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Abstract: General anesthetics mainly act by modulating synaptic inhibition on the one hand (the
potentiation of GABA transmission) or synaptic excitation on the other (the inhibition of NMDA
receptors), but they can also have effects on numerous other proteins, receptors, and channels. The
effects of general anesthetics on ion channels have been the subject of research since the publication
of reports of direct actions of these drugs on ion channel proteins. In particular, there is considerable
interest in T-type voltage-gated calcium channels that are abundantly expressed in the thalamus,
where they control patterns of cellular excitability and thalamocortical oscillations during awake and
sleep states. Here, we summarized and discussed our recent studies focused on the CaV3.1 isoform
of T-channels in the nonspecific thalamus (intralaminar and midline nuclei), which acts as a key
hub through which natural sleep and general anesthesia are initiated. We used mouse genetics and
in vivo and ex vivo electrophysiology to study the role of thalamic T-channels in hypnosis induced
by a standard general anesthetic, isoflurane, as well as novel neuroactive steroids. From the results
of this study, we conclude that CaV3.1 channels contribute to thalamocortical oscillations during
anesthetic-induced hypnosis, particularly the slow-frequency range of δ oscillations (0.5–4 Hz), by
generating “window current” that contributes to the resting membrane potential. We posit that the
role of the thalamic CaV3.1 isoform of T-channels in the effects of various classes of general anesthetics
warrants consideration.

Keywords: t-type calcium channels; general anesthesia; hypnosis; nonspecific thalamus; EEG record-
ing; LFP recording

1. Introduction

Since their discoveries, T-type calcium channels (T-channels) have been studied in
the context of thalamocortical oscillatory behavior, synaptic plasticity, cell excitability,
and involvement in rebound burst-firing [1–3]. T-channels were first described in the
immature egg cell membrane of a starfish (Mediaster aequalis), where two distinct calcium
currents were reported: one with activation at a membrane potential of −55/−50 mV
(low-voltage-activated channels, LVA channels or T-channels) and the other at −7/−6 mV
(high-voltage-activated or HVA channels) [4]. One very important property of T-channels
is that they need only small depolarization to open, and they have the ability to form
“window” currents around resting neuronal membrane potential (see Figure 1) [5]. In the
thalamus, the occurrence of neuronal membrane potential bistability or destabilization
is manifested as the transition of two resting membrane potentials (from “Down to Up
states”). It is generally accepted this is most likely due to the “window” current generated
by T-channels [5]. Neuronal membrane destabilization is crucial for generating rhythmic
(slow/δ) oscillatory behavior during hyperpolarization states typically associated with
sleep, sedation, hypnosis, or anesthesia. During neuronal hyperpolarization, T-channels are
de-inactivated (recovered from the inactivation), allowing them to open after depolarization
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and trigger a low-threshold calcium spike (LTS) crowned with a barrage of action potentials
(APs, rebound burst-firing pattern, Figure 1,for details see [6]). It is well-documented
that during natural sleep or general anesthesia, inhibitory synaptic inputs hyperpolarize
thalamic cells enough to recover T-channels from inactivation and consequently allow them
to generate characteristic burst-firing and network oscillations. Importantly, it has been
shown that in the burst-firing state, the thalamus does not conduct sensory information, a
property crucial for natural sleep and general anesthesia effects [7].
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Figure 1. Neuronal Tchannel properties in the nonspecific thalamic nucleus (CeM). (A) “Window”
current generation, red trace—steady-state inactivation and black—steady-state activation T-channel
kinetics (from voltage-clamp experiments). Inset in A is enlarged “window” current (shaded area)
generated by overlap between steady-state activation (black) and inactivation (red) curves. (B) Role
of the T-channels in LTS (low-threshold spike, shaded area) and rebound burst generation. Note that
in most systems, LTS and burst-firing cannot be generated from the resting membrane potential, but
neurons need hyperpolarization of the cell membrane in order to allow T-channel de-inactivation
(recovery from inactivation). AP—action potential.

There are three known isoforms of pore-forming α subunit of T-channels, known as
α1G (CACNA1G, CaV3.1), α1H (CACNA1H, CaV3.2), and α1I (CACNA1I, CaV3.3), which
are expressed and localized in different brain regions, including the thalamus [8]. In most
of the glutamatergic thalamic nuclei, the dominant subtype is the CaV3.1 channel expressed
on soma and dendrites. In the thalamic reticular nucleus (TRN), which is composed of
GABAergic neurons, the most abundantly expressed are CaV3.2 (mostly on cell somas) and
CaV3.3 (mostly on dendrites) T-channel isoforms [8]. Consistent with their essential roles in
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neuronal excitability, T-channel dysfunction has been implicated in epilepsy, sleep disorders,
pain, neurological disorders, neuropsychiatric disorders, cognitive disorders, as well as in
chronic thalamocortical hyperexcitability following exposure to general anesthesia during
brain development [9–13].

One of the fundamental challenges in pharmacology remains to decipher mecha-
nisms of action of general anesthetics. General anesthesia is a drug-induced, reversible
condition composed of the behavioral states of hypnosis, amnesia, analgesia, and loss of
motor reflexes (immobilization) during a surgical procedure. The mechanisms of loss of
consciousness (hypnosis) have been studied for decades using neuroimaging [14,15]. An
early theory proposed that the nonspecific alteration of the lipid membrane in nerve cells
accounts for the anesthetic state [16,17]. However, advancements in research in the last
three decades have disputed the nonspecific lipid membrane theory [18] and confirmed
that general anesthetics act through multiple specific proteins on the neuronal membrane,
and that different ion channels that control neuronal excitability may mediate their clin-
ical effects. It is generally accepted that general anesthetics act on synaptic inhibition
on the one hand (the potentiation of GABA-mediated transmission, e.g., propofol), or
glutamate-mediated synaptic excitation on the other (the inhibition of NMDA receptors,
e.g., ketamine, nitrous oxide), but they can also have effects on numerous other proteins,
receptors, and channels [19–22]. It is known that general anesthetics markedly reduce the
global cerebral metabolic rate and blood flow, and the thalamus appears to be a common
site of modulation by several anesthetics [14,23,24]. The loss of consciousness induced by
anesthetics represents the disruption of higher-order cortical information integration, and it
has been shown that the posterior parietal–cingulate–precuneus region and the nonspecific
thalamus have a critical role in maintaining the state of consciousness (for details, see [14]).

The brain arousal system involves the nonspecific thalamus (intralaminar and midline
complex) [25]. It has been shown that the repetitive low-frequency stimulation of intralam-
inar thalamic nuclei is associated with sleep and drowsiness, while the high-frequency
stimulation of the same area can desynchronize the cortex and elicit arousal [26]. The
central nucleus of the thalamus (CeM) is a part of the rostral intralaminar complex with
the projections to the cortex (anterior and posterior parts), the amygdala, the nucleus
accumbens, the claustrum, the caudate–putamen, and the olfactory tubercle [27]. Some
studies revealed that the nonspecific thalamus acts as a crucial center for brain network
connectivity and is important for alterations induced by general anesthesia and natural
sleep in rodents and humans [28–31]. The stimulation of the central thalamus (including the
mediodorsal and intralaminar nucleus) in monkeys during the unconscious state caused
the reversal of neurophysiological signs of the hypnotic state [32]. Consistent with this
idea, microinjections of general anesthetics into the CeM region in rodents was shown
to facilitate hypnosis, while injections of an antibody against voltage-gated potassium
channels promoted arousal and the reversal of anesthetic-induced hypnosis [33,34]. Im-
portantly, clinical studies have shown that deep brain stimulation of adjacent nuclei in the
nonspecific central thalamus improved the state of consciousness in patients with severe
brain injury [35]. Hence, this motivated us to investigate the role of the CaV3.1 isoform of
T-channels in regulating excitability states of the CeM and its role in neurosteroid-induced
hypnosis and general anesthesia [36,37].

Interestingly, studies showed the evolutionary existence of a voltage-gated calcium
current with the kinetic features of a T-channel current in C. elegans, Drosophila, and Tri-
choplax adhaerens [38,39]. Although there are reports that show the behavioral effects of
volatile anesthetics in C. elegans, the potential involvement of T-channels in these effects
was not investigated [40]. For these reasons, our studies focused on rodents with reference
to humans and nonhuman primates.

2. Electroencephalographic Patterns during Unconsciousness and Anesthesia

Since the first description of electroencephalography (EEG), physiologically rele-
vant rhythms have been investigated during different behavioral states and are classified
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as: δ (0.5–4 Hz), θ (4–8 Hz), α (8–13 Hz), β (13–30 Hz), low γ (30–50 Hz), and high γ

(50–100 Hz) [3]. Sleep- and drug-induced unconsciousness share some similar mechanisms
and involve the same brain regions [41,42]. For example, during natural sleep and under
general anesthesia, the thalamocortical system can generate slow oscillations with high
amplitudes, and conversely, during conscious states, distinct, faster oscillations are domi-
nant [3,40,43]. The administration of a small dose of hypnotics, such as positive GABAA
receptor modulators (propofol, barbiturate, and etomidate), induces a state of sedation
with paradoxical excitation and an increase in β activity [44]. During the maintenance
period of general anesthesia in phase 1 (light state), a decrease in β and increase in α EEG
activity is dominant, while in phase 2 (intermediate state), both δ and α oscillations increase
similarly to slow-wave non-rapid-eye movement (NREM) sleep [44]. In phase 3 (deeper
state), burst-suppression activity is observed, and in phase 4, a largely flat-isoelectric EEG
pattern is seen [44].

2.1. Human Data

Many different classes of anesthetics exist within common clinical use, and those
of note include volatile anesthetics (such as sevoflurane), GABAA receptor modulators
(propofol), and NMDA antagonists (ketamine and nitrous oxide). During sevoflurane-
induced hypnosis, EEG and positron emission tomography (PET) analysis was used to
identify changes in cerebral blood flow and metabolic activity in frontal, parietal, and
thalamic regions [45]. While an increase in frontal β power occurs during sevoflurane-
induced sedation and persists despite the loss of responsiveness, conversely δ, θ, and α

band power remain unchanged (for a review, see [45]). It has been shown that frontal α
power does not consistently emerge in deep hypnosis with sevoflurane but can change
over the transition from wakefulness to sevoflurane-induced hypnosis [46–49]. With higher
sevoflurane concentrations, α power increases and can consist of sleep-spindle-like activity
during the maintenance phase of anesthesia [45]. On the other hand, specific EEG readout
during sevoflurane-induced hypnosis has been shown to include the domination of δ waves
and the existence of a burst-suppression pattern [45,49,50].

During propofol-induced hypnosis, coupling between low frequencies and amplitudes
of α rhythms were observed with the dominant slow oscillations similar to sleep during
unconsciousness in humans [51,52]. Additionally, it has been shown that in propofol-
induced general anesthesia before the generation of a burst-suppression pattern, the main
rhythm consists of α and δ band activity [53]. In humans with an implanted deep electrode,
an increase in α and decrease in γ power were observed in both deep cortical (ACC, anterior
cingulate cortex) and subcortical (sensory thalamus, periaqueductal gray) areas during
propofol-induced hypnosis [54]. Moreover, hypnotic state under propofol was marked
simultaneously by an increase in low-frequency EEG power (<1 Hz), the loss of spatially
coherent occipital α oscillations, and the appearance of spatially coherent frontal α rhythms
in humans [55].

Following ketamine-induced hypnosis in humans, a γ-burst EEG pattern was observed
with alternating slow-δ and γ oscillations [56]. Additionally, ketamine hypnosis showed
increased θ and decreased α/β oscillations [56].

Nitrous oxide (N2O) is usually used along with other anesthetics as an adjuvant agent
as general anesthesia cannot be achieved with N2O alone under normobaric conditions.
In healthy male volunteers, some studies reported a reduction in total EEG power with
N2O and a paradoxical reduction in δ oscillations [57]. Others reported an increase in θ, β,
and low and high γ band powers under sedative N2O concentration [58]. Interestingly, the
administration of a high dose of N2O in combination with inhalation anesthetics (sevoflu-
rane, desflurane, or isoflurane) was associated with dominant slow-δ oscillations [59].
The generation of these slow-δ rhythms could be due to the blockade of excitatory inputs
(NMDA glutamate projections) from the brainstem to the thalamocortical neurons [59].
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2.2. Animal Data

Similarly to human data, a low dose of sevoflurane in rats produced an increase
in β/low γ power in the cortex and central thalamus [60]. During sevoflurane-induced
loss of movement, β/low γ activity decreased with the generation of coherent slow-δ
oscillations [60]. At higher doses, sevoflurane induced the loss of the righting reflex with
the characteristic coherent slow-δ oscillations [60]. Additionally, the dominant slow waves
and the burst-suppression pattern was observed with the higher isoflurane concentration
in rats [61].

In rats, propofol-induced α oscillations synchronized between the thalamus and the
medial prefrontal cortex, with the development of coherent thalamocortical δ oscillations at
deep levels of hypnosis [62]. On the contrary, a sub-anesthetic dose of ketamine, an NMDA
antagonist, induced robust, spontaneous γ oscillations that were initially modulated by
slow oscillations (0.3 Hz) in monkeys [63]. In rodents, it has been shown that ketamine
increased power in the 30–50 Hz frequency band (low γ) with or without a rise in high γ

oscillations [64,65].

2.3. Summary

Slow-δ and α oscillations are dominant EEG signatures for propofol-induced anes-
thesia, which is a finding consistent with EEG patterns observed with other intravenous
anesthetics targeting GABAA receptors (for details, see [66]). Similarly, during sevoflurane-
induced anesthesia, slow-δ, θ, and α oscillations are predominant EEG signatures, consis-
tent with other volatile general anesthetics (desflurane and isoflurane) [66]. The similarities
between the EEG patterns of GABAA-receptor-targeting anesthetics, propofol, and volatile
general anesthetics seem to include the enhancement of GABAA-receptor-mediated in-
hibitory postsynaptic currents [66]. On the contrary, low γ oscillations that are interspersed
with slow-δ oscillations are the predominant EEG signatures of general anesthesia main-
tained with ketamine, a prototypical injectable general anesthetic and an NMDA receptor
antagonist [66]. It is worth mentioning that these changes are dose- and state-dependent
for each anesthetic/hypnotic agent.

3. T-Channels in Sleep, Hypnosis, and Anesthesia

It is well-known that T-type channels play a number of different and essential roles
in neuronal oscillation generated by thalamic neurons during NREM sleep [67,68]. Ad-
ditionally, the thalamus is required for slow-wave frequency tuning, which is highly
dependent on T-channels, during both NREM sleep and anesthesia [68,69]. It has been
shown that sleep behavior was not changed in animals that lacked a Cav3.1 channel in
cortical pyramidal neurons [70]. In contrast, the focal deletion of the CaV3.1 channel in
the rostral–midline thalamus caused frequent and prolonged arousal, with fragmented
and reduced sleep [70]. These results support the hypothesis that thalamic T-channels
play essential roles in sleep stabilization. Other studies demonstrated that mice lacking
the CaV3.1 isoform of T-channels exhibited a reduction in thalamic δ oscillations and
sleep spindles during urethane- and barbiturate-induced hypnosis [71,72]. Additionally,
CaV3.1 KO mice under ketamine and ethanol administration displayed attenuated cortical
and mediodorsal thalamic low-frequency oscillations (1–4 Hz) when compared to WT
mice [73]. Towards this end, it has been previously shown that CaV3.1 KO mice did not
have different ED50 for the loss of the righting reflex caused by volatile anesthetics (isoflu-
rane and halothane), but these mutant mice had significantly delayed onset of anesthetic
induction, as measured by the time to the loss of the righting reflex [74]. Surprisingly, in
the same study, authors reported that the duration of the loss of the righting reflex and
onset of anesthetic induction induced by injections of propofol was not different between
WT and CaV3.1 KO mice. This suggests that different classes of anesthetics may have dif-
ferent mechanisms of interactions with CaV3.1 channels and other molecular targets in the
thalamocortical circuitry. In agreement with these findings, our group reported that global
CaV3.2 KO mice did not have different ED50 for the loss of the righting reflex caused by
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volatile anesthetics (isoflurane) but had significantly delayed onsets of anesthetic induction
with isoflurane and not with propofol [75]. In contrast to these studies, the global deletion
of the CaV3.3 isoform of T-channels in mice per se did not affect the ED50 for the loss of
the righting reflex, but facilitated anesthetic induction caused by isoflurane [76]. These
findings point to the different roles of T-channel isoforms in anesthetic-induced hypnosis.

In vivo animal electrophysiological data showed that anesthetics have the ability
to modify thalamocortical signaling by altering the neuronal firing patterns of the tha-
lamic network at the cellular level by hyperpolarizing resting membrane potentials of
thalamic neurons [77,78]. It is known that most thalamic cells have prominent bursting
and not tonic activity during the administration of anesthetics, similar to different sleep
states [77,79]. It has been hypothesized that anesthetics may cause hypnosis because of the
hyperpolarization-induced blockade of the thalamocortical cells and networks essential for
consciousness [77,80]. It has been shown that the thalamus can generate spindle oscillations
(7–14 Hz) at resting membrane potentials (RMPs) of −60 mV and produce a slower δ rhythm
consisting of low-threshold spikes (LTS) followed by afterhyperpolarizing potentials dur-
ing natural sleep and hypnosis/anesthesia at a more negative RMP (<−65 mV) [81,82].
Previously, it was thought that for the generation of thalamic δ oscillations during the hy-
perpolarization of the neuronal membrane, both a hyperpolarization-activated (Ih) current
and T-current are required [81]. However, a recent paper showed the dominant role of
T-currents in δ rhythm generation and the supporting role of Ih currents in the amplification
and stabilization of δ oscillations [83].

3.1. Role of the CaV3.1 Isoform of T-Channels in Anesthesia Induced by Isoflurane

As mentioned earlier, studies with mice lacking CaV3.1 channels showed that the
mutant animals exhibited delayed induction with volatile anesthetics, including isoflu-
rane [74]. In addition, we and others revealed that CaV3.1 T-channels are inhibited by
prototypical volatile anesthetic isoflurane in both the sensory thalamus (TRN, VB) and
the nonspecific thalamus (CeM) at clinically relevant concentrations [37,84–86]. Previous
studies demonstrated the role of the CeM as the neuroanatomic site in mediating arousal
response during anesthetic administration in rats [28,33,34,87]. Our data confirmed that
under isoflurane anesthesia, neuronal hyperpolarization is capable of removing T-channels
from inactivation (de-inactivation), and the generation of bursting and oscillatory behavior
within the thalamocortical loop is facilitated [37]. Not only did isoflurane hyperpolarize
CeM neurons, but it inhibited both tonic and rebound burst-firing in the CeM neurons
in WT, but not CaV3.1 null animals. Similarly to previous studies regarding VB thalamic
neurons [88], while tonic firing was spared, CeM neurons from CaV3.1 KO animals did not
show rebound burst activity. Our recordings of local field potentials (LFPs) from the CeM
confirmed that under isoflurane-induced hypnosis, δ-frequency oscillations increased in
WT mice but not in CaV3.1 KO animals. The lack an increase in δ activity could be partially
because of the inability of isoflurane to hyperpolarize CeM neurons in mutant animals and
generate slow/δ oscillations ([37], Figure 2).

Previous studies reported that during NREM sleep, cortical power densities in low
frequencies, including the δ band, were decreased in CaV3.1 KO mice [71], but that the
cortical spindles were not altered [72]. While in our study, we did not investigate the
spindle component, we found increased power density in the spindle-like frequency range
(8–13 Hz) in the CeM in mice lacking a CaV3.1 channel during the quiet awake state
and under 1 vol%, but not under 2 vol% of isoflurane anesthesia [37]. However, note
that α oscillations induced by general anesthetics occur in a frequency range and spatial
distribution similar to sleep spindles (12–16 Hz), although there are important differences
between these two rhythms; for details, see [66].
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(LFPs) under isoflurane in WT and CaV3.1 KO animals.

Most clinically used general anesthetics and some metabolic abnormalities (profound
acidosis and hypercapnia) can induce a characteristic EEG pattern with a burst (high-
amplitude oscillations) and suppression (silenced cortical activity) phase. In our study, the
suppression to burst ratio (BSR) was higher during 1.4 vol% of isoflurane administration in
CaV3.1 KO animals than in control mice, indicating greater thalamocortical suppression in
the mutants (Figure 2, Table 1). Moreover, during 2 vol% isoflurane administration, the
main observed thalamic rhythm was in the δ frequency range during suppression mode in
the control, but not in the CaV3.1 KO mice [37]. Notably, this was not seen in cortical EEG
recordings. It is important to note that the difference between mutant and WT animals in
terms of the BSR disappeared with the higher isoflurane concentration (Table 1), which
suggests that different targets experience different effects at higher anesthetic concentra-
tions. As all anesthetics are promiscuous drugs, the direction and magnitude of response
in CaV3.1 KO mice may depend on the effects of that anesthetic on other targets, including
possible compensatory changes that exist in mutant animals.

Table 1. Suppression to burst ratio (BSR) in WT and CaV3.1 KO animals under isoflurane
(mean ± SEM).

Isoflurane Concentration WT CaV3.1 KO

1.4 vol% 0.10 ± 0.03 0.38 ± 0.07 1

1.6 vol% 0.37 ± 0.11 0.52 ± 0.06
1.8 vol% 0.64 ± 0.08 0.68 ± 0.05
2.0 vol% 0.78 ± 0.04 0.75 ± 0.05

1 Statistically significant WT vs. CaV3.1 KO mice (p < 0.05).

3.2. Role of the CaV3.1 Isoform of T-Channels in Nonspecific Thalamus in Hypnosis Induced by
Neuroactive Steroids

The idea that neuroactive steroids can have sedative/hypnotic properties has been
around since the introduction of alphaxalone [(3α,5α)3-hydroxypregnane−11,20-dione].
The neurosteroid analogs are potent GABA modulators that potentiate postsynaptic GABAA
currents, as well as inhibitors of voltage-gated calcium channels (reviewed in [89]). Neu-
roactive steroids mostly belonging to pregnane and androstane groups, such as the mixture
of alphaxalone and alphadolone (Althesin®), were prepared for clinical use as anesthetics
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in the 1970s, but due to the high incidence of anaphylactic reactions, they were with-
drawn from clinical use [90,91]. Today, alphaxalone is still used as an effective anesthetic
in veterinary medicine (Alfaxan®) and is currently undergoing clinical trials in humans
(Phaxan®) [92]. The ongoing use of alphaxalone continues to encourage the future develop-
ment of synthetic neurosteroids with hypnotic/anesthetic properties.

The ability of general anesthetics to induce the safe and reversible loss of consciousness
is of paramount importance; however, recent data from in vivo animal models have sug-
gested that most commonly used general anesthetics are neurotoxic (i.e., causing neuronal
apoptosis) to the developing mammalian brain and are implicated in causing cognitive
deficits later in life. Thus, further research into cellular mechanisms of action of currently
available anesthetics and the development of novel classes of general anesthetics for clinical
practice with reduced neurotoxicity is warranted. We recently reported that the applica-
tion of a neurosteroid analog (3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile (3β-OH)
in rats and rat pups produces a hypnotic effect without activating neuronal apoptosis,
unlike other general anesthetics [93,94]. In addition, we investigated the role of 3β-OH
on neuronal T-channels in the thalamus (TRN, CeM) and in sensory neurons of the dorsal
root ganglion (DRG) [36,95,96]. We found that 3β-OH, although it does not act on GABAA
receptors, it can still effectively induce hypnosis in rat pups [94] and adult mice [36]. This
suggests that 3β-reduced neurosteroids produce their hypnotic effects through alternate
mechanisms, partially as potent inhibitors of T-channels [36,96,97]. We showed that the
CaV3.1 isoform is important for the inhibitory effect of 3β-OH on the CeM neuronal ex-
citability [36]. Additionally, we confirmed that CaV3.1 T-channels are important for the
3β-OH-induced hypnotic development in vivo by measuring the loss of the righting reflex
in WT and mutant CaV3.1 KO animals. Animals that lacked the CaV3.1 T-channel isoform
had several-fold shorter durations and lower calculated median effective doses for the loss
of the righting reflex in comparison to control (WT) animals [36].

Bearing in mind the role of the CaV3.1 isoform in the generation of thalamic δ oscilla-
tions and sleep spindles during hypnosis and anesthesia, a reduction in total δ, θ and α

power in CaV3.1 KO mice under a hypnotic dose (80 mg/kg) of 3β-OH was expected [36].
Similarly to the isoflurane effect in CeM neurons, 3β-OH did not hyperpolarize CeM neu-
rons in the mutant mice, and a lack of 3β-OH-induced hyperpolarization can explain both
the differences in low-frequency oscillations between WT and CaV3.1 KO mice, and also
the lack of effect on LORR in the CaV3.1 null mice [36]. Furthermore, our findings revealed
for the first time that injection of 3β-OH at 80 mg/kg induced a hypnotic state in WT mice
(Figure 3), but was insufficient to do so in CaV3.1 KO mice [36]. The injection of a higher
3β-OH dose (120 mg/kg) induced an anesthesia state with the characteristic transient rise
in β-frequency oscillations during induction and a burst-suppression pattern at later time
points, suggesting deeper thalamocortical inhibition (Figure 3). A sex-dependent effect was
reported regarding neuroactive steroids, which had a more pronounced effect in female
animals, and in Figure 3, representative heat maps show greater suppression in female
mice with both the hypnotic and anesthetic dose of 3β-OH. Similar sex differences with
3β-OH were previously reported in rats (for details, see [93]).

In our previous studies, we established the role of voltage-gated calcium channels in
antinociceptive effects of an endogenous 5β-reduced neuroactive steroid molecule epipreg-
nanolone (EpiP, [(3β,5β)-3-hydroxypregnan-20-one]) in rats and mice [97,98]. Similarly to
3β-OH, we demonstrated that EpiP blocks T-type calcium channels in sensory neurons
without having an effect on GABAA currents [97,99,100]. Interestingly, we demonstrated
that T-channel isoforms contribute differently to EpiP-induced hypnosis in mice [101].
We found that EpiP is an effective dose-dependent hypnotic when given alone and that
it significantly lowers the isoflurane and sevoflurane concentration required to induce
immobility and hypnosis [101]. Additionally, after systemic EpiP injection in WT mice, we
observed a rise in total power in all EEG frequencies [101]. Similarly to changes observed
using the other known sedative/hypnotic drugs, with the administration of EpiP, we de-
tected a rise in relative δ and β power and a drop in relative γ power 30 min after EpiP
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administration. It has been shown that many different classes of general anesthetics first
induce sedation/hypnosis with a characteristic rise in β oscillation followed by a rise in δ

oscillations, which are dominant during deeper levels of anesthesia [66]. Consistent with
this idea, we found that CaV3.1 KO mice, but not CaV3.2 and CaV3.3 KO mice, exhibited
resistance to EpiP-induced hypnosis, as demonstrated by a shorter loss of righting reflex
duration and a significant reduction in δ oscillations when compared to the control WT
animals [101]. These data confirm results with 3β-OH, the synthetic neurosteroid analog
of EpiP, which showed a similar EEG signature to EpiP during hypnosis induced in WT
animals [36]. Interestingly, in the same study, we showed that when compared to WT mice,
the onset of EpiP-induced hypnosis was delayed in CaV3.2 KO mice, but not in CaV3.1 and
CaV3.3 KO mice. However, we observed that among all three T-channel isoforms, CaV3.1
had the greatest relevance with regard to EpiP-induced hypnotic effects. We speculate that
the distinct hypnotic effects of EpiP and isoflurane across all three T-channel isoforms are
due to their differential expression in thalamocortical circuitry.
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4. Conclusions

It is well established that the loss of consciousness under anesthesia is associated with
an increase in δ oscillations and that T-channels play an important role in δ oscillation
generation [60–62]. It was demonstrated that a lack of rebound bursting and the inability of
anesthetics/hypnotics to hyperpolarize neurons and to increase slow oscillations in CaV3.1
KO mice can likely explain their inability to induce hypnosis in mutant mice. Our data
are consistent with idea that the inability of anesthetics to hyperpolarize CeM neurons
in mutant mice is due to lack of a T-channel-dependent “window current”. At rest, a
T-type “window current” provides a steady influx of calcium ions near resting membrane
potentials and, in turn, depolarizes the neuronal membrane. In contrast, blocking a T-
channel-dependent “window current” causes neuronal hyperpolarization. The central
nucleus of the thalamus, as a part of the nonspecific thalamus, acts as a key hub in brain
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network connectivity alterations induced by general anesthesia and natural sleep in rodents
and humans. It has been shown that central thalamic stimulation during the hypnotic state
can reverse the neurophysiological signs of the unconsciousness. Due to the abundant
expression of Cav3.1 T-channels in the nonspecific thalamus and their regulation of its
excitability, we propose that the effects of various general anesthetics on thalamic CaV3.1
channels warrant consideration.
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