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Abstract

The complexity of the cellular and acellular players within the
tumor microenvironment (TME) allows for significant variation in
TME constitution and role in anticancer treatment response. Spatial
alterations in populations of tumor cells and adjacent non-
malignant cells, including endothelial cells, fibroblasts and tissue-
infiltrating immune cells, often have a major role in determining
disease progression and treatment response in cancer. Many current
standard systemic antineoplastic treatments target the cancer cells
and could be further refined to directly target commonly
dysregulated cell populations of the TME. Recent developments in
immuno-oncology and bioengineering have created an attractive
potential to model these complexities at the level of the individual
patient. These developments, along with the increasing momentum
in precision medicine research and application, have catalysed
exciting new discoveries in understanding drug-TME interactions,
target identification, and improved efficacy of therapies. While
rapid progress has been made, there are still many challenges to
overcome in the development of accurate in vitro, in vivo and
ex vivo models incorporating the cellular interactions that take
place in the TME. In this review, we describe how advances in
immuno-oncology and patient-derived models, such as patient-
derived organoids and explant cultures, have enhanced the
landscape of personalised immunotherapy prediction and
treatment of solid organ malignancies. We describe and compare
different immunological targets and perspectives on two-
dimensional and three-dimensional modelling approaches that may
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be used to better rationalise immunotherapy use, ultimately
providing a knowledge base for the integration of the autologous
TME into these predictive models.

Keywords: co-culture, immuno-oncology, immunotherapy, patient-
derived explants, patient-derived organoids, precision medicine

INTRODUCTION

For decades, surgical procedures coupled with
non-targeted conventional therapies such as
systemic chemotherapy and/or radiotherapy have
represented standard of care (SOC) for the
treatment of solid organ malignancies. However,
these options lack tumor-specific drug targets, can
be costly and do not always represent the most
efficacious course of treatment for an individual
patient.' To combat these challenges, precision
medicine aims to provide ‘the right treatment for
the right person at the right time in their clinical
management’ by incorporating information
garnered from genetic profiling to aid in the
identification of optimal therapy for the
individual. Despite this, there is a still an urgent
need to develop additional companion diagnostic
tools that can predict drug response while
considering the tumor heterogeneity specific to
each patient. In the last decade, improvements in
personalised patient-specific tumor models have
allowed for a deeper understanding of the
intricate relationship between the host immunity
and the tumor microenvironment (TME), thus
giving rise to an era of precision approaches to
guide cancer therapy.?

With the approval of ipilimumab for treating
metastatic melanoma in 2011,3 incorporation of
immunotherapy regimens for the treatment of
various cancers has become a viable therapeutic
option in addition to conventional
chemotherapies. When considering second-line
regimens in solid tumors, which progress
following SOC chemotherapy, immunotherapies
provide alternative mechanisms to target cancer
and, in some instances, provide durable long-term
responses.* Immune checkpoints are essential
interactions that regulate immune responses and
can be of a stimulatory or suppressive nature.>® In
a normal homeostatic capacity, these axes have a
major protective role in preventing
immunodeficiency and autoimmunity.” However,
many solid tumors express immune-suppressive
ligands, which are upregulated within the tumor
and immune cells of TME, allowing tumor cells to
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evade host immune defences.® Thus, the blockade
of these checkpoints with monoclonal antibodies
(mAbs) can restore or prolong the antitumor
immune response.® A small number of these mAbs
have been developed for clinical use as immune
checkpoint inhibitors (ICls). However, despite
durable clinical responses for subsets of
melanoma, lung and bladder cancer patients,
regimens of approved ICls remain largely
ineffective and difficult to predict as a
monotherapy.® "' Additionally, high levels of
permanent and irreversible immune-related
toxicity occur in a large subset of patients.'”
Clinical biomarkers and/or bench-to-bedside
in vitro prediction tools to direct the use of many
ICIs are currently lacking. Barriers in the
implementation and evaluation of companion
diagnostic biomarker tests that are used to stratify
patients for ICls (i.e. tumor cell expression of PD-
L1 and tumor mutation burden assessment)
suggest that much remains to be discovered to
fully understand ICl response. The development of
rapid patient-directed models incorporating intra-
and inter-patient tumor heterogeneity would
allow ICI in a more targeted and rational manner,
thus ameliorating the above issues and leading to
more favorable and durable responses.’?
Optimisation of personalised ICl therapy for
solid tumors may be performed by utilising
ex vivo platforms that most accurately replicate
the biophysical, chemical, and cellular TME to
model drug response at a patient-specific level.’
Inclusive of this is the co-culture of autologous
components such as serum,’ and non-neoplastic
host cells (including immune cells'® and other
stromal components such as endothelium and
fibroblasts) to achieve a more representative
model. Patient-derived organoids (PDOs), resected
tissue explants, bioprinting and organ-on-a-chip
models represent potential 3D platforms, which
more faithfully recapitulate the TME than current
2D methods do." Such developments have shown
promise but are still in their infancy. Besides
estimating checkpoint biomarker expression,
clinicians lack standardised assays that can be used
to inform treatment decisions. Thus, paramount
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to the success of these models is the
understanding of key functional immune
components in tumorigenesis. Herein, we discuss
whether the concept of a 3D immuno-oncological
model inclusive of autologous stromal and/or
immune interactions is a feasible and practical
approach to predict immunotherapy response to
guide precision treatment strategies in the
context of the current understanding of the
composition and modelling of the immune TME.

IMMUNE CELLS OF THE TUMOR
MICROENVIRONMENT

The TME is manifested by cellular and acellular
tumor-host interactions and has a role in
governing growth, metastasis, host evasion and
drug response.”” The TME is composed chiefly of
the stroma, angiogenic factors and the inhibitory
and stimulatory signals produced by infiltrating
immune cells involved in innate and adaptive
immunity'®'® (summarised in Figure 1). Additional
cellular components include the tumor-associated
fibroblasts, adipocytes  and angiogenesis-
promoting endothelial cells."”” Other contributing
TME factors include a range of interstitial fluid
pressures, shifting hypoxia gradients, metabolic
factors, nutrient starvation, immunosuppressive
cytokines, upregulated immune checkpoints and
mechanical stresses.'”” During tumorigenesis, the
TME is disrupted such that the cell-cell and cell-
stroma interactions are altered to activate new
signalling pathways, neovascularisation and
dysregulated cell death resistance mechanisms."’
Immunological changes affect not only tumor-
infiltrating lymphocytes (TILs) but also circulating
immune cells such as peripheral blood
mononuclear cells (PBMCs).?° Broadly, there are
two main categories of tumor-associated immune
cells:  tumor-suppressing or tumor-promoting
cells.?!

Tumor-suppressing cells

During tumor cell elimination, effector T cells,
including CD4" helper (T,) and CD8" cytotoxic
lymphocytes (CTLs), secrete cytokines IFN-y and
TNF-o0 to induce tumor cell death and recruit
other effector cells.?? In addition, activated Ty
cells produce the T-cell growth factor IL-2.??
Natural killer (NK) cells are recruited to tumor
cells via identification of downregulated or
altered MHC class | molecules.?* Additionally, CTLs
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and NK cells also secrete IFN-y and TNF-o, which
further potentiate apoptotic effects through the
release of granzymes and perforin.?® IFN-y and
TNF-o, alongside stimulatory factors such as IL-6
and GM-CSF, promote an inflammatory response
in the TME.?* CTLs, T, and NK cells, along with
phagocytic M1 ‘classically activated’ tumor-
associated macrophages (TAMs) and N1-polarised
neutrophils, and pro-inflammatory dendritic cells
(DCs) make up the majority of tumor-suppressing
immune cells present in the TME.?*

Tumor-promoting cells

In a state of favorable vascularisation, stromal
composition and chemotactic signalling, the TME
can recruit or induce cells into a state of tumor
promotion.® Regulatory T cells (Tregs) represent
an immunosuppressive subset of T, cells.?®
Identified by detectable levels of membrane-
bound CD25 and transcription factor forkhead
box P3 (FOXP3), Tregs have an important
immunosuppressive role in mediating immune
self-tolerance and resolving inflammation.?’” Tregs
perform this role chiefly by the production of
inhibitory molecules, and sequestering of IL-2-
and cytotoxic T-lymphocyte antigen 4 (CTLA-4)-
mediated suppression of antigen-presenting cells
(APCs).>® However, within the TME this
immunosuppressive action becomes problematic,
acting principally on effector T cells and thereby
disabling  their  antitumorigenic  effects.”®
Additionally, by inducing oxidative stress via the
depletion of amino acids, suppressing recruitment
of effector cells and promoting recruitment of
regulatory cells, myeloid-derived suppressor cells
(MDSGs) infiltrating in the TME can disrupt the
efficiency of host antitumor immunity and
increase metastatic potential.?® MDSCs also
promote tumorigenesis through the induction of
angiogenesis through secretion of proangiogenic
factors such as vascular endothelial growth factor,
matrix metalloproteinase 9 and prokinectin-2.%°
Studies in both murine and human cell models
have also shown that increased circulating levels
of cancer-associated MDSCs reduce ICI therapy
efficacy, most likely because of the general
suppression of T-cell function and recognition.3%3’
M2 (or ‘alternatively activated’) macrophages are
a class of macrophage that unlike the M1 subset
contribute to tissue repair and fibrosis via
induction of immune suppression and an anti-
inflammatory response.?’
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Figure 1. Cellular immunome of the tumor

microenvironment.

Solid tumors

establish both protumoral

and

immunosuppressive

microenvironments comprising complex combinations of various tumor-derived soluble factors and cytokines to sustain growth, support
tumorigenesis and dormancy and promote immune evasion mechanisms. Core to this is the cellular immune components of the tumor
microenvironment (TME), including intact, highly activated T-helper cells, cytotoxic T lymphocytes (CTLs), M1 tumor-associated macrophages
(TAMs) and natural killer (NK) subsets. Following the initiation of oncogenesis, immunological rejection of tumors is largely mediated by tumor-
infiltrating T cells. Chronic activation causes upregulation of exhaustion-associated molecules, including programmed death-ligand 1 (PD-L1),
cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and T-cell immunoglobulin and mucin domain-containing protein 3 (TIM3). This figure was

created with Biorender.com.

IMMUNE CHECKPOINTS OF THE
TUMOR MICROENVIRONMENT

Immune checkpoint inhibitors (ICls) are arguably
the most significant development in cancer
therapy over the past decade and function as key
inhibitory signalling molecules to attenuate the
robust antitumor immune responses in the TME.3?
ICIs are expressed on a wide range of cells and act
throughout the early phase of immune activation
and throughout the ongoing response to impair
T-cell activation.?®* The most widely investigated

ICIs currently in immuno-oncology are PD-1
(CD279), PD-L1 (CD274, B7-H1) and CTLA-4
(CD152). Immune checkpoints are widely

expressed on the surface of APCs, tumor cells and
TILs and function as immunosuppressive receptors
to induce CTL exhaustion and anergy.>* Others,
including T-cell immunoglobulin and mucin
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domain 3 (TIM-3), lymphocyte activation gene 3
(LAG-3), T-cell immunoreceptor with Ig and ITIM
domains (TIGIT), V-domain Ig suppressor of T-cell
activation (VISTA), and co-stimulatory molecules
such as the TNF receptor/TNF superfamily
members OX40 (CD134) and OX40 ligand (OX40L;
CD252), are emerging clinical drug targets in
several clinical settings (Figure 2). Approximately
two thirds of all oncology trials are dedicated to
T-cell-targeting immunomodulators (Table 1), and
there are more than 3000 ongoing clinical trials
(https://clinicaltrials.gov). CTLA-4 and PD-1/PD-L1
in particular have been found to be highly
expressed in a wide range of malignancies and
have subsequently attracted the most interest to
date.? Currently, there are a handful of FDA-
approved ICls targeting the CTLA-4 and PD-1/PD-
L1 axes in various cancers, with several novel
mAbs currently being explored for clinical efficacy
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Figure 2. Immune checkpoints at the tumor-immune axis displaying checkpoint ligands and clinically relevant inhibitors. Inhibitors with full
United States Food and Drug Administration (FDA) approval are indicated in green boxes. BMS, Bristol Meyers Squibb; BSR, British Society for
Rheumatology; CD, cluster of differentiation; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; LAG-3, lymphocyte activation gene 3; MHC I,
human major histocompatibility complex Il; OX40, tumor necrosis factor receptor superfamily, member 4; OX40L, OX40 ligand; P2, Phase Il
clinical trial; P3, Phase Il clinical trial; PD-1, programmed death-1; PD-L1, programmed death-ligand 1; TIGIT, T-cell immunoreceptor with Ig and
ITIM domains; TIM-3, T-cell immunoglobulin and mucin domain-containing 3; VISTA, V-domain immunoglobulin suppressor of T-cell activation;
VSIG-3, V-set and immunoglobulin domain-containing 3. This figure was created with Biorender.com.

(Figure 2, Table 1). While IClIs provide long-lasting
efficacy for a subset of patients, a large majority
do not respond to treatment and experience
adverse side effects.>® An urgent clinical need
necessitates the development of novel predictive
biomarkers and personalised ICl testing in patient-
derived tumor cells. Below, we review current and
novel immune targets that are emerging in
clinical and preclinical research.

CTLA-4

CTLA-4 is a B7/CD28 family membrane
glycoprotein constitutively expressed on T cells
and is a potent negative regulator of the
antitumor T-cell response.®” Following TCR
activation, CD28 on the cell surface of T cells
binds to CD80 (B7-1) or CD86 (B7-2) on APCs,
resulting in T-cell maturation and subsequent
immune function.?’” CTLA-4, being structurally
homologous to CD28, competes for CD80 at a
higher affinity when trafficked to the cell
membrane  from  cytoplasmic  microvesicles,
impairing IL-2 production and preventing T-cell
maturation and causing immune suppression.®’
Treg cells constitutively express CTLA-4, which acts
to promote immunosuppression in the TME.?® The
first-in-class monoclonal anti-CTLA-4 antibody
ipilimumab (Yervoy; Bristol Myers Squibb) was the
first ICI to gain FDA approval®® and has been
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shown to induce durable responses, allowing a
subset (16-20%) of advanced stage IV melanoma
patients to achieve stable disease.>°

PD-1/PD-L1

Shortly after the discovery of CTLA-4, Honjo
et al.*® identified a 288 amino acid type |
transmembrane  apoptosis-mediating  protein,
which they characterised as programmed death-1.
The binding of PD-1 on T, B and NK cells to its
ligand, PD-L1/PD-L2, found most commonly on
DGs, epithelial cells and macrophages, lowers the
threshold for apoptosis and ultimately results in T-
cell depletion through T-cell receptor (TCR)-
mediated PI13K/Akt/Ras—-MEK/ERK signalling
pathways.*' PD-L1 is detectable on the surface of
many tumor types, including and not limited to:
colorectal, bladder, breast, melanoma and lung
cancers.*” Upregulation of this axis has been
implicated in many malignancies and is perhaps
the most well-studied immune checkpoint.**4*
Owing to increased interest in the field, several
immune checkpoints have been uncovered
through revisiting the PD-1/PD-L1 axis in relation
to other regulatory pathways. To date,
approximately seven PD-1/PD-L1-targeting drugs
are approved for over nine cancers (Figure 2),
with many other inhibitors currently under
development and or in clinical trials (> 1500 at
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current standing; https:/clinicaltrials.gov). Both
anti-PD-L1 agents, durvalumab (Imfinzi;
Medimmune/AstraZeneca), avelumab (Bavencio;
Merck & Pfizer) and atezolizumab (Tecentriqg;
Genentech), and anti-PD-1-targeting agents,
nivolumab (Opdivo; Bristol Myers Squibb) and
pembrolizumab (Keytruda; Merck Sharp & Dohme
Corp), have shown durable responses and paved
the way for treatment of many unresectable,
mismatch repair-deficient (dMMR)/microsatellite
instability-high (MSI-H) tumors, or cancers that
have progressed following first-line platinum-
based chemotherapy or chemoradiation regimens
(in the case of non-small-cell lung carcinoma
(NSCLC) with PD-L1 expression > 1%).4>4¢

TIM-3

TIM-3 is widely expressed and can be detected on
CTLs, Tregs, B-cells NK cells, DCs, TAMs and tumor
cells*” and promotes T-cell exhaustion through
antagonism of TCR signalling and expansion of
MDSCs within the immunosuppressed TME.?* The
TIM-3/Gal-9 axis is the most widely studied and is
known to induce apoptosis through Ca®" influx.*®
Thus, the blockade of this pathway can result in
restored immune functionality in the TME. TIM-3
is distinctly perturbed among the CD8'PD1* T and
Treg cells within the tumor TME,*® and the
blockade in a preclinical setting has been found
to be effective in models of pancreatic cancer,
colorectal cancer and NSCLC.*? It has been
previously demonstrated that resistance to anti-
PD-1/PD-L1 treatment correlated with an adaptive
upregulation of alternative immune checkpoints,
including TIM-3.>° Consequently, promising results
have been seen with anti-TIM-3 mAbs used in
combination with anti-PD-1/PD-L1 mAbs and
oncolytic viral therapy in lung cancer.’!
Approximately 15 companies are developing TIM-
3-targeting antibodies, with Novartis
(sabatolimab) the only one expecting Phase IlI
trial outcomes in early 2027 in the clinical setting
of high-risk myelodysplastic syndrome and chronic
myelomonocytic leukaemia-2 (STIMULUS-MDS2;
NCT04266301).

LAG-3

LAG-3 (CD223) is structurally homologous to CD4
and is expressed on peripheral Tregs, CTLs, B cells,
NK cells and DCs.>? LAG-3 is also highly expressed
on CD8" TILs, and it has been proposed that LAG-
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3 may be used as an indicator of tumor prognosis
and as a target for ICl therapy.>® While the exact
mechanism of LAG-3 is to be fully elucidated,
studies show that this molecule interacts with
major histocompatibility complex (MHC) class Il on
APCs at a higher affinity than CD4 (~40 times
higher) and suppresses T-cell activation and
cytokine production, maturation and expansion.>?
Conversely, it is also expressed by plasmacytoid
DCs, which in turn express many of the immune
checkpoints that exhausted T cells interact with.>*
Notably, dual blockage of LAG-3 (using
relatlimab) and PD-1 (using nivolumab) was
shown to have effective synergism and higher
clinical efficacy in a subset of melanoma patients
with progressive disease who previously showed
no durable response to anti-PD-1/PD-L1
monotherapy.>® However, further randomised,
double-blinded Phase I/l trials are required to
assess whether combining LAG-3 blockade with
other ICIs leads to increased incidence and
severity of irAEs.

TIGIT

TIGIT is a next-generation emerging target in
immune checkpoint therapy. Expressed
predominantly on activated CTLs, Tregs and NK
cells, TIGIT binds to either poliovirus PVR or its
homologue nectin-2 expressed on APCs and tumor
cells to attenuate T-cell-mediated pattern
recognition and NK-mediated cytotoxicity.®
Expression of TIGIT has since been observed in
NSCLC, urothelial, melanoma, gastric, colorectal,
breast and prostate cancers.**>’ Not unlike TIM-3,
TIGIT has also been found in many cases to be
adaptively upregulated in patients treated with
anti-PD-1/PD-L1 and is potent enough to abrogate
CD8" T-cell and NK cell cytotoxicity.>® In vivo, this
occurs through the suppression of CD8" T-cell
cytotoxicity via IL-10 production.®® TIGIT" Tregs,
when compared to Tregs lacking expression,
suppress the function of Th1 inflammatory cell
types through distorting CD4" T-cell response
towards a Th2 profile.>® Favorable results have
been achieved in a preclinical setting using a co-
therapy of anti-PD-1/PD-L1 and anti-TIGIT.*®®° The
anti-TIGIT mAb tiragolumab is currently in Phase
Il clinical trials in combination with atezolizumab
and carboplatin/etoposide in chemotherapy-naive
small-cell lung cancer (SKYSCRAPER-02;
NCT04256421) (Table 1). Alongside these trials,
randomised investigation into tiragolumab and
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atezolizumab combinations in the clinical setting of
early-stage NSCLC (SKYSCRAPER-03; NCT04513925),
advanced oesophageal cancer (SKYSCRAPER-07;
NCT04543617) and metastatic oesophageal cancer
(SKYSCRAPER-08; NCT04540211) is currently
recruiting.

VISTA

Currently, VISTA represents one of the more
recent immune checkpoints implicated in
infiltrated—inflamed TMEs.?> Preliminary studies
indicate VISTA negatively mediates immune cell
quiescence,®' achieved principally by interaction
with  V-set and immunoglobulin  domain-
containing 3 (VSIG-3). In the excessively acidic
environment caused by lactic acid production
within the TME, VISTA selectively binds with
PSGL-1 to suppress T-cell activity.®? Recent reports
show that VISTA is predominantly expressed on
myeloid lineage cells, Tregs and naive T, cells —
where its potential as an immunotherapy target
is becoming increasingly  appreciated.®®
Additionally, VISTA is also expressed, albeit to a
lesser extent, on monocytes, neutrophils and NK
cells.®” VISTA has been documented to be highly
overexpressed in some genitourinary cancers and
high-grade  serous ovarian cancer, when
compared to normal tissue.®*®> Mulati et al.®®
discovered that by generating VISTA-knockdown

variants of human ovarian and endometrial
cancer cell lines (COV504 and HECIA,
respectively), T-cell proliferation and cytokine

secretion  were  markedly restored. The
development of pH-selective VISTA antibodies in
immune checkpoint-based cancer therapy is
currently still unknown; however, anti-VISTA
mAbs (e.g. the novel SNS-101 anti-VISTA mAb;
Sensei Biotherapeutics, Inc.) may potentiate anti-
PD-1/PD-L1-induced antitumor immunity. Given its
important role in regulating innate and adaptive
immune responses, VISTA is a promising target
for immunotherapeutic intervention.

IMMUNE-ACTIVATING CHECKPOINTS

0X40/0X40L axis

The OX40/0X40L co-stimulatory axis represents
the next generation of immunotherapies, which
are aimed at reshaping the antitumor immune
TME. OX40L is expressed on many APCs such as

© 2022 The Authors. Clinical & Translational Inmunology published by John Wiley & Sons Australia, Ltd on behalf of
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DCs, macrophages and activated B cells but is also
expressed on tumor cells, endothelial cells and
smooth muscle cells.?® Its binding to OX40 serves
as a co-stimulatory signal to induce cytokine
production, T-cell survival, clonal division and
development of memory T cells.®® OX40/0X40L
signalling has been shown to abolish Treg
immunosuppressive  functions, reduce Foxp3
expression and promote the proliferation of CD4"
and CD8" T lymphocytes.t’ Like CTLA-4, OX40 is
upregulated in TILs when compared to its very
low basal expression in peripheral blood
lymphocytes.®® The literature regarding the
expression of OX40/0X40L in tumors is still
relatively unclear. Kashima et al.°® determined
that high serum levels of OX40 and OX40L in
NSCLC were associated with poor prognosis,
although high levels of OX40L were associated
with improved survival following treatments with
ICls. In the TME, secreted OX40L from cancer-
associated fibroblasts (CAFs) under stress
conditions can facilitate cisplatin resistance and
inhibition of apoptosis of lung adenocarcinoma
cells  through activation of NF-xB/BCL-XL
pathways.®® However, other reports indicate that
in different contexts, high OX40 expression is
associated with increased CD4" TIL infiltration and
a favorable immune profile.”®’" In oral squamous
cell carcinoma (0OSCC) and hepatocellular
carcinoma, high OX40 is associated with advanced
disease,”®”" possibly reflecting the immune-
exhausted, immunosuppressive TME. Similarly,
Lecerf et al.”? showed that approximately 85% of
head and neck squamous cell carcinoma (HNSCC)
tumors showed high expression levels of 0OX40/
OX40L, where OX40L mRNA expression in the
context of low PD-1 expression was associated
with high recurrence rates. Both OX40 and OX40L
are overexpressed in muscle invasive bladder
tumors, where the risk of recurrence in non-
muscle invasive bladder cancer is reported to be
approximately twofold higher with OX40L mRNA
overexpression.’? Clinically, humanised
monoclonal agonists targeting the OX40/0X40L
axis have shown promise by decreasing
intratumoral OX40" FOXP3" cells to enhance
adaptive immunity in the solid tumor TME.”
Combining conventional immune checkpoint
inhibition of CTLA-4 and PD-1 may enhance the
Treg depletion within the tumor and further
potentiate the CD4" and CD8" antitumor
immunity (Table 1).
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In vitrolex vivo replication and preservation
of the TME

The success of a prescribed immunotherapy relies
on an understanding of the complex network of
immune evasion mechanisms intrinsic to the TME.
Although ICls are increasingly central to regimens
prescribed in advanced recurrent solid tumors, our
understanding of the rational use of the various
therapeutic options to provide the best clinical
outcome is still lacking. Additionally, only a small
subset of patients has a meaningful clinical
response to ICIs and some tumor types remain
completely refractory or develop treatment
resistance. This leads to one of the greatest
challenges in the field of precision
immunotherapy, which is the development of
immune-intact, robust, reproducible and cost-
effective immunotherapy testing platforms to
model treatment responses. Such a platform
should be one that incorporates cells homologous
to the host TME, models the immunosuppressive
features of the TME and retains cellular viability
over drug treatment duration. Advances in
biotechnology have made patient material more
accessible through patient-derived organoid (PDO)
generation and tumor tissue in explant cultures.
Despite well-established and novel
immunotherapies being approved and employed

NJ Mackenzie et al.

in the treatment of various solid tumors, in vitro
and ex vivo models may be able to replicate
patients’ immune TME, predict personalised
responses to ICls and provide predictive
information on the safety of immunotherapies
(current models are shown in Figure 3 and
summarised in Table 2). In the last few years,
there has been progress in developing
microphysiological in vitro systems to tease apart
preclinical immune responses. Here, we summarise

the major models used to investigate ICI
responses, including their advantages and
disadvantages and incorporation of TME
elements.

CO-CULTURE MODELS FOR PREDICTING
IMMUNOTHERAPY RESPONSE

Cell line models of cancer

Immortalised cell lines derived from human
cancers remain one of the most standard and
well-established  preclinical tools for the
evaluation of cancer cell activity and drug
efficacy.”> Cell lines are relatively low cost,
common and easily manipulated to yield large
supplies of experimental material, can be used to
identify novel drugs and are easily imaged using
standard microscopy techniques.”® 2D cultures are

MICROFLUIDIC ORGANOID PRIMARY
CULTURE CO-CULTURE TISSUE ALI
P

Primary cancer
cells/stroma

Associated
epithelia

Whole blood
enriched for
PBMCs + ICI

Tumor slice

- Basal media

ICI/Chemotherapy
drugs

Vacuum

+
ICl/Chemotherapy Activator

drugs molecules
PBMCs (ie.1L-2)

Figure 3. Representation of patient-derived tumor-immune co-cultures. A cross section of a microfluidic chamber is displayed, showing primary
tumor cells injected into a chamber with whole blood in the adjacent chamber. Pores between these chambers facilitate movement of material
across the epithelium. Free floating, or suspended PDOs and PDXs are commonly cultured in an organoid medium with chemo- and
immunotherapeutic drugs and immune cell activator molecules such as IL-2. Alternatively, tissue slices or explants may be directly cultured in a
basal media such as RPMI alongside chemo- and immunotherapeutic drugs to create an air-liquid interface, like what is the case in many organ
niches. ALl, air-liquid interface; ICI, immune checkpoint inhibitor; IL-2, interleukin-2; PBMCs, peripheral blood mononuclear cells; and PDO,
patient-derived organoid. This figure was created with Biorender.com.
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subject to relatively uniform medium perfusion,
and thus are exposed to supraphysiological levels
of growth factors, nutrients and oxygen, which
need to be physically replaced every few days. As
such, few 2D models are employed to tease apart
preclinical response to immune-targeting agents.
Employing a simple 2D immune cell co-culture to
model  immunosuppression, Zheng et al.”’
demonstrated that co-culture of breast cancer cell
lines with anti-CD3/CD28-stimulated healthy
donor PBMCs significantly decreased T-cell activity
as indicated by reduced INF-y and IL-2 secretion in
cells with high PD-L1 levels. Flexible label-free
biosensor systems such as the xCELLigence system
have been used to provide real-time quantitative
assays to monitor effector cell:target cell
interactions. Cerignoli et al.”® developed a real-
time potency assay employing sensitive impedance
measurements to directly investigate PC-3 prostate
cancer cell cytotoxicity changes when co-cultured
with healthy donor PBMCs. Demonstrating the
utility of this model to quantitively assess
immunotherapeutic approaches, anti-PD-1
treatment in combination with prestimulated
PBMCs showed increased PC-3 cytotoxicity.”®
However, because of a poor recapitulation of the
TME and cellular drug response, the
aforementioned approaches hold limited
potential as a tool to provide efficient patient-
derived in vitro model screening. While primary
cells can be developed from the patient’s tumor,
the field is moving away from this method of
culture as this application requires extensive
lineage testing, considerable time and materials.
Given their reproducibility and ease of
establishment, 2D co-cultures hold most utility
during the research and development phases of
immunotherapeutic approaches.

Patient-derived organoids

The increasingly widespread adoption of three-
dimensional (3D) cell line models (spheroids) has
been considered an important improvement from
conventional 2D cultures. Subsequently, PDO
technology has gained popularity as an effective
and rapid 3D tool that better retains the tumor-
specific genetic and molecular diversity of the
original host.”®#% They differ from established cell
line spheroids by the retention of multiple organ-
specific cellular populations and stem cell
components to form more complex and
personalised milieu that more closely simulates

2022 | Vol. 11 | e1400
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the solid tumor mass.2"®? Compared to 2D and 3D
cell line-based spheroids, PDOs better reproduce
many tumor features, including hypoxia, nutrient
diffusion, metabolism (i.e. decreased glucose
uptake) and the eventual formation of an
immunosuppressive  central  necrotic  core.®
Additionally, PDOs offer more efficient cell-cell
and cell-matrix interactions, influencing cell
phenotype, signalling pathways, adhesion and
overall mechanosensing.®’ PDOs are compatible
with high-throughput assays that in turn rapidly
provide quantifiable and clinically relevant data.?*
Additionally, PDOs can be established from a
small sample of tissue such as that obtained in a
fine-needle biopsy, allowing potential generation
from small cancers, or those in which sampling is
limited.°

Patient-derived organoids that can retain host-
derived immune cell subsets and organoid-based
propagation en bloc with immune stroma are a
valuable candidate for holistic approaches to 3D
immuno-oncology TME modelling. However, these
models historically are prohibited by host-derived
immune cells rapidly losing viability before studies
can explore patient responses. Pancreatic ductal
adenocarcinoma PDOs cultured with autologous
PBMCs and CAFs have been found to retain
certain elements of stromal influence in the
TME.® Replicative of the native TME, activation
of myofibroblast-like CAFs and tumor-influenced
T-cell infiltration was able to be observed in this
model.2> PDOs inclusive of autologous CD3" and
CD56" TILs derived from lung adenocarcinoma,
clear cell renal cell carcinoma and melanoma were
able to be retained in a collagen gel matrix-
embedded air-liquid interface (ALI) cultures.®®
Neal et al.®® demonstrated that PDOs derived
from surgical resections (shown to retain both
epithelial cell myofibroblasts and syngeneic TILs)
could be isolated with the original T-cell receptor
spectrum  preserved  in vitro. Interestingly,
myofibroblast populations decreased following
passage in PDOs generated from kidney and colon
tumors, a feature not noted in PDOs derived from
NSCLC. Immunofluorescence and fluorescence-
activated cell sorting analysis showed that NSCLC,
clear cell renal carcinoma and melanoma retained
CD8', CD4" (T,) T cells, CD14" or CD69"
macrophages, NK, NKT and B cells. Addition of
IL-2 was effective at preserving the endogenous
TIL subsets, which had total life of approximately
1 month in organotypic media. Critically,
anti-PD-1 monotherapy (nivolumab) was able to
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effectively activate the PD-1-expressing CD3" T-cell
compartment and induce significant cytotoxicity
in PDO cultures®® In a feasibility study,
Votanopoulous et al.?” described the ‘immune
enhanced patient organoid’ model, a patient-
specific symbiotic co-culture model pairing
patient-matched lymph node specimens or PBMCs
with patient-derived melanoma PDOs. Their
hydrogel-based system showed that embedding
autologous tumor and lymph node cells together
generated personalised immune-competent PDOs
that recapitulated clinical responses to ICls
targeting PD-1 and CTLA-4 in 6 of 7 patients.?” In
our experience, lymph nodes are not commonly
available in surgical specimens and represent a
major limitation to the adoption of models such
as these.

Co-culturing with autologous peripheral blood
cells enables the investigation of response of
endogenous TILs. Dijkstra et al.2® demonstrated
that by culturing PDOs with PBMCs, it is possible
to induce the expansion of tumor-reactive T cells.
PDOs generated from mismatch repair-deficient
NSCLC and colorectal cancer cultured with
autologous PBMCs resulted in a significant
increase in CD8 expression in T-cell populations.®®
When combined with PD-1 blockade, an increase
in PDO-induced IFN-y secretion was observed,
indicating the usefulness of this platform for the
examination of T-cell-mediated killing of cancer
cells. As PDOs can be sustained for multiple
weeks, it is evident from studies investigating
PDOs derived from NSCLC and melanoma that
each routine passaging varies the levels of stromal
myofibroblasts, PDO TILs and expression of
smooth muscle actin and vimentin further from
the tumor original state.®® Whether this is
common between all tumor types is something to
expand upon. Furthermore, despite being more
faithful models than cell lines, PDOs lack
functional vasculature and it is likely that not all
cell types of the TME are present in any particular
organoid  culture.®  Apart from  CRC,
standardisation or reproducibility of these models
—including the composition of growth media and
cytokine cocktails—has not been reached for most
tumor types. The few studies to date have only
incorporated pembrolizumab, nivolumab (anti-PD-1)
and ipilimumab (CTLA-4) therapy, and other ICls
or combination therapies with SOC therapies have
only been described for feasibility studies in
melanoma.®” Applications of cancer immunology
in these models are becoming more popular as
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optimised methods and tools are increasingly
published.

Patient-derived explants

Organotypic tumor explants are useful preclinical
models to rapidly assess the physiological
properties of primary tissues in an ex vivo
setting.”® Explants are most easily generated from
tissue obtained from surgical procedures. Tissue is
then processed into slices, usually in the range of
100-400 pm, via manual processing or
fragmentation using a device such as a vibratome
or tissue chopper.?° Tissue explants can be directly
cultured in a defined medium (which may contain
autologous serum) with autologous components
such as PBMCs and are typically fixed in formalin
prior to paraffin embedding for subsequent
histopathological and immunohistochemical
analyses.”’ Currently, the use of tumor tissue
explants for immunotherapy testing is lacking;
however, their potential usefulness in predicting
clinical outcomes is becoming increasingly
recognised. Ex vivo metastatic colorectal cancer
tissue slices taken from a small cohort of patients
demonstrated clinically relevant sensitivity to SOC
agents and pembrolizumab (as measured by
treatment-induced  cell  death).””  Explants
obtained from human primary breast cancer have
also been evaluated for immunotherapy
prediction.”® Transcriptomic analysis of breast
cancer explants cultured with PD-1, PD-L1 and
TIM-3 inhibitors showed an upregulation in
expression of pathways pertaining to antitumor
immune response.”® These data also revealed that
the blockade of some immune checkpoints can
induce upregulation of others as a compensatory
measure (including of ICOS, CTLA4, BTLA and
OX40L in response to anti-PD-L1 and anti-TIM3
treatment),®® suggesting that the explant culture
technique may be used to test the sequential
combination of immunotherapies and other SOC
therapies. NSCLC tissue slices cultured with
autologous PBMCs reveal a revitalised activation
of innate immunity pathways.** Overall, the utility
of explants as a tool for precision immunotherapy
is in its infancy but warrants deeper investigation.
Preserving T-cell function for an extended period
of time continues to be a challenge, with studies
indicating a rapid drop in CD3" cell viability after
about 3-4 weeks.”®> Tissue slices have not been
used widely for immunophenotyping and immune
checkpoint discovery beyond murine models and
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thus represent an opportunity to incorporate
clinical tumor samples in this functional testing
platform.

Emerging preclinical immunotherapy
prediction models

Microfluidics-based ‘organ-on-a-chip’ (also known
as microphysiological systems) are favored next-
generation platforms for modelling drug response
in an in vitro environment. Such systems may be
precisely manipulated to better recapitulate the
spatial location of the cells, vascular regions and
biophysical forces in the TME (Figure 3).
Additionally, important factors for immuno-
oncological investigations such as chemokine and
oxygen rates can be precisely controlled. These
chips are most commonly composed of
polydimethylsiloxane (PDMS) and glass and
contain many microchannels and compartments
that can be subject to minute and accurate fluidic
and biochemical adjustments.’® The control over
these parameters, alongside design choices in
channel architecture and cellular contents, allows

2022 | Vol. 11 | e1400
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for many organs and niches of the human body
to be recapitulated to a potentially high degree
of accuracy. The transparent substrates used also
have an ideal optical index that is advantageous
for standard microscopy imaging. In an immuno-
oncology setting, organs-on-a-chip have been
used to model anti-PD-1/PD-L1 therapy in a small
number of malignancies.’” Cytokine profiling of
metastatic melanoma patient-derived xenografts
(PDXs) and PDOs combined with autologous
myeloid and lymphoid populations in a short-term
3D microfluidic culture has demonstrated the
enhancement of response to anti-PD-1 when co-
treated  with  anti-TBK1/IKKe inhibitors.®®
Furthermore, Cui et al.®® described a patient-
derived ‘glioblastoma-on-a-chip’ model to assess
inhibition of PD-L1 and CSF-1R across various
molecular subtypes of glioblastoma (GBM). It was
discovered through this platform that in
comparison with proneural GBM, glioblastomas
affecting the mesenchymal niche attracted
significantly higher levels of CD163" M2 TAMs and
PD-1/PD-L1 and responded better to ICI
treatment.®® The organ-on-a-chip model is yet to
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fully realise its translational and clinical potential;
however, initial promising results, combined with
informed chip and assay optimisation, will
undoubtedly lead to a greater impact in future.®’

Towards the integration of immunotherapy
co-culture precision medicine tools

By capturing individual patient diversity, 3D
models that also retain TME elements provide
platforms to explore patient drug responses in
clinical settings where immunotherapy is an
option. Such an assay would be used alongside
current clinical, biomarker-supported therapies,
and within a clinically relevant time frame.
However, the translation of these model systems
into clinical settings is complex. As discussed
above, each personalised model has benefits that
may provide important information as a
companion diagnostic assay during a patient’s
clinical management. Immune-retaining PDOs and
novel bioengineered constructs could potentially
serve as important tools to direct treatment
choice at the bedside, following tumor recurrence
and ancillary to clinical trials. Furthermore, in the
setting of ineligibility for chemotherapy or
unresectable tumors, it is paramount that patient-
derived immune-encompassing models are
developed towards clinical utility to help direct
immunotherapy alongside ICl pathology screening
(Figure 4). To instruct patient care, a number of
significant hurdles will need to be addressed,
including the standardisation and cost of patient-
derived immune co-cultures (i.e. media
formulations and use of biological and synthetic
matrices), optimised clinical workflows to utilise
surgical resections (i.e. ethics and clinical
partnerships with industry), increasing the
establishment rates (i.e. increasing PDO success
rates) and refinements on the speed and quality
of sample processing pipelines to culture-to-drug
treatment workflows (Figure 4). Additionally, a
lack of standardised quality control and drug
treatment endpoint analysis methods currently
prevent integration into the clinical space. As
more studies incorporate TME components,
producing larger-scale and higher-resolution data,
improvements in automation and context-driven
mathematical modelling of the tissue milieu will
help address these key significant hurdles and will
allow randomised controlled trials to evaluate the
usefulness of 3D models as clinical tools. In the
coming vyears, the development of novel
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technologies and refinement of the culture
parameters for these models have the potential to
impact immunotherapy rationalisation, and thus
the approach to treating cancer and the way
patient care is personalised (Table 3).

CONCLUDING REMARKS

The landscape of 3D tissue recapitulation is in a
state of rapid innovation and optimisation and
has provided translational immuno-oncology with
novel platforms for therapeutic screening. In
addition, the theory of culturing tumor-derived
material with interfacing components of the TME
niche has great potential to advance the
personalisation of effective anticancer treatment.
Short-term immuno-oncological co-cultures have
been fruitful, but long-term modelling continues
to be a challenging prospect. Issues surrounding
viability of both the tumor model and immune
cells (or other autologous cellular components)
become increasingly prominent with time. It is
important that efforts to increase viability of
these components alter phenotypic properties of
the recapitulated TME as little as possible.
Cytokines such as IL-2, IL-6 and GM-CSF can be
incorporated for the preservation and expansion
of immune cells, and replenishing culture media
will offer a degree of protection from non-specific
cell death; however, these will require further
validation of robustness in the long term. It is also
evident that a greater majority of studies focus on
T-cell-specific immune checkpoint interactions
despite incorporating a wider population of
immune cells. Further investigation is required on
the therapeutic implication on the immune
checkpoints of myeloid-derived cells and non-T-
lymphoid cells (NKs) in co-culture. Beyond this, co-
cultures could potentially be used to rapidly
compare immunological responses between
multiple metastatic sites in individual patients
within a contained setting. Organ-on-a-chip
models also have significant potential to model
the cancer-immune axis beyond the TME and
examine aspects such as the contribution of
lymphatic and  mesenchymal  components.
Continued optimisation of 3D immunological co-
culture techniques will influence the landscape of
translational precision immunotherapy, enabling
new discoveries and providing opportunities to
develop personalised, functional testing platforms
that can predict treatment efficacy to improve
patient outcomes.
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