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Abstract: Brassinin is a phytochemical derived from Chinese cabbage, a cruciferous vegetable.
Brassinin has shown anticancer effects on prostate and colon cancer cells, among others. How-
ever, its mechanisms and effects on hepatocellular carcinoma (HCC) have not been elucidated yet.
Our results confirmed that brassinin exerted antiproliferative effects by reducing proliferating cell
nuclear antigen (PCNA) activity, a proliferation indicator and inducing cell cycle arrest in human
HCC (Huh7 and Hep3B) cells. Brassinin also increased mitochondrial Ca2+ levels and depolarized
the mitochondrial membrane in both Huh7 and Hep3B cells. Moreover, brassinin generated high
amounts of reactive oxygen species (ROS) in both cell lines. The ROS scavenger N-acetyl-L-cysteine
(NAC) inhibited this brassinin-induced ROS production. Brassinin also regulated the AKT and
mitogen-activated protein kinases (MAPK) signaling pathways in Huh7 and Hep3B cells. Further-
more, co-administering brassinin and pharmacological inhibitors for JNK, ERK1/2 and P38 decreased
cell proliferation in both HCC cell lines more than the pharmacological inhibitors alone. Collectively,
our results demonstrated that brassinin exerts antiproliferative effects via mitochondrial dysfunction
and MAPK pathway regulation on HCC cells.

Keywords: brassinin; liver cancer; apoptosis; ROS; mitochondria

1. Introduction

Hepatocellular carcinoma (HCC) is one of the deadliest common cancers world-
wide [1]. HCC usually stems from chronic inflammatory conditions and is therefore
closely associated with toxic exposures such as chronic viral hepatitis and alcohol [2].
Surgical resection and transplantation are the usual therapeutic methods against HCC.
However, these methods do not counter recurrence and the development of resistance to
standard chemotherapeutic agents such as sorafenib [3]. Despite the numerous attempts to
cure HCC in the past decades, current therapeutics still have limitations and side effects
that impair the patients’ quality of life. To overcome these limitations, one strategy is to
combine new agents from natural compounds with standard therapy to reduce adverse
effects [4]. For instance, celastrol, extracted from vine tree roots, enhanced the tumor
suppression and apoptosis induction effects of sorafenib [5].

Phytoalexins are natural compounds produced by various fruits and vegetables in
response to infection or stress. Compounds from this family exhibited effects on apoptosis,
proliferation, cell cycle progression and migration abilities [6–8]. For instance, the well-
known resveratrol, curcumin and quercetin revealed anticancer effects on various cancers,
including HCC [9]. Brassinin is a phytoalexin found in cruciferous vegetables and has
antifungal activities as well as anticancer effects. For instance, brassinin induced DNA
fragmentation in human colon cancer and induced mitochondrial apoptosis and reduced
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anti-apoptotic protein expression in prostate cancer [10,11]. Also, the indole-based structure
of brassinin makes it an inhibitor of indoleamine 2,3-dioxygenase (IDO) [12]. This might
be helpful against HCC because inhibiting IDO is crucial for blocking cancer immune
escape [13,14]. Despite being a potential anticancer agent, the effects and molecular mecha-
nisms of brassinin on HCC remain unexplored.

In this study, we proved that brassinin could regulate cell proliferation and apop-
tosis in HCC cell lines. We verified the effects of brassinin on both Huh7 and Hep3B
cells on (1) cell proliferation and cell cycle progression, (2) mitochondrial dysfunction,
(3) generation of reactive oxygen species (ROS) with or without NAC and (4) regula-
tion of phosphatidylinositol 3-kinase (PI3K)/mitogen-activated protein kinases (MAPK)
signaling pathway.

2. Materials and Methods
2.1. Chemicals and Antibodies

Brassinin (catalog no. SML 1635) was purchased from Sigma-Aldrich (St. Louis, MO, USA)
and dissolved in dimethyl sulfoxide (DMSO). The antibodies used in the immunoblotting
assays are listed in Table 1.

Table 1. Antibodies used in immunoblotting.

Antibodies Catalog No. Sources

p-P70S6K
(Thr421/Ser424) 9204 Cell signaling Technology (Danvers, MA, USA)

p-S6 (Ser235/236) 2211 Cell signaling Technology
p-P38 (Thr180/Tyr182) 4511 Cell signaling Technology
p-JNK (Thr183/Tyr185) 4668 Cell signaling Technology

p-ERK1/2
(Thr202/Tyr204) 9101 Cell signaling Technology

p-P90RSK (Thr573) 9346 Cell signaling Technology
t-P70S6K 9202 Cell signaling Technology

p-CCND1 (Thr286) 3300 Cell signaling Technology
t-S6 2217 Cell signaling Technology

t-P38 9212 Cell signaling Technology
t-JNK 9252 Cell signaling Technology

t-ERK1/2 4695 Cell signaling Technology
RSK1/RSK2/RSK3 9355 Cell signaling Technology

p-BAD (Ser112) 5284 Cell signaling Technology
p-BCL-2 (Ser70) 2827 Cell signaling Technology

BAK 12105 Cell signaling Technology
BAX 2772 Cell signaling Technology

TUBA Sc-32293 Santa Cruz Biotechnology

2.2. Cell Maintenance of Huh7 and Hep3B

Huh7 and Hep3B cells (HCC cell lines) were purchased from the Korean Cell Line
Bank (Seoul, Korea). Huh7 cells were maintained in RPMI1640 with HEPES medium
and Hep3B in DMEM/High glucose medium, both containing 10% fetal bovine serum.
Monolayer cultures of Huh7 and Hep3B cells were incubated at 37 ◦C in an incubator with
an atmosphere of 5% CO2. When cell confluency reached 70% in 60 mm culture dishes or
96-well plates, the cells were incubated in serum-free medium for 24 h and then treated
with various concentrations of brassinin for 48 h. AML-12 cells (mouse normal liver cell
line) were purchased from American Type Culture Collection (ATCC, Manassas, VA, USA)
and cultured according to the manufacturer’s instructions.

2.3. Cell Proliferation Assay

The BrdU Cell Proliferation ELISA kit (catalog no. 11647229001, Roche, Basel, Switzer-
land) was used to assess the proliferation of Huh7 and Hep3B cells. The cells were seeded
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in 96-well plates and then treated with brassinin (0, 10, 20, 50 and 100 µM) for 48 h in a 37 ◦C
incubator with 5% CO2. For the MAPK pathways experiments, the cells were incubated
with 20 µM of MAPK pharmacological inhibitor (SP600125, U0126 or SB203580) and with
or without 100 µM brassinin for 48 h in a 37 ◦C incubator with 5% CO2. Then, BrdU was
added. After incubation with BrdU in a 37 ◦C incubator with 5% CO2 for 2 h, the cells
were fixed with a fixation solution and exposed to an anti-BrdU-peroxidase (POD) work-
ing solution for 90 min at room temperature. After washing steps, substrate solutions
were added to cells and the absorbance (370 and 492 nm) was measured with an ELISA
reader. The viability of AML-12 was detected using Cell Proliferation Kit I (MTT) (catalog
no. 11465007001, Roche). Experimental procedures were performed according to the
manufacturer’s instructions. Fluorescence was detected at 560 nm and 650 nm using an
ELISA reader.

2.4. Immunofluorescence Microscopy Analysis

The expression of cell nuclear antigen (PCNA) was quantified by immunofluorescence.
The cells were seeded in confocal dishes and treated as in Section 2.3. The cells were then
fixed with methanol and incubated with mouse monoclonal anti-human PCNA antibody
(catalog no. sc-56, Santa Cruz Biotechnology, Santa Cruz, CA, USA). We then incubated the
cells with goat anti-mouse IgG Alexa 488 in an antibody dilution buffer. After washing
the cells, we stained them with 5 µg/mL DAPI (4′, 6-diamidino-2-phenylindole). We im-
aged the cells using an LSM710 confocal microscope (Carl Zeiss, Oberkochen, Germany).

2.5. Detection of Cell Cycle Arrest

Cells at 60–70% confluence were treated with increasing doses of brassinin for 48 h.
The cells were then collected, fixed with 70% ethanol, washed and incubated with RNase A
and propidium iodide for 30 min at room temperature. The stained cells were analyzed by
flow cytometry.

2.6. Detection of Intramitochondrial Intracellular Calcium Level

Huh7 and Hep3B cells were collected after treatment with brassinin and stained with
3 µM of Rhod-2 for 30 min at 4 ◦C as previously described [15]. The cells were then
incubated with Hank’s balanced salt solution (Gibco) for 10 min at 37 ◦C. The stained cells
were analyzed by flow cytometry.

2.7. Detection of Depolarization of the Mitochondrial Membrane

A mitochondrial staining kit was used to detect the relative mitochondrial membrane
potential (MMP) status in brassinin-treated cells. The cells were treated with increasing
doses of brassinin and stained with JC-1 in a staining solution. After staining as previously
described [16], the cells were washed with a staining buffer. The stained cells were analyzed
by flow cytometry.

2.8. Measurement of Cellular ROS

To confirm the generation of ROS, we used 2′,7′-dichlorofluorescein diacetate (DCFH-
DA, Sigma-Aldrich). The collected cells were resuspended in a DCFH-DA-containing
staining solution. After staining, the cells were washed with phosphate buffer saline and
treated with brassinin (0, 10, 20, 50 and 100 µM), NAC (0.5 mM) or both. After several
washing steps, the stained cells were analyzed by flow cytometry.

2.9. Immunoblotting

Huh7 and Hep3B cells were treated with increasing doses of brassinin (0, 20, 50
and 100 µM). To measure the protein concentration, a Bradford protein assay (Bio-Rad,
Hercules, CA, USA) was performed. The denatured proteins were separated by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to nitro-
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cellulose membranes. Light intensity of the whole blots was measured using a ChemiDoc
EQ system and Quantity One software (Bio-Rad) as previously described [16].

2.10. Quantitative Real-Time PCR

Total RNA of Huh7 and Hep3B was extracted by TRIzol reagent (Invitrogen, Carls-
bad, CA, USA) after brassinin (0 and 100 µM) treatment for 24 h. AccuPower PreMix
(Bioneer, Daejeon, Korea) and StepOnePlus Real-Time PCR system (Applied Biosystems,
Foster City, CA, USA) were used for synthesizing complementary DNA. Experimental pro-
tocols were performed according to the manufacturer’s instructions. Primer information
has been described in Table 2.

Table 2. Primers used in quantitative reverse transcription polymerase chain reaction (qRT-PCR).

Genes Accession Number Primer Sequence (5′-3′)

CDK2
BT006821.1 Forward AAATTCATGGATGCCTCTGC

Reverse GCCCCCTCTGTGTTAATAAGC

P21
NM_000389.5 Forward GACTCTCAGGGTCGAAAACG

Reverse GGATTAGGGCTTCCTCTTGG

GAPDH
NM_001256799.3 Forward ACCCAGAAGACTGTGGATGG

Reverse TGACAAAGTGGTCGTTGAGG

2.11. Statistical Analysis

All data results were subjected to analysis of variance following the general linear
model (PROC-GLM) of the SAS program (SAS Institute, Cary, NC, USA). Differences with
a probability value of * p < 0.05 were considered statistically significant. Data are presented
as the mean ± SEM unless otherwise stated.

3. Results
3.1. Brassinin Regulates Proliferation and Cell Cycle in HCC Cells

Brassinin reduced cell proliferation in a dose-dependent manner (Figure 1A,B). Specif-
ically, 100 µM of brassinin reduced the proliferation of Huh7 cells to 39% and that of
Heb3B cells to 49% (*** p < 0.001). In contrast, brassinin suppressed the viability of AML-12
cells (mouse normal liver cells) to about 86% compared with the vehicle, which implies
that brassinin works specifically on HCC cells (Supplementary Figure S1A). We also com-
pared the immunofluorescence intensity of PCNA between HCC cells treated with 100 µM
brassinin and HCC cells that were untreated. Brassinin greatly reduced the relative inten-
sity of PCNA in both Huh7 and Hep3B cells (Figure 1C,D). Then, we confirmed whether
brassinin induces cell cycle arrest in Huh7 and Hep3B cells. Brassinin increased the relative
proportion of cells in the G0/G1 phase in both cell lines (Figure 1E,F). It also significantly
reduced the proportion of cells in the G2/M phase in both cell lines. In response to brassinin
(0, 20, 50 and 100 µM), phosphorylation of CCND1 proteins gradually decreased in both
Huh7 and Hep3B cells (Figure S1B). Also, CDK2 mRNA expression was significantly sup-
pressed by brassinin (100 µM), whereas P21 mRNA expression was increased in both HCC
cells (Figure S1C). These results indicate that brassinin suppresses the proliferation of Huh7
and Hep3B cells by arresting the cell cycle at the G0/G1 phase.
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(HCC) cells. (A,B) The proliferation of Huh7 and Hep3B cells in response to brassinin. Results were 
compared to vehicle-treated cells. (C,D) Green fluorescence represents proliferating cell nuclear 
antigen (PCNA) and blue fluorescence represents DAPI as counterstaining for nuclei. Scale bar: 20 
µm (top line) and 40 µm (bottom). (E,F) Cell cycle distributions. The graphs show the relative cell 
population compared to the control. Asterisks represent the significance levels between vehi-
cle-treated cells and brassinin-treated cells (* p < 0.05, ** p < 0.01 and *** p < 0.001). 

3.2. Brassinin Hampers Mitochondrial Homeostasis in Huh7 and Hep3B Cells 
We assessed the relative levels of Ca2+ in mitochondria using Rhod-2 dye and the 

MMP using JC-1 dye (Figure 2). A dose of 100 µM brassinin increased the mitochondrial 
calcium ions concentration to 253% (*** p < 0.001) in Huh7 cells and 227% (*** p < 0.001) in 
Hep3B cells (Figure 2A,B). Also, brassinin increased the loss of MMP by 4.4-fold (*** p < 
0.001) in Huh7 cells and 5.8-fold (*** p < 0.001) in Hep3B cells compared to the vehicle 
group (Figure 2C,D). Valinomycin (Val), the potassium ionophore, was used as a positive 
control for MMP. In addition, we performed western blot analysis for MMP-related pro-
teins. In response to brassinin treatment (0, 20, 50 and 100 µM), phosphorylation of BAD 
and BCL-2 was decreased in Huh7 cells (Figure S3). Also, expression of BAK and BAX 
was increased in brassinin-treated Huh7 cells but the expression of MMP-related proteins 
in brassinin-treated Hep3B cells showed no significant changes (Figure S3). Taken to-
gether, these results indicate that brassinin disrupts mitochondrial homeostasis in Huh7 
and Hep3B cells. 

Figure 1. Effects of brassinin on proliferation and cell cycle of human hepatocellular carcinoma
(HCC) cells. (A,B) The proliferation of Huh7 and Hep3B cells in response to brassinin. Results were
compared to vehicle-treated cells. (C,D) Green fluorescence represents proliferating cell nuclear
antigen (PCNA) and blue fluorescence represents DAPI as counterstaining for nuclei. Scale bar:
20 µm (top line) and 40 µm (bottom). (E,F) Cell cycle distributions. The graphs show the relative
cell population compared to the control. Asterisks represent the significance levels between vehicle-
treated cells and brassinin-treated cells (* p < 0.05, ** p < 0.01 and *** p < 0.001).

3.2. Brassinin Hampers Mitochondrial Homeostasis in Huh7 and Hep3B Cells

We assessed the relative levels of Ca2+ in mitochondria using Rhod-2 dye and the MMP
using JC-1 dye (Figure 2). A dose of 100 µM brassinin increased the mitochondrial calcium
ions concentration to 253% (*** p < 0.001) in Huh7 cells and 227% (*** p < 0.001) in Hep3B
cells (Figure 2A,B). Also, brassinin increased the loss of MMP by 4.4-fold (*** p < 0.001)
in Huh7 cells and 5.8-fold (*** p < 0.001) in Hep3B cells compared to the vehicle group
(Figure 2C,D). Valinomycin (Val), the potassium ionophore, was used as a positive control
for MMP. In addition, we performed western blot analysis for MMP-related proteins.
In response to brassinin treatment (0, 20, 50 and 100 µM), phosphorylation of BAD and
BCL-2 was decreased in Huh7 cells (Figure S3). Also, expression of BAK and BAX was
increased in brassinin-treated Huh7 cells but the expression of MMP-related proteins in
brassinin-treated Hep3B cells showed no significant changes (Figure S3). Taken together,
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these results indicate that brassinin disrupts mitochondrial homeostasis in Huh7 and
Hep3B cells.Cells 2020, 12, x FOR PEER REVIEW 6 of 12 
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Figure 2. Changes in mitochondria calcium levels and mitochondrial membrane potential (MMP) caused by brassinin. (A,B)
Mitochondrial calcium levels. Relative values indicated in the histogram are represented as a bar graph under the histogram.
(C,D) MMP disruption. Val abbreviation stands for Valinomycin, the positive control. Asterisks represent the significance
levels between vehicle-treated cells and brassinin-treated cells (* p < 0.05 and *** p < 0.001).

3.3. ROS Generation is Induced by Brassinin in Huh7 and Hep3B Cells

Buffering dramatic changes in oxidative stress is one of the crucial functions of mi-
tochondria. Thus, to measure the generation of ROS in HCC cells, we stained cells us-
ing DCFH-DA. Brassinin strongly increased ROS production by 11-fold (*** p < 0.001) in
Huh7 and 74-fold (*** p < 0.001) in Hep3B (Figure 3A,B) cells. Compared with HCC cells,
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the brassinin treatment did not significantly change ROS generation in AML-12 cells,
which implies that brassinin specifically induces excessive ROS generation in cancer cells
(Figure S2). Then, we confirmed the ROS production in both HCC cell lines by brassinin
with or without NAC, a ROS scavenger. NAC significantly reduced the brassinin-induced
ROS production from 371% to 219% in Huh7 cells (Figure 4A) and slightly decreased it from
152% to 143% in Hep3B cells compared to vehicle-treated cells (Figure 4B). To demonstrate
whether brassinin-induced ROS could affect the proliferation of HCC cells, we compared
the proliferation of cells treated with brassinin, NAC or both (Figure 4C,D). NAC restored
the brassinin suppressed proliferation of Huh7 and Hep3B cells. Collectively, our results
reveal that brassinin specifically decreases cell proliferation in HCC cells by increasing
ROS production.
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3.4. Brassinin Regulates PI3K and MAPK Signaling Pathway in HCC Cell Lines

To confirm the phosphorylation of signaling proteins by brassinin, we conducted west-
ern blot analysis focused on the PI3K and MAPK pathways. Brassinin dose-dependently
downregulated the phosphorylation of the P70S6K and S6 proteins, which are downstream
of the PI3K signaling pathway (Figure 5A,B). On the other hand, the phosphorylation of
P38 and JNK increased in Huh7 cells (Figure 5C,D). Besides, brassinin slightly increased
the phosphorylation of ERK1/2 and its downstream P90RSK in both Huh7 and Hep3B cells
(Figure 5E,F). Overall, brassinin suppressed proteins downstream of the AKT signaling
pathway and increased P38/JNK/ERK signaling in HCC cell lines.
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proteins were estimated relative to the amount of total protein. Asterisks represent the significance levels between vehicle-
treated cells and brassinin-treated cells (* p < 0.05, ** p < 0.01 and *** p < 0.001).
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3.5. Effects of MAPKs Pharmacological Inhibitors on the Proliferation of HCC Cells with or
without Brassinin

Next, we investigated the antiproliferative effects of MAPKs pharmacological in-
hibitors on HCC cells. SP600125 (JNK inhibitor) and U0126 (ERK1/2 inhibitor) alone,
after treatment for 48 h, significantly suppressed the proliferation of Huh7 and Hep3B cells
(Figure 6A,B). In Hep3B cells, the combination of brassinin with SB203580 also inhibited
the proliferation more than brassinin alone (Figure 6B). Although there are no combined
effects or restoration effects of brassinin with pharmacological inhibitors, we found that
the regulation of MAPK is crucial for the proliferation of HCC cells (Figure 6). Over-
all, MAPK pharmacological inhibitors and brassinin had effective antiproliferative effects
on HCC cells and revealed enhanced effects in certain combinations.
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4. Discussion

In the present study, brassinin decreased cell proliferation, PCNA expression and
MMP in human HCC cells. Also, brassinin increased mitochondrial calcium levels and ROS
production in both Huh7 and Hep3B cells. The ROS scavenger NAC suppressed brassinin-
induced ROS production and restored cellular proliferation in Huh7 and Hep3B cells.
Thus, brassinin induced mitochondrial dysfunction and antiproliferative effects on HCC
cells by regulating the MAPK and PI3K signaling pathways. Therefore, in this study, we elu-
cidated the anticancer effects of brassinin on HCC cells and their cellular mechanisms.

ROS play important roles in energy metabolism, regulation of apoptosis and cell
signaling during carcinogenesis [17]. ROS generation is inevitable because oxygen is
converted to ROS through redox reactions during respiration to maintain proper ROS
levels in cells. A loss of control of ROS generation in normal cells causes DNA damage due
to free radicals and even leads to cancer [18]. Similarly, ROS are one of the causes of the
development of nonalcoholic steatohepatitis (NASH) to HCC [19,20]. Usually, cancer cells
produce more ROS due to their high metabolic and proliferation rates compared with
normal cells but excessive ROS production can also kill cancer cells [21]. For instance,
walsuronoid B induces cell apoptosis via ROS/p53-mediated mitochondrial depolarization
and inhibits cell proliferation via G2/M phase arrest [22]. Homobrassinin, a brassinin
derivative, has a ROS-dependent antiproliferative effect on human colorectal cancer cells
(Caco2) and induces apoptosis through ROS generation and mitochondrial dysfunction [23].
In our study, brassinin induced excessive ROS generation in both Huh7 and Hep3B cells but
NAC significantly suppressed ROS production in Huh7 cells, not in Hep3B cells. This might
be explained by the difference of P53 phenotype and response to oxidant stimulus in Huh7
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(mutated p53) and Hep3B (deleted P53) cells [24,25]. However, further studies are required
to demonstrate a different sensitivity to NAC in Hep3B cells.

Mitochondrial calcium overload and depolarization of MMP are crucial checkpoints
of cell death. Mitochondrial calcium levels are controlled by the mitochondrial calcium
uniporter complex and the mitochondrial permeability transition pore [26,27]. In liver
cancer, well-coordinated mitochondrial homeostasis promotes tumor growth [28]. How-
ever, an imbalance of calcium regulation in mitochondria causes mitochondrial swelling
and rupture of the mitochondrial outer membrane [29]. Then, cytochrome c is released
from mitochondria and initiates intrinsic-mitochondrial apoptosis. Maintenance of MMP
is an indicator of mitochondrial bioenergetics as it is crucial for ATP synthesis and is
deeply involved in ROS generation [29,30]. Therefore, a wide range of cancer treatments
targets mitochondrial integrity. For instance, mitotane affects mitochondrial bioenergetics
and induces apoptosis via mitochondrial membrane depolarization in thyroid cancer [31].
Also, upregulation of ROS and loss of MMP induce apoptosis in Hep3B cells by increasing
phospho-JNK levels, which is consistent with our results [32]. Although MMP-related
protein expression in Hep3B cells in response to brassinin did not show significant changes
within 24 h, we speculate that it might further progress to the disruption of mitochondrial
homeostasis, considering the results of Huh7 cells.

MAPKs of the serine/threonine kinases family play a role in apoptotic signaling
and therefore in proliferation, gene expression, cell survival and apoptosis [33]. Thy-
moquinone induces the phosphorylation of the MAPK P38, which produces ROS and
contributes to the antiproliferative and proapoptotic effects of this compound on breast can-
cer cells [34]. Also, a natural compound from Crataegus pinnatifida activates phospho-P38,
which promotes autophagy and apoptosis in Hep3B cells [35]. Our results revealed that the
antiproliferative activity of SB203580 was not evident in Huh7 cells, even though protein
expression profiles were quite similar between Huh7 and Hep3B cells [36]. This may be
attributed to the difference between the p53 phenotype between the two cell lines, con-
sidering the relationship between P38 and p53 in cancers [37]. Besides, increasing ROS
generation in liver cells promotes the phosphorylation of JNK, which further stimulates
ROS generation, forming a positive feedback loop [38]. Furthermore, blocking MAPKs
using pharmacological inhibitors such as U0126 dramatically increased the antiproliferative
effect of brassinin on HCC, which implies that MAPK signals are crucial for the survival
of HCC cells. The PI3K signaling pathway regulates essential cellular functions such as
proliferation, translation, survival and growth, as well as metastasis or invasion of cancer
cells [39]. In HCC cells, the PI3K/AKT/FOXO4 signaling pathways are involved in cellu-
lar proliferation, tumor survival and other oncogenic processes [40]. Also, activation of
P70S6K has a role in angiogenesis, which makes HCC cells more malignant and difficult
to cure [41,42]. In our work, brassinin induced HCC cell cycle arrest at the G0/G1 phase.
Likewise, brassinin inhibited PI3K signaling through the regulation of CDK inhibitors,
leading to G1 phase arrest in colon cancer [43].

5. Conclusions

Overall, our study is the first to demonstrate the anticancer effects of brassinin on
HCC cells and to elucidate their cellular mechanisms and action on mitochondrial function
by activating MAPK pathways via ROS generation and MMP depolarization. Also, we con-
firmed that brassinin suppressed proliferation via ROS generation in liver cancer cells,
without affecting the normal cells. This might suggest that brassinin could selectively
eliminate cancer cells in the liver, without affecting healthy cells. Although our results are
limited to an in vitro evaluation, this study may provide valuable insights regarding the
underlying molecular mechanisms for future in vivo studies.
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