~Ri

cntzR
j
cntzrgap: ð9Þ

Ri
cnt,R

j
cnt are contact radii of atoms i and j. The rgap is the gap

distance representing the decay of atomic interaction. With the

current definition, the cutoff distance r
ij
cnt can be different values

Figure 6. The preferred contact distance for Val-involved residue pairs at different gap distances. The positions of occurrence peaks in
Val–XXX contact-distance distribution show two different behaviors. One is the stable, high occurrence-peak positions (the preferred contact
distances) close to 4 Å, which are independent of the gap distance rgap. The other is the linearly increasing peak positions (contact distances caused
by increase in rgap).
doi:10.1371/journal.pone.0019238.g006
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for different pairs of side chains, or for the same pair of side chain

with different torsion angles.

Generally speaking, the atom distance between different

residues cannot be less than the sum of covalent radii (the

disulfide bond is about 2.05 Å in length, which is almost equal to

the sum of covalent radii of the S atom). Overlaps happen when

one atom is within the range of the covalent volume of other

atoms, i.e., rijvr
ij
ovl .

r
ij
ovl~Ri

ovlzR
j
ovl : ð10Þ

Here Ri
ovl is the ‘overlap radius’ for residue side chain atom i.

Rovl~RcovzdH RH
cov: ð11Þ

Rcov is the covalent radius of the atom; dH is a constant value as

defined in the contact radius; and RH
cov is the covalent radius of the

hydrogen atom.

Isotropic sphere side chain (ISS) contact model
In many coarse-grained protein structure models, the isotropic

sphere is used as a simplification of residue side chains

[2,3,4,14,25]. The sphere model depends on two parameters:

center position and radius. The geometry or mass center of heavy-

atom collections is usually chosen as the sphere-shaped side chain

center (Figure 2 (D)). Although the radius of gyration, Rg, is

commonly used in describing the size of the residue side chain,

some atoms will be located outside the range of Rg. In the present

study, the side chain radius is scaled to envelop all atoms. In order

to determine the contact and overlap relationships between

residues, effective ‘contact radius’ and ‘overlap radius’ have been

proposed for sphere-shaped side chains.

The effective ‘contact radius’ Rcnt for isotropic sphere side chain

is defined as:

Rcnt~rImaxzRImax
vdw zdH dH : ð12Þ

Here rImax
is the maximal radius of all ri. The ri denotes the

distance between the side chain atom i and the center of the

sphere. The atom index corresponding to the maximal radius is

the Imax. The RImax
vdw is the van der Waals radius of atom Imax; dH

and dH have the same definitions as in the ADC model.

The effective ‘overlap radius’ is defined as:

Rovl~rImaxzRImax
cov zdH RH

cov: ð13Þ

Here RImax
cov is the covalent radius of atom Imax. The RH

cov is the

covalent radius of the hydrogen atom. Based on the contact and

overlap radii of isotropic sphere side chain model, two cutoff

distances are proposed:

r
ij
cnt~Ri

cntzR
j
cntzrgap, ð14Þ

r
ij
ovl~Ri

ovlzR
j
ovl , ð15Þ

rijƒr
ij
ovl overlap

r
ij
ovlvrijƒr

ij
cnt contact

r
ij
cntvrij separated

8>><
>>:

: ð16Þ

Where rij is the distance between the center of the sphere of

Table 1. The optimal atom–atom cutoff distance for all types of residue side chain contact pairs (Unit: Angstrom).

ID Gly Ala Val Phe Pro Met Ile Leu Asp Glu Lys Arg Ser Thr Tyr His Cys Asn Gln Trp

Gly 3.9 5.8 4.4 3.7 5.4 4.8 6.2 4.2 4.6 5.5 4.6 5.0 4.1 5.8 5.5 3.9 5.6 4.1 4.5 3.5

Ala 5.8 5.1 5.0 5.1 4.7 6.0 5.1 4.9 5.0 4.9 5.0 4.5 4.9 5.0 4.8 4.8 5.0 4.8 5.2 5.0

Val 4.4 5.0 5.2 5.1 5.2 5.0 5.1 5.2 4.7 5.0 5.0 4.8 5.0 5.1 5.2 5.1 5.1 4.9 5.0 4.9

Phe 3.7 5.1 5.1 4.9 4.8 5.1 5.2 5.2 4.9 4.6 4.8 5.1 4.9 4.9 4.9 4.6 4.7 5.0 4.9 5.4

Pro 5.4 4.7 5.2 4.8 4.8 5.0 5.0 5.1 4.6 5.1 4.8 4.8 4.7 5.1 4.8 5.2 4.9 4.5 4.7 5.1

Met 4.8 6.0 5.0 5.1 5.0 5.7 5.4 5.2 4.5 4.5 5.5 4.7 4.9 4.9 5.4 5.7 5.0 4.7 5.1 4.9

Ile 6.2 5.1 5.1 5.2 5.0 5.4 5.2 5.5 4.7 4.8 5.0 5.1 4.8 5.1 5.2 4.7 5.4 4.9 5.3 4.9

Leu 4.2 4.9 5.2 5.2 5.1 5.2 5.5 5.5 4.5 5.0 5.0 5.0 4.8 4.9 5.2 5.1 4.9 5.0 4.8 5.4

Asp 4.6 5.0 4.7 4.9 4.6 4.5 4.7 4.5 4.9 4.5 4.4 4.5 5.0 4.5 4.8 4.5 4.4 4.5 4.9 4.7

Glu 5.5 4.9 5.0 4.6 5.1 4.5 4.8 5.0 4.5 5.0 5.0 4.9 5.1 4.8 4.7 5.0 4.4 4.3 4.6 5.1

Lys 4.6 5.0 5.0 4.8 4.8 5.5 5.0 5.0 4.4 5.0 4.8 4.7 4.4 4.9 4.8 4.8 5.0 4.4 4.5 5.0

Arg 5.0 4.5 4.8 5.1 4.8 4.7 5.1 5.0 4.5 4.9 4.7 5.0 4.5 4.7 4.7 4.5 5.0 4.9 4.9 4.6

Ser 4.1 4.9 5.0 4.9 4.7 4.9 4.8 4.8 5.0 5.1 4.4 4.5 4.6 4.5 4.7 4.6 5.0 4.4 5.1 5.1

Thr 5.8 5.0 5.1 4.9 5.1 4.9 5.1 4.9 4.5 4.8 4.9 4.7 4.5 5.0 4.7 4.6 5.0 4.7 4.7 4.7

Tyr 5.5 4.8 5.2 4.9 4.8 5.4 5.2 5.2 4.8 4.7 4.8 4.7 4.7 4.7 5.2 4.7 5.4 4.6 4.7 5.3

His 3.9 4.8 5.1 4.6 5.2 5.7 4.7 5.1 4.5 5.0 4.8 4.5 4.6 4.6 4.7 4.6 5.1 5.2 4.8 4.9

Cys 5.6 5.0 5.1 4.7 4.9 5.0 5.4 4.9 4.4 4.4 5.0 5.0 5.0 5.0 5.4 5.1 4.9 4.7 5.0 4.8

Asn 4.1 4.8 4.9 5.0 4.5 4.7 4.9 5.0 4.5 4.3 4.4 4.9 4.4 4.7 4.6 5.2 4.7 4.3 4.6 4.7

Gln 4.5 5.2 5.0 4.9 4.7 5.1 5.3 4.8 4.9 4.6 4.5 4.9 5.1 4.7 4.7 4.8 5.0 4.6 4.7 5.2

Trp 3.5 5.0 4.9 5.4 5.1 4.9 4.9 5.4 4.7 5.1 5.0 4.6 5.1 4.7 5.3 4.9 4.8 4.7 5.2 5.0

doi:10.1371/journal.pone.0019238.t001
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residue i and j; rgap is a gap distance between spherical surfaces,

which can be adjusted to provide some flexibility to residue-

attraction interactions.

Anisotropic ellipsoid side chain (AES) contact model
Although the ISS model works well for equi-axial, spheroidal

atom systems, the radius-of-gyration techniques do not retain

three-dimensional anisotropic properties with regard to side chain

orientations. A more general ellipsoid side chain model is proposed

in this work. The residue side chain is simulated as ellipsoids with

three principal axes for arbitrarily shaped atom clusters. The

orientations of resulting ellipsoids are then used to study relative

positions of the residue side chain. All residue NHSAs are used to

calculate three ellipsoidal radii.

The principal radii of the best-fit ellipsoid are along the

transformed Cartesian coordinates axes. Principal axes can be

obtained from the diagonalization of matrix M.

M~

m11 m12 m13

m21 m22 m23

m31 m32 m33

2
64

3
75: ð17Þ

Here, M represents the moment of inertia. The elements mij are

calculated from the atom positions x~ x1,x2,x3ð Þ relative to the

side chain center x0~ x0
1,x0

2,x0
3

� �
, averaged over side chain atom

number m [98,99]. The subscripts 1, 2 and 3 are coordinate

indices.

m11~
1

m

Xm

i~1

x2 ið Þ{x0
2

� �2
z x3 ið Þ{x0

3

� �2
h i

m22~
1

m

Xm

i~1

x1 ið Þ{x0
1

� �2
z x3 ið Þ{x0

3

� �2
h i

,

m33~
1

m

Xm

i~1

x1 ið Þ{x0
1

� �2
z x2 ið Þ{x0

2

� �2
h i

ð18Þ

m12~m21~{
1

m

Xm

i~1

x1 ið Þ{x0
1

� �
x2 ið Þ{x0

2

� �� �

m13~m31~{
1

m

Xm

i~1

x1 ið Þ{x0
1

� �
x3 ið Þ{x0

3

� �� �
:

m23~m32~{
1

m

Xm

i~1

x2 ið Þ{x0
2

� �
x3 ið Þ{x0

3

� �� �
ð19Þ

Where x1 ið Þ,x2 ið Þ,x3 ið Þð Þ are the coordinates of atom i.The major

and minor radii (known as the principal radius [99]) are

determined directly from the Eigen values l1,l2,l3ð Þ of M.

D Mð Þ~
l1 0 0

0 l2 0

0 0 l3

2
64

3
75: ð20Þ

Here D Mð Þ denotes the diagonalization of M based on the cyclic

Jacobi method [100]; l1§l2§l3 are three eigen values; and

r3§r2§r1 are the major and two minor semi-axes of the best-fit

ellipsoid, respectively. If the atomic mass is assumed to be uniform

and the side chain to have a unit mass, the eigen values are the

principal moments of inertia for the ellipsoid side chain models

I1,I2,I3ð Þ.

l1~I1~
1

5
r2

2zr2
3

� �

l2~I2~
1

5
r2

1zr2
3

� �
:

l3~I3~
1

5
r2

1zr2
2

� �
ð21Þ

The principal radii of ellipsoid side chain are [99]:

r1~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

2
l2zl3{l1ð Þ

r

r2~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

2
l3zl1{l2ð Þ

r
:

r3~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

2
l1zl2{l3ð Þ

r
ð22Þ

The ellipsoid orientation vector v, with respect to the reference

coordinate can also be obtained from the eigen vectors [98]. Using

the ellipsoid side chain model, many spurious side chain overlaps

can be avoided (see Results).

Some studies have been reported with regard to the detection of

ellipsoid overlap [94,95]. In this study, we apply the algorithm to

residue side chain contact determinations. For two ellipsoids A:

XT AX~0 and B: XT BX~0, the solution of characteristic

equation det lAzBð Þ~0 is used as a simple algebraic condition

for the separation of the ellipsoids. Here X~ x1,x2,x3,wð ÞT , where

w is the 4th dimension that represents the constant term in the

ellipsoid formula; A and B are 4|4 real, symmetric matrices. The

interiors of two ellipsoids are represented by XT AXv0 and

XT BXv0. Then,

(1) A and B are separated if and only if det lAzBð Þ~0 has two

distinct positive roots.

(2) A and B touch externally if and only if det lAzBð Þ~0 has a

positive double root.

(3) A and B overlap if their characteristic equation has no positive

root.

Matrix A and B can be constructed with the ellipsoid principal

direction vectors vi (v’i for B) and principal axis radii ri (r’i for B)

[94].

A~PADPA
T~ v1v2v3vw½ �

1

r2
1

1

r2
2

1

r2
3

{1

2
66666666664

3
77777777775

vT
1

vT
2

vT
3

vT
w

2
6664

3
7775, ð23Þ
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B~PBDBPB
T~ v’1v’2v’3v’w½ �

1

r’12
{

xc

r’12

1

r’22
{

yc

r’22

1

r’32
{

zc

r’32

{
xc

r’12
{

yc

r’22
{

zc

r’32
{1z

x2
c

r’12
z

y2
c

r’22
z

z2
c

r’32

2
66666666666664

3
77777777777775

v’1T

v’2T

v’3T

v’wT

2
666664

3
777775
:
ð24Þ

Here xc,yc,zcð Þ denotes the central position of ellipsoid B relative

to the center of ellipsoid A. The fourth dimension of vi

corresponds to the constant term as in vector X.

To avoid unnecessary calculations, two screening conditions are

introduced prior to collision detection. The ellipsoid overlap and

contact will be evaluated only if the side chain distances rij fall

within a suitable range.

rijvri
1zr

j
1 overlap (screening condition 1)

rijwri
3zr

j
3zrgap separated (screening condition 2):

ri
1zr

j
1ƒrijƒri

3zr
j
3zrgap collision detection

8>><
>>:

ð25Þ

Here r3§r2§r1 are the major and two minor semi-axes of the

best-fit ellipsoid; rgap is a gap distance between ellipsoid surfaces,

which represents the decay zone of attraction interaction.

If the residue side chain distances clear the first two screening

conditions, there still are three possibilities: overlap, contact or

separated. According to the ellipsoid collision conditions, overlap

can easily be sorted out. The problem is with regard to how

contact from separated cases can be discriminated. In a similar

manner as in the ADC and ISS models, ‘contact radius’ are

proposed for the ellipsoid side chain model. With this contact

radius, the ellipsoids can be scaled to include all atoms represented

by van der Waals radius. Then, the ellipsoid collision conditions

are checked for the enlarged ellipsoids. If the scaled ellipsoids are

still separated, the two residue side chains are separated.

Otherwise, the residue pair is said to be in contact.

Analysis of algorithm complexity
For a protein chain with N amino acids, the number of NHSA

of residue k is m kð Þ. The ADC side chain contact algorithm needs

to calculate the distances between two heavy atoms i andj. Let td

be the complexity of distance operation xi{xj

�� ��. The total

complexity of ADC for a whole protein chain is:

TADC~

PN
k~1

m kð Þ
PN

k~1

m kð Þ{1

	 


2
{
XN

k~1

m kð Þ m kð Þ{1½ �
2

8>>><
>>>:

9>>>=
>>>;

td

~
N:�mm N:�mm{1ð Þ{N:�mm �mm{1ð Þ

2
td :

~
1

2
N2:�mm2:td 1{

1

N

� �

ð26Þ

Here
PN

k~1

m kð Þ is the total number of NHSA. Distance calculation

is not essential for atoms within the same residue. Thus, there is a

deduction
PN

k~1

m kð Þ m kð Þ{1½ �
2

; �mm is the average NHSA number in

side chain k with respect to all the N residues. As protein size N
increases to a large value, TADC asymptotically approaches

N2 �mm2

2
td .

In the case of the ISS model, there are three main steps. The

bulky spherical centers have to be estimated first. Then the sphere

radii are determined. Finally, the distance between two side chains

is calculated and checked. If the geometrical center is considered

the side chain center x0, the coordinate-averaging operation

x0~
1

m kð Þ
Xm kð Þ

i~1

xi will be involved in calculations for residue k.

Here xi is the location of the non-hydrogen atom i. The largest

atom-to-center distance rmax
i in the side chain k is utilized as

isotropic sphere radius. In order to determine the rmax
i , distance

operation xi{x0k k is carried out for all m kð Þ atoms. Finally, the

distances between any two side chain centers are calculated and

checked.

If ta is the approximate complexity of each add operation for
xi

m kð Þ, then m kð Þ:ta is the complexity of the coordinate-averaging

operation x0~
1

m kð Þ
Xm kð Þ

i~1

xi. Let td be the complexity of the

distance operation xi{xj

�� ��, and the total complexity of the ISS

model will be:

TISS~
XN

k~1

m kð Þ:tazm kð Þ:td½ �z N N{1ð Þ
2

td

~N:�mm taztdð Þz N N{1ð Þ
2

td :

ð27Þ

Although residues have different rotamers, the side chain radius

will not change too much for such conformational isomers. To

simplify the process, the same type of residues is assumed to have

the same radius. As a consequence, the calculation of radii is only

necessary for 20 types of amino acid, rather than for all the N
residues. The complexity can be re-written as:

TISS~
X20

k~1

m kð Þ:tdz
XN

k~1

m kð Þ:taz
N N{1ð Þ

2
td

~20 �mm20tdzN2 �mm

N

� �
tazN2 1

2
{

1

2N

� �
:td :

ð28Þ

Here �mm20~
1

20

X20

i~1

m ið Þ is the average number of NHSA for 20

amino acids. There is little difference between �mm20 and the average

number �mm~
1

N

XN

k~1

m kð Þ along the chain. When protein chain

length N increases to a large value (N&�mm), TISS asymptotically

approximates to 20 �mm20z
N2

2

� �
:td .

The complexity of the AES algorithm is comprised of several

aspects: the creation of moment of inertia matrix M, the
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diagonalization of M and calculation of principal semi-radii, and the

determ-

ination of residue contact according to ellipsoid collision conditions.

The elements of M are calculated from the relative positions of

side chain atom to side chain center. In the same way as in the ISS

algorithm, side chain-center calculation complexity is derived byPN
k~1

m kð Þ:ta. Here ta is the approximate complexity related to

coordinate-averaging operations. Considering the symmetry of the

3|3 matrix M, relative position estimations require m kð Þ partial

distance operations (only two coordinate axes are used) for each

matrix element. Let td be the complexity of distance operation.

Matrix creation has a complexity as:

TM1~
XN

k~1

m kð Þ:taz
XN

k~1

6m kð Þ:td

~N:�mm:taz6N:�mm:td :

ð29Þ

The direct diagonalization of matrix M results in an algorithm

complexity tdiag, which covers the computing cost of principal radii

vectors. The total complexity for the whole protein chain is

TM2~N:tdiag.

The ellipsoid-collision conditions are based on the solution of

the characteristic equation det lAzBð Þ~0. The constructions of

A and B need products of three 4|4 matrices and the complexity

is 2:2:tA. Here tA is the matrices multiplication complexity. The

number of solutions can be obtained by solving the characteristic

equation, which has a complexity independent of protein size

and total atom number. This complexity is represented as tdet.

The ellipsoid collision complexity for N residues is TM3~

4N:tAz
N N{1ð Þ

2
tdet

.

From all the above analysis, the total complexity of the AES

algorithm for an entire protein is:

TAES~N:�mm:taz6N:�mm:tdzN:tdiagz4N:tAz
N N{1ð Þ

2
tdet

~N2 1

2
{

1

2N

� �
tdetz

4

N
tAz

1

N
tdiagz

6 �mm

N
tdz

�mm

N
ta

	 

:

ð30Þ

When the protein size N increases to a very large value (N&�mm),

TAES has an asymptotic approximation as
N2

2
tdet.

For large proteins (N&�mm), the asymptotic approximation

complexity of the ADC, ISS and AES algorithms are
N2 �mm2

2
td ,

N2

2
z20 �mm20

� �
:td and

N2

2
tdet, respectively; �mm is number of

NHSA with respect to all the N residues in a protein; and �mm20 is

the average number of NHSA with respect to 20 types of amino

acids. The difference between �mm and �mm20 is trivial. Thus, an

obvious fact is that the ADC model needs a significantly larger

number of computations than the ISS model. The AES appears

less complex than the ADC model. However, the tdet is much

larger than td . If tdet can be written as tdet~c:td , the AES

complexity will be
N2

2
ctd . The average number of NHSA usually

satisfies �mm&5. As a consequence, ADC complexity is around
N2

2
:25td . When tdet§25td , AES complexity exceeds that of the

ADC model. In current algorithms, the complexity tdet for solving

a fourth-order equation det lAzBð Þ~0 and determining the

number of different solutions is significantly greater than 25td .

Stated briefly, the AES is currently the most computationally

intensive algorithm model.
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