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Abstract 

Background:  Larviciding against malaria vectors in Africa has been limited to indoor residual spraying and insec-
ticide-treated nets, but is increasingly being considered by some countries as a complementary strategy. However, 
despite progress towards improved larvicides and new tools for mapping or treating mosquito-breeding sites, little is 
known about the optimal deployment strategies for larviciding in different transmission and seasonality settings.

Methods:  A malaria transmission model, OpenMalaria, was used to simulate varying larviciding strategies and their 
impact on host-seeking mosquito densities, entomological inoculation rate (EIR) and malaria prevalence. Variations 
in coverage, duration, frequency, and timing of larviciding were simulated for three transmission intensities and four 
transmission seasonality profiles. Malaria transmission was assumed to follow rainfall with a lag of one month. Theo-
retical sub-Saharan African settings with Anopheles gambiae as the dominant vector were chosen to explore impact. 
Relative reduction compared to no larviciding was predicted for each indicator during the simulated larviciding 
period.

Results:  Larviciding immediately reduced the predicted host-seeking mosquito densities and EIRs to a maximum 
that approached or exceeded the simulated coverage. Reduction in prevalence was delayed by approximately one 
month. The relative reduction in prevalence was up to four times higher at low than high transmission. Reducing 
larviciding frequency (i.e., from every 5 to 10 days) resulted in substantial loss in effectiveness (54, 45 and 53% loss of 
impact for host-seeking mosquito densities, EIR and prevalence, respectively). In seasonal settings the most effective 
timing of larviciding was during or at the beginning of the rainy season and least impactful during the dry season, 
assuming larviciding deployment for four months.

Conclusion:  The results highlight the critical role of deployment strategies on the impact of larviciding. Overall, larvi-
ciding would be more effective in settings with low and seasonal transmission, and at the beginning and during the 
peak densities of the target species populations. For maximum impact, implementers should consider the practical 
ranges of coverage, duration, frequency, and timing of larviciding in their respective contexts. More operational data 
and improved calibration would enable models to become a practical tool to support malaria control programmes in 
developing larviciding strategies that account for the diversity of contexts.
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Background
Larviciding is the application of biological or chemi-
cal insecticides that kill the immature stages of mos-
quitoes, and is one of the approaches of larval source 
management (LSM), along with habitat modification, 
habitat manipulation and biological control [1]. The 
World Health Organization (WHO) recommends larvi-
ciding as a supplementary intervention against malaria 
in addition to the core vector control interventions of 
insecticide-treated bed nets (ITNs) and indoor residual 
spraying (IRS) [2]. Larviciding is recommended in areas 
where the intervention is feasible and cost-effective, 
mostly in urban areas and during the dry season where 
breeding sites are ‘fixed, few and findable’ [1, 2]. Biolar-
vicides, Bacillus thuringiensis israelensis and Bacillus 
sphaericus, are currently the most prominent larvicides 
as they are environmentally safe [3]. However, under 
most environmental conditions, they have short resid-
ual effectiveness (B. thuringiensis israelensis lasts for 
only 1–2 weeks [7–9] and B. sphaericus for 2–3 weeks 
[6, 7]). Frequent applications have been widely recog-
nized as a challenge for effective large-scale implemen-
tation [11–15].

Larviciding was widely used in the first half of the 20th 
Century, most successfully outside sub-Saharan Africa, 
but fell out of favour after the introduction of IRS with 
DDT [1, 13–16]. In the last decade, LSM, especially lar-
viciding, has been reconsidered within an integrated 
vector management approach, especially as longer-last-
ing agents [17–19], or novel deployment strategies and 
breeding site identification, i.e., using drones [20, 21] 
might become increasingly available [22]. Post-2000, pilot 
programmes of larviciding have been conducted in urban 
and in rural areas in multiple countries of Africa [3, 9, 15, 
21–39]. For example, the Urban Malaria Programme in 
Dar es Salaam, Tanzania, demonstrated operational feasi-
bility and effectiveness of larviciding on larvae reduction 
and epidemiological outcomes in urban areas [11, 26]. 
In Burkina Faso, a trial in 84 rural villages with B. spha-
ericus applications during the main transmission season 
showed larviciding to be feasible and cost-effective when 
targeted to the most productive breeding sites [25, 43]. 
Pilot implementations have previously been included in 
national malaria strategic plans in Eritrea [7, 38, 44, 45], 
Zambia [31, 46, 47] and Nigeria [48]. Despite the long 
history of larviciding, its impact on malaria prevalence 
in humans [9, 49] in different settings, and the influence 
of variations in its application, particularly frequency and 
timing of the year as well as duration [6, 17, 40], remain 
insufficiently understood. For example, the application 
during the rainy season was described as impractical and 
less effective in study sites in Tanzania and The Gambia 
[26, 40], but as feasible in the study in Burkina Faso [24, 

42], whereas its effectiveness during the dry season, as 
currently recommended, is still being debated [1, 16].

Mathematical models have been used to simulate mos-
quito population dynamics and the relationship between 
larval stages and adult mosquitoes [50–60]. However, 
most models consider only a small sub-set of the highly 
variable larviciding deployment scenarios. The models 
also include implicit assumptions about optimal deploy-
ment in relation to seasonality, (i.e., deployments either 
throughout the year, during rainy season or during dry 
seasons) and duration of larviciding effectiveness (i.e., 
constant or interrupted) without regard to re-treatment 
intervals and duration of product efficacy. While mod-
els have been used to simulate variations in the deploy-
ment strategies for other malaria control interventions, 
such as IRS [61–64] and drugs [64–67], larviciding strat-
egies have not been investigated as much. In this study 
the impact of larviciding applications was simulated to 
assess the influence of different deployment strategies on 
expected entomological outcomes and malaria infections 
in humans for different seasonality and transmission 
settings.

Methods
Larviciding and influencing factors
The application and effectiveness of larviciding is highly 
dependent on aquatic habitat characteristics and mos-
quito species [1]. Identification and accessibility of these 
habitats throughout the year is problematic yet essential 
[8, 11, 12]. Larviciding can reduce the number of emerg-
ing mosquitoes with a lag of two to three weeks between 
larviciding and reduction in adult mosquito density [4]. 
The number of infected host-seeking mosquitoes deter-
mines the entomological inoculation rate (EIR), which is 
related to the number of new infections in humans and 
the proportion of humans carrying malaria parasites. An 
overview of the most relevant influencing factors on lar-
viciding application and effectiveness is shown in Fig. 1.

Mosquito dynamics
A deterministic discrete-time model of overlapping gen-
erations of mosquitoes with a time step of one day was 
used [63, 64]. This was extended to include density-
dependent larval dynamics using a Beverton-Holt for-
mulation [71, 72]. This model includes a single juvenile 
stage of mosquitoes arising at a rate proportional to the 
time-lagged number of eggs laid, with the larval popu-
lation regulated by periodically varying larval-carrying 
capacity and the larvae progressing to host-seeking 
adults at a constant rate. The assumed lag times between 
rainfall was 10 days for mosquito emergence, 20 days for 
host-seeking mosquitoes and 30 days to actual transmis-
sion events (measured as EIR). The models and derived 
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parameters are described in Additional file 1. The ento-
mological model was connected to a stochastic individ-
ual-based model for malaria in humans [74] within the 
OpenMalaria platform [68, 69, 74–76], for which the 
source code is available online [77]. The parasite densities 
per simulated infection vary by 5-day time steps.

Model parameterization
Malaria transmission intensity was defined as annual pre-
larviciding EIR and simulated with three intensity levels: 
3 infectious bites per person per annum (ibpa) for low 
transmission, 10 ibpa for moderate transmission and 90 
ibpa for high transmission. Seasonality was characterized 
as high or medium seasonal with either one or two peaks 
and reproduced from another modelling study [78]. The 
seasonality in transmission was assumed to follow the 
same pattern as the rainfall with a lag of one month, and 
lag time between key indicators are shown in Additional 
file 2: Fig. S2.1. The characteristics of the setting, includ-
ing resistance, host preferences and biting behaviour 
were held constant over time. Differences between spe-
cies were not considered, and a previously determined 
parameterization for Anopheles gambiae sensu stricto 
(s.s.), predominantly indoor biting and anthrophilic, was 
used. To explore sensitivity to highly uncertain mosquito 
population density-dependency parameters, the survival 

probability of larvae, the development duration and the 
number of female eggs per gonotrophic cycle were varied.

Simulated parameters of larviciding included the cov-
erage, deployment duration, application frequency, and 
seasonal deployment. The coverage was defined as the 
reduction in emerging mosquitoes as a result of treated 
breeding sites (operational coverage) and larvicide efficacy 
(Additional file 3). It was assumed that important aquatic 
habitats had been pre-identified and characterized, and 
that they were accessible and evenly distributed. Larvi-
ciding deployment duration was simulated for 120 and 
356 days, allowing for irregular applications, but with fixed 
efficacy duration of the minimum time step (5 days). The 
seasonal deployment was described in terms of the num-
ber of months during which larviciding was applied per 
year (beginning, during or end of the rainy season, during 
the dry season or throughout the year) (Fig. 2).

Simulation scenarios
The larviciding parameters were explored with three dis-
tinct simulation experiments. Larviciding was simulated: 
(1) for 365  days at maximum application rate through-
out the year and constant transmission (no seasonality); 
(2) for 120  days at varying application rates and cover-
age at constant transmission throughout the year; and, 
(3) for 120 days at maximum application rate starting in 

Fig. 1  Flowchart of factors influencing larviciding effectiveness and malaria transmission outcomes. The flowchart reads from left to right, with 
climate and environmental factors influencing the whole system and relationships inside. This study focuses on the deployment factors and their 
impact on the quantifiable outcomes as highlighted in blue. All other factors were considered standard and non-varying
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different months during the year considering four dif-
ferent seasonality profiles. Simulations 1 and 2 were run 
with 11 coverage levels, three transmission intensities, 18 
unique mosquito density dependency parameter combi-
nations, and three stochastic representations, whereas 
the coverage levels and density parameters were reduced 
for Simulation 3 to limit simulation size. Simulations 
were run for a host population of 10,000 people, with a 
‘warm-up’ period equivalent to 60 years before the imple-
mentation of larviciding. The ‘warm-up’ period led to the 
defined level of transmission assumed to result from pre-
vious interventions not explicitly simulated (Table 1).

Analysis of simulation outputs
The outputs of the simulations included the number 
of larvae emerging and surviving to first feeding cycle 

(mosquito emergence), the number of host-searching 
mosquitoes, the EIR, and the Plasmodium falciparum 
parasite rate in the human population, assessed dur-
ing the intervention period, at the end of the interven-
tion period or one year after the intervention period. 
The impact of larviciding was assessed by comparing the 
scenarios with larviciding to those without larviciding, 
defined as the counterfactual. The relative reduction (RR) 
compared to no larviciding, was calculated per 5-day 
time step paired by deployment parameters. The mean of 
the RRs per time step was calculated for the entire dura-
tion (meanRR). The equations are shown below, where 
t denotes the time step and n the total number of time 
steps, either at the end of the larviciding intervention or 
one year after intervention start, in the results specified 
in the figure captions.

RRt =

(

X[Counter factualt ]− X[larvicidingt ]/X[Counter factualt ]
)
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where, X[.] denotes the model outputs (EIR,vector den-
sity or prevalence) for either the counterfactual scenario 
or with larviciding intervention.

The loss in the effectiveness was defined as 1-meanRR 
calculated at the end of the evaluation period, either 
after larviciding was stopped or one year after larviciding 
started. For the prevalence and EIR, the predicted value 
at the time point (at the end of the evaluation period) was 
taken, whereas for the vector outcomes the average was 
taken. The three seeds were averaged and the simulated 
range among the mosquito population density-depend-
ency parameters was used to obtain uncertainty inter-
vals. Linear regression models were run to quantify the 
relationship between deployment frequency or coverage 
and reduction on prevalence.

Simulation to represent a study site
Additional simulations were run to compare the pre-
dicted with the reported impact of larviciding and to 
establish the relationship between effective coverage and 
reported operational coverage based on a field study con-
ducted before other vector control interventions were 
scaled up [6]. In that study, larviciding was applied in 
Mbita, a rural village in western Kenya, between June 
2002 and September 2004 using B. thuringiensis israelen-
sis and B. sphaericus. The number of treated breeding 

meanRR =

1

n

∑ n

t = 0
RRt

sites per deployment ranged from 65 to 219 among the 
50 applications during the study period. Simulation sce-
narios intended to represent the study site and informed 
parameters as reported for the annual baseline transmis-
sion intensity, the seasonality, vector species, time of lar-
viciding applications and the larvicide, only varying the 
coverage. A detailed description of the study is available 
in the publication by Fillinger et al. [6], and the simula-
tions set-up is included in Additional file 4.

Results
Impact of effective coverage and duration of larviciding 
(Simulation 1)
The impact of larviciding coverage and duration is shown 
in Fig.  3. After one year of larviciding at 60% coverage, 
the number of host-seeking mosquitoes was reduced by 
62% (range 60–70%), the EIR by 81% (range 78–86%), 
and the prevalence by 48% (range 45–55%), assuming 
moderate transmission and no seasonality (Fig. 3A). The 
number of host-seeking mosquitoes and EIR appeared to 
reach equilibrium ahead of malaria prevalence rates. The 
effects on host-seeking mosquitoes started immediately 
after larviciding but EIR started to decrease after around 
10  days and faster than for host-seeking mosquitoes. 
Malaria parasite prevalence was predicted to decrease 
around two months after larviciding and had the lowest 
RRs compared to the other outcomes.

The relationship between effective coverage and 
reduction in prevalence depended highly on the 

Table 1  Summary of simulation experiments and varied model parameter

* A step function with constant effectiveness for the specific number of days
** Minimum time step size in OpenMalaria
***  aluation period, either after larviciding was stopped or onBased on OpenMalaria default parameters with upper and lower value for female eggs laid based on [79] 
and assumed maximum range for survival probability of larvae

Simulation 1 Simulation 2 Simulation 3

Setting

Transmission intensity (ibpa) 3, 10, 90 3, 10, 90 3, 10, 90

Transmission seasonality – – None, medium, high, one 
peak, two peaks (based 
on [78])

Intervention deployment

Coverage 0–1, interval of 0.1 0–1, interval of 0.1 0–1, interval of 0.2

Duration (days) 30, 60, 90, 120, 365, 730, 1095 120 120

Frequency (interval in days) 5** 5, 10, 15, 20, 25, 30, 60, 90 5**

Decay* (days) 5 5 120

Seasonal deployment (month larvicid-
ing started)

– – 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

Mosquito density dependency parameters***

Female eggs laid 99, 50, 200 99, 50, 200 99

Development survival 0.6, 0,1, 0.9 0.6, 0,1, 0.9 0.6

Development duration (days) 11, 5 11, 5 11
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pre-intervention transmission intensities, with the 
greatest RRs being in low-transmission settings. An 
effective coverage above 60% can be considered as 
high, since it refers to the reduction in all emerging 
adult mosquitoes, whereas in practice not all breed-
ing sites might be identified, and treatment might 
not affect all premature stages within a breeding 
sites equally (Additional file  3). Taking 60% effective 
coverage as an example, the RR in prevalence at low 
EIR was around four times higher than at high EIR 
(meanRREIR-3 = 66% vs. meanRREIR-90 = 17%) (Fig.  3B), 
while at 20% coverage the RR was almost 10 times 
higher (meanRREIR-3 = 25% vs. meanRREIR-90 = 2.5%). 
The population density dependency parameters did 
not substantially influence these relationships, nor 
the immediate effect of larviciding, however extreme 
values considerably delayed re-population after high 
reductions in the mosquito population (Additional File 
2: Fig. S2.2 and S2.3). Coverage of larviciding strongly 
influenced the overall impact of the intervention, 
except at high transmission intensities (EIR > 90 ibpa) 

where larviciding was predicted to not have much 
impact, showing the higher the transmission intensity 
the lower the impact of the intervention.

Impact of deployment frequency of larviciding (Simulation 
2)
The highest impact at any larviciding coverage was 
achieved at maximum duration of the intervention 
period (assumed to be 120 days for this specific simu-
lation) (Fig.  4). In practice, this could be achieved 
through frequent deployments with short-lived lar-
vicides or fewer deployments when using larvicides 
that have longer residual efficacy. Interrupting the 
effective coverage by deployment every 10 instead of 
every 5  days resulted in a loss of effectiveness by 54% 
(51–56%) for mean host-seeking mosquito density, by 
45% (39–49%) in EIR, and by 53% (45–70%) in preva-
lence. This had assumed coverage of 80%, averaged over 
the three transmission intensities. For host-seeking 
mosquitoes, there was high interaction between fre-
quency and coverage with higher loss in impact at high 
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than at low coverage (Fig. 4B). For EIR and prevalence 
(Fig.  4C), the levels of pre-larviciding transmission 
intensity influenced the impact of deployment fre-
quency on prevalence but not on EIR. For instance, for 
a deployment of larviciding at 80% every 10 days (when 
assuming a short-lived larvicide effective for 5  days), 
the resulting RR in EIR was predicted at 49% (46–56%) 
for a pre-intervention EIR of 3 ibpa, 47% (45–53%) for a 
EIR of 10 ibpa, 44% (41–50%) for a EIR of 90 ibpa. The 
corresponding RRs in prevalence were 17% (14–21%), 
12% (9–13%) and 4% (3–5%) for EIR of 3, 10, and 90 
ibpa, respectively.

An increase of 1% in coverage would lead to an aver-
age increase of the impact in prevalence by 0.10%, while 
an additional lag of 5 days between deployments would 
decrease the RR in prevalence by 2.32% (Fig.  4). To 
achieve and maintain high impact of larviciding with a 
short efficacy, the frequency of deployments was more 
important than the coverage. For instance, an increase 
in the coverage from 40 to 80% for deployment every 
5 days increased the RR in prevalence from 18 to 36%, 

whereas not even 100% coverage could compromise 
fewer deployments that leave gaps in effective coverage 
to achieve the same reduction (Additional file  2: Fig. 
S2.4).

Impact of timing on effectiveness of larviciding 
(Simulation 3)
The timing of larviciding relative to the transmission 
season substantially influenced the impact on the preva-
lence. Regardless of seasonality, transmission intensity 
or coverage, larviciding in the rainy season was most 
impactful in reducing EIR and prevalence, followed by 
deployment during the beginning of the rainy season, fol-
lowed by deployment at the end of the rainy season. For 
highly seasonal settings, larviciding during the rainy sea-
son (for 120 days) was predicted to have a similar impact 
as deployment all year round, whereas larviciding at the 
end of the rainy season or during the dry season (for 
120 days) had a very low impact. In moderate endemicity 
setting (EIR = 10 ibpa), larviciding at 80% coverage was 
predicted to reduce the prevalence after one year by 58% 
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when deployed all year round, by 57% when implemented 
during the middle of the rain season, by 40% when imple-
mented at the beginning of the rainy season, by 9% at the 
end of the rainy season and no reduction when deployed 
at the dry season. The RR in prevalence was on average 
across the deployment timing 10% higher at lower trans-
mission (EIR = 3 ibpa) and 20% lower at higher transmis-
sion (EIR = 90) compared to the reduction simulated for 
the moderate transmission level (Additional file  2: Fig. 
S2.9).

The optimal deployment timing for highest impact 
on prevalence was found to be three months before the 
peak in transmission, assuming lasting effectiveness until 
one month after the peak. When coverage of larviciding 
during the rainy season was reduced to 20% (intended 
to represent operational challenges to cover all breed-
ing sites during the rainy season), the impact of larvicid-
ing, although substantially lower (19% difference in peak 
meanRR), remained higher when deployed during the 
dry season, especially at high seasonality with one trans-
mission season. At medium seasonality and two trans-
mission seasons, the optimal deployment timing became 

less distinct (Fig.  5B). The model predictions therefore 
suggest that timing the larviciding deployment to the 
rainy season would be more impactful, even at lower cov-
erage, than achieving high coverage during the other sea-
sons, even when the effective coverage would drop to a 
coverage of 20%, given the transmission and seasonality 
scenarios considered in this analysis. Additional seasonal 
plots are provided in the Additional file 2: Fig. S2.7–10.

Comparison of deployment factors and post‑larviciding 
resurgence (Simulation 2)
After the end of an assumed intervention period of 
120  days, the number of host-seeking mosquitoes 
resurged immediately to pre-larviciding levels whereas 
the EIR, after an initial drop, resurged at a slower rate and 
the prevalence resurged at the slowest rate after a delay of 
25–30 days (Additional file 2: Fig. S2.5). A year after the 
end of the intervention period, the EIR and prevalence 
did not return fully to pre-larviciding levels, depend-
ing on the deployment factors and achieved impact. The 
higher the maximum reduction during the intervention 
period (as a product between coverage and frequency), 

Fig. 5  Relative reduction in prevalence due to larviciding compared by seasonal timing at moderate transmission intensity (EIR = 10). A Reduction 
in prevalence after one year with larviciding deployed for one year compared to 120 days at varying seasons. The x-axis shows the effective 
larviciding coverage, with coverage above 60% shadowed in grey as these coverage levels might be difficult to achieve in practice [54, 56]. The 
diagonal black line indicates a 1-to-1 relationship. B Relative reduction in prevalence at the end of the deployment period (120 days) at moderate 
transmission for varying deployment starts, relative to the peak in transmission. The t denotes the time in days after intervention start. Mosquito 
density-dependence parameters were fixed and uncertainty intervals are not shown
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the slower the resurgence to initial levels (Fig.  6). The 
reduction in EIR and prevalence that remained after the 
intervention period also varied depending on when larvi-
ciding was applied as well as the seasonal pattern (Addi-
tional file 2: Fig. S2.6).

Re‑simulated larviciding study
In the selected field study in Mbita, western Kenya, lar-
viciding was reported to reduce the larval density by 
95%, the adult density by 92%, and the EIR from 9 to 0.8 
ibpa during the two-year intervention period compared 
to the pre-and post-intervention period [6]. Larviciding 
was simulated with the same number of deployments 
as reported (on average every 11  days when using B. 
thuringiensis israelensis, every 22  days when using B. 
sphaericus (Additional file 4: Table S4.1)) with a range 
of larviciding coverage between zero and 100%, using 
an input EIR of 10 ibpa. At an assumed effective cover-
age of > 90%, the maximum reduction in larval density 
was around 77%, in adult density 67%, and in EIR 40%. 

The reported high reductions in adult density and EIR 
of > 90% could only be simulated with assumed con-
stant effectiveness and unrealistically high coverage 
(predicted to reduce the larval density by 94%, the adult 
density by 93% and the EIR from 10 to 1.37). The results 
are shown in Additional file 4.

Discussion
This modelling study investigated the impact of larvicid-
ing deployment strategies varying by coverage, duration, 
application frequency, and seasonal timing, for three 
transmission intensities (3, 10 or 90 ibpa), and five sea-
sonality patterns, assuming homogeneous vector popula-
tion similar to An. gambiae. Overall, larviciding impacted 
the prevalence at a slower rate than the number of host-
seeking mosquitoes and transmission intensity, while 
reduction in prevalence remained beyond the interven-
tion period. The effective coverage during the interven-
tion period, as a result of the efficacy duration of the 
larvicide, frequency and emergence reduction (effective 
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coverage per single application), highly influenced the 
impact of larviciding. To ensure high impact, the product 
of the deployment factors need to be high, with regular 
deployments, tailored at the efficacy duration of the lar-
vicide being more important than the effective coverage 
(number of emerging mosquitoes killed at each single 
round of larviciding) even at high coverage, when assum-
ing short-lived larvicides. In highly seasonal settings, the 
deployment during the rainy season was predicted to 
have the highest impact on EIR and prevalence even at 
much lower coverage than during the dry season, and dry 
season larviciding had negligible impact. Larviciding at 
lower compared to high transmission intensity was fur-
ther predicted to have a higher epidemiological impact 
with greater and longer lasting RR in the prevalence. This 
difference could be attributable to the differences in mos-
quito densities and faster rate of re-establishment at high 
transmission after lavicide decay to be effective (Addi-
tional file 2: Fig. S2.5).

Field observations [4, 9] and simulations agree that 
larviciding reduces the number of emerging mosquitoes 
for the duration of the killing effect and that the vector 
population re-establishes immediately afterwards [4, 37, 
80]. In field studies, the time to reduce numbers of host-
seeking mosquitoes varies between immediate impact 
and to lag times of two to three weeks [4, 37, 80], with 
reductions in host-seeking mosquitoes ranging from very 
low to almost as high as the reduction in observed larval 
density [6, 17, 40]. The simulations showed that preva-
lence is affected at a slower rate than the mosquitoes and 
transmission intensity and did not reach an equilibrium 
after one year of constant larviciding. This relates to the 
important role of duration of infection and parasite reser-
voirs in humans. It requires more time to clear infections 
in the human population by only reducing the mosquito 
population, whereas the reduction will also depend on 
malaria case management, which was not included in the 
simulations. However, this finding indicates that longer 
follow-up times would be required in field studies to cap-
ture impact of larviciding on prevalence with follow-up 
times varying depending on the seasonality.

Shorter intervals between deployments to reduce 
gaps in effective coverage over time were predicted to 
increase the average impact and reduce fluctuations in 
outcomes, as observed in two studies in Kenya [6, 81]. In 
practice, the required deployment frequency depends on 
the emergence rate of new breeding sites and the persis-
tence of the specific active agent [5, 7, 17, 42, 82]. Nota-
bly, some programmes focus on treating only productive 
breeding sites [10, 59], a strategy considered cost-effec-
tive in a rural district in Burkina Faso [25]. Concentrating 
efforts on peri-domiciliary breeding sites has also been 
advocated [83]. The appropriate deployment strategy 

to achieve high coverage of larviciding, or LSM in gen-
eral, will further depend on dispersal of breeding sites 
and total land area to cover, surface area and quantity of 
breeding sites as well as their proximity to houses.

Larviciding is currently recommended by the WHO 
to be deployed in areas or seasons where breeding sites 
are fixed, few and findable, commonly associated with 
the dry season or urban areas [1, 2], however, the simu-
lation results suggest that larviciding in the dry sea-
son would have limited impact in seasonal settings. The 
results further suggest that the additional benefit of 
larviciding throughout the year would be marginal in 
highly seasonal settings. The greatest impact on preva-
lence was predicted when implementation preceded the 
peak in transmission, hence averting seasonal increases 
in host-seeking mosquito density. However, rainy season 
larviciding is more challenging, in particular because of 
proliferation of breeding sites and dilution of larvicide 
[17, 29, 33, 81], while on the other hand emergence rates 
might be reduced when larvae are flushed away by very 
high rainfall [18, 81, 84]. The trade-off between achiev-
ing high coverage (often described as more feasible in the 
dry season or arid areas [1, 85]) and the epidemiological 
impact associated with a given coverage (in simulation 
estimated higher in the rainy season) must play out dif-
ferently in diverse environments and might well account 
for some of the variation in seasonal patterns of impact 
observed in the field. In this modelling study, the opera-
tional challenge was attempted to reflect lowering the 
coverage during the rainy season while keeping the cov-
erage during the dry season high, which did not change 
the recommended timing for larviciding unless cover-
age dropped to less than 20% of emerging mosquitoes 
killed. Alternative approaches to adjust for operational 
challenges would include simulating shorter effective-
ness [29] or more frequent deployments [81] in the rainy 
season, presumably with similar implications. The results 
apply for settings with low vector densities and little to 
no transmission during the dry season, and where peak 
in transmission follows with one month lag after peak in 
rainfall.

The model results suggest that the relative impact 
would be greater at low than at high transmission in 
which high coverage would be needed. Nevertheless, 
larviciding has been successfully deployed in moderate 
to high transmission areas in several studies [27, 37, 86]. 
One study in particular showed that larviciding could 
be implemented at high transmission in highly seasonal 
areas with findable breeding sites [86]. Reduction in prev-
alence has rarely been studied in larviciding field studies 
[9] although one study reported a reduction of more than 
70% [26]. Based on the simulations, such high reductions 
would only be achievable at very high coverage and long 
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duration of effective larviciding, either with more fre-
quent deployments or longer residual activity (e.g., longer 
than 120  days), and seems unlikely to be achieved with 
larviciding alone as reported in the study.

In most instances, larviciding, recommended as a sup-
plementary intervention [1], will be deployed alongside 
ITNs or IRS, to reduce transmission and create a context 
where larviciding is more effective. While interactions 
were not explicitly modelled, implicitly synergistic effects 
with these interventions were assumed by simulating low 
pre-larviciding transmission intensity. This assumption is 
supported by the higher impact at low transmission seen 
in the predictions. For the same reason, synergies with 
chemotherapeutic interventions can also be anticipated 
[87]. Further synergies are likely where there is insecti-
cide or drug resistance because larvicides have different 
biochemistry and act independently of host-seeking and 
resting behaviour of adult mosquitoes [14], and they can 
address transmission that is refractory to the core inter-
ventions. In practice, larviciding might also be combined 
with other LSM approaches [1, 88, 89] that together 
reduce the adult mosquito emergence in an area.

Although the measurement of coverage is critical for 
predicting the impact of a larviciding programme, there 
is no standardization of operational coverage meas-
ures. These have been variously defined as the number 
of treated breeding sites out of the total identified, the 
proportion of the surface area of water bodies that are 
treated, or even the proportion of larvae covered by lar-
vicide out of all larvae within a breeding site (Additional 
file  3). Targeting specific areas (or selection of sub-sets 
of breeding sites or other criteria) reduce the denomi-
nators in such calculations. All these measures of cover-
age are challenging to estimate [8, 12, 15, 90], especially 
since the proportion of breeding sites identified varies in 
each setting and over time. Regardless of the suitability of 
the local settings, the effectiveness also depends on the 
performance of field staff, community engagement and 
supervision [91, 92].

The simulations of larviciding in Mbita, western Kenya, 
attempted to calibrate the model to allow for these fac-
tors. The results emphasize the difficulty of correctly 
reproducing the impact of larviciding, and on estimating 
coverage levels that would be feasible, despite account-
ing for details of deployment. In the simulations, the 
vector population immediately increased between the 
larvicide applications, whereas in the field measurements 
adult densities remained relatively low [6]. Hence, the 
low levels in host-seeking mosquito density maintained 
throughout the intervention period of two years could 
only be reproduced with constant high effective cover-
age. It could be that the sampling under-represented the 
true adult mosquito density in the community or that 

the simulated re-treatment intervals underestimated the 
effectiveness in practice. Another reason could be addi-
tional use of ITNs or other factors not accounted for in 
the simulations that lowered the transmission through-
out the study period.

In contrast to the homogeneous vector populations in 
the simulations, multiple vector species are usually pre-
sent in the field, and some of this variation in outcomes 
result from environmental and ecological factors that 
cannot be captured in the model. For instance, larvicid-
ing of rice fields has been found to be impractical in The 
Gambia, due to low accessibility [40], but was feasible 
in Tanzania and Rwanda [36, 93]. One study in Kenya 
found positive effects of dry season implementation on 
mosquito density and clinical malaria using long-lasting 
larvicides [17]. Another study in western Kenya reported 
higher effectiveness during the rainy season, using short-
lived larvicides [94]. For instance, while a high number 
of breeding sites existed throughout the dry season in an 
urban setting (Dar es Salaam) [11], they substantially var-
ied by season in the rural village setting in Mbita, western 
Kenya [6]. Hence, field operations should always consider 
local climate, breeding site permanence based on water 
sources and characteristics, dominant vector species, 
available resources, and engagement of the community 
[95]. The diversity of operational implementation and 
outcomes highlights the need for more setting-specific 
guidelines for larviciding to differentiate between strate-
gies for different localities. For instance, in Tanzania, the 
national malaria strategic plan includes larviciding the 
whole country [96], but heterogeneities in malaria epi-
demiology and environmental factors represent a huge 
challenge for planning appropriate large-scale strate-
gies [97, 98] and implementation will require a thorough 
assessment of the context at local level.

Conclusion
In seasonal transmission settings, larviciding was pre-
dicted to be most impactful if done before and during 
the peak in vector density; in many settings this cor-
responded to the rainy season instead of during the 
dry season as currently recommended by WHO. Some 
deployment parameters, including coverage, are diffi-
cult to determine accurately in reality versus in a model. 
Field studies find substantial variation in outcomes that 
appears to stem from diversity in eco-environmental set-
tings, vector biology and in operational strategies, and 
are often difficult to relate to model predictions. To make 
model-based impact predictions that can be compared 
between areas, the different deployment strategies and 
coverage should be calibrated against effects on densities 
of host-seeking vectors and prevalence in humans. Such 
calibration would enable models to become a practical 
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tool to support malaria control programmes in develop-
ing operational strategies for larviciding that account for 
diversity of context.
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