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Abstract: Food-derived bioactive peptides are of great interest to science and industry due to evolving
drivers of food product innovation, including health and wellness. This study aims to draw attention
through a critical study on how bioinformatics analysis is employed in the identification of bioactive
peptides in the laboratory. An in silico analysis (PeptideRanker, BIOPEP, AHTpin, and mAHTPred)
of a list of peptides from goat casein hydrolysate was performed to predict which sequences could
potentially be bioactive. To validate the predictions, the in vitro antihypertensive potential of the
five peptides with the highest potential was first measured. Then, for three of these, gastrointestinal
digestion was simulated in vitro, followed by the analysis of the resulting ACE inhibitory activity as
well as antioxidant capacity. We thus observed that the use of new computational biology technologies
to predict peptide sequences is an important research tool, but they should not be used alone and
complementarity with various in vitro and in vivo assays is essential.

Keywords: bioactive peptide; bioinformatics; in silico prediction; antihypertensive activity; ACE
inhibition; antioxidant activity; ORAC

1. Introduction

Peptide discovery, especially from different sources of food proteins, has an important
interest in potential advancements in biology, chemistry, pharmacology, medicine, biotech-
nology, and the food industry [1,2]. Peptides (with lengths ranging from 2 to 50 amino
acids) have crucial roles as antimicrobials, growth factors, hormones, biological messengers,
and neurotransmitters [2]. Peptides can exert several bioactivities such as antiangiogenic,
antibacterial, anticancer, anti-fungal, and others [2,3]. Therefore, there is an interest in
researching their chemical and biological properties.

Naturally, many proteins or protein fragments (peptides) perform their biological
functions in their native form; however, some peptides require changes to become bioac-
tive. There are three different approaches for peptide generation: the action of proteolytic
microorganisms, the digestive enzymes in the gastrointestinal tract, and the external hy-
drolysis with proteolytic enzymes [3,4]. External enzymatic hydrolysis is the most common
method for the generation of bioactive peptides; however, the fermentation method has
been considerably relevant to products such as milk [1].

Research on food-derived bioactive peptides is a hot topic, especially from cow’s milk
and milk products, in their identification, characterization, and use [5,6]. With much lower
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coverage, goat milk has also been studied and characterized for its bioactive peptides,
with beneficial properties such as antioxidant, ACE inhibitory peptides, anti-diabetic, and
antimicrobial. However, more studies are needed to validate these health claims [6].

Considering the potential of bioactive peptides as novel therapeutics, nutraceuticals,
and functional food ingredients, the discovery and prediction of novel bioactive peptides
is an exciting area of research. Metabolomic, proteomic, and genomic screening of toxins
and other natural product sources can identify bioactive peptides [7]. Advances in peptide
screening and computational biology have come to support this area. The number of
bioactive peptide databases covering a range of activities is at a promising seed stage. A
good example is BIOPEP, a database of biologically active peptide sequences resulting in a
tool for the evaluation of proteins as bioactive peptide precursors [5]. Tools such as this,
and computational biology in general, are important for developing general predictors of
bioactive peptides and identifying candidate peptides most likely to be bioactive. Isolating,
identifying, and characterizing are critical; therefore, the development of new technologies
to improve this is important. The use of machine learning to identify functional peptides
and protein sequence data is a major advance and can improve the rapid and accurate
detection of new biopeptides. Sequence-based in silico approaches can be used to select
the best peptides before their synthesis and testing in laboratory experimentation, thus
optimizing the design of therapeutic peptides.

Improvements in peptide screening and computational biology will continue to sup-
port peptide drug discovery. However, this new technology must be complemented with
in vitro studies. This article presents a holistic perspective on recent advancements in silico
peptide prediction and their relationship with in vitro assays focused on selected peptides
from a goat casein hydrolysate. Figure 1 schematizes the approach to our idea.
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Figure 1. Process of analysis and validation of bioactive peptides performed in this article.

2. Results
2.1. In Silico Prediction

An in silico analysis of a list of peptides from goat casein hydrolysate (from a study in
progress) was performed to predict which sequences could potentially be bioactive. Table 1
shows the top 10 peptides analyzed with PeptideRanker [8]. PeptideRanker is a server for
the prediction of bioactive peptides based on a novel N-to-1 neural network. This server
returns the probability that the peptide will be bioactive. PeptideRanker was trained at
a threshold of 0.5, i.e., any peptide predicted over a 0.5 threshold is labeled as bioactive.
Table 1 shows that only 5 of the 10 sequences are potentially bioactive, the most likely
being SWMHQPP.
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Table 1. Score peptides with the probability of performing biological activities, according to the
PeptideRanker server.

Rank Peptide Sequence Score 1

1 SWMHQPP 0.846508
2 HQPPQPL 0.755043
3 MHQPPQPL 0.683869
4 QSLVYPFTGPIPNSL 0.612920
5 YPYQGPIVL 0.552820
6 WDQVKR 0.394225
7 YQEPVLGPVR 0.380921
8 PLTQTPVVVPPFLQP 0.277886
9 VMFPPQSVLS 0.267560
10 NFLKKISQ 0.147732

1 The score ranges from 0 to 1, and the closer to 1, the higher the probability of biological activity.

After this first selection, the five potentially bioactive sequences were considered
for analysis with another widely used tool for in silico prediction of bioactive peptides,
BIOPEP [9] Table 2 shows all the potential bioactivities that each peptide encodes in its
sequence. The table shows two of the parameters used to classify potential bioactivities in
the BIOPEP database, parameter A (frequency of occurrence of bioactive fragments in a
protein sequence) and B (potential biological activity). Among the five peptides only two
potential bioactivities were repeated, angiotensin-I converting enzyme (ACE) inhibitor and
dipeptidyl peptidase IV (DPP-IV) inhibitor, respectively antihypertensive and antidiabetic
activities. Based on ACE inhibitor and DPP-IV inhibitor, the ranking was not the same
as with PeptideRanker. Concerning B, the peptide with the highest potential to inhibit
ACE was QSLVYPFTGPIPNSL (#4 for PeptideRanker), while the peptide SWMHQPP (#1
for PeptideRanker) was in second place with almost the same potential as the sequence
YPYQGPIVL (#5 for PeptideRanker). Likewise, the latter peptide showed the highest
potential to inhibit DPP-IV, with SWMHQPP coming in second place once again.

Table 2. Peptides with their potential bioactivities, and the corresponding calculations by BIOPEP.

Peptide Activity A 1 B 2

SWMHQPP

ACE inhibitor 0.4286 0.0017347
Alpha-glucosidase inhibitor 0.1429 7.9 × 10−6

DPP-III inhibitor 0.1429
DPP-IV inhibitor 0.7143 0.0006120

Neuropeptide 0.1429

HQPPQPL
ACE inhibitor 0.7143 0.0009012

Alpha-glucosidase inhibitor 0.1429 7.9 × 10−6

DPP-IV inhibitor 0.7143 2.44 × 10−5

MHQPPQPL

ACE inhibitor 0.6250 0.0007886
Alpha-glucosidase inhibitor 0.1250 6.9 × 10−6

DPP-IV inhibitor 0.7500 2.13 × 10−5

Neuropeptide 0.1250

QSLVYPFTGPIPNSL

ACE inhibitor 0.7333 0.0263997
Antiamnestic 0.0667
Antioxidative 0.0667

Antithrombotic 0.0667
DPP-III inhibitor 0.1333
DPP-IV inhibitor 0.8000 0.0002435

Hypotensive 0.0667
Opioid 0.1333

Regulating 0.0667
Stimulating 0.0667
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Table 2. Cont.

Peptide Activity A 1 B 2

YPYQGPIVL

ACE inhibitor 0.4444 0.0013524
Alpha-glucosidase inhibitor 0.2222 7.04 × 10−5

Anti-inflammatory 0.1111
Antiamnestic 0.1111

Antithrombotic 0.1111
DPP-IV inhibitor 0.8889 0.0020040

Regulating 0.1111
Stimulating 0.2222

1 The frequency of bioactive fragments occurrence in protein sequence (A). 2 Potential biological activity
(B) [µM−1].

Following the BIOPEP analysis, we focused the analysis more on ACE inhibitory
activity, for which we resorted to other novel tools of increasing use in predicting potentially
antihypertensive peptides, AHTpin [10] and mAHTPred [11]. These are online servers
that use machine learning trained to predict antihypertensive peptides from the reported
peptides’ characteristics of all lengths. Once again, the ranking was different from the
previous ones (Tables 3 and 4). While again the change was not dramatic, it was for the
peptide SWMHQPP, for which the AHTpin estimated the least antihypertensive capacity,
with a very low value for what can be considered to have that potential.

Table 3. Prediction of potential antihypertensive activity of the peptides, according to the AHTpin
web server.

Rank Peptide Sequence SVM Score 1

1 QSLVYPFTGPIPNSL 1.81
2 YPYQGPIVL 1.66
3 HQPPQPL 0.84
4 MHQPPQPL 0.83
5 SWMHQPP 0.31

1 The higher the support vector machine (SVM) score, the greater the antihypertensive potential.

Table 4. Prediction of potential antihypertensive activity of the peptides, according to the mAHTPred
web server.

Rank Peptide Sequence AHTP or Non-AHTP 1 Probability

1 MHQPPQPL AHTP 0.9816
2 QSLVYPFTGPIPNSL AHTP 0.9773
3 HQPPQPL AHTP 0.9773
4 YPYQGPIVL AHTP 0.9570
5 SWMHQPP AHTP 0.8748

1 Prediction of antihypertensive (AHTP) or non-antihypertensive (non-AHTP).

Now, returning to the results obtained by BIOPEP, when the IC50 is removed from
the equation of B (Equation (1)) and converted from µM to µg mL−1, the following values
were obtained: QSLVYPFTGPIPNSL, 4.1 µg mL−1; SWMHQPP, 72.6 µg mL−1; YPYQG-
PIVL, 86.2 µg mL−1; HQPPQPL, 129.3 µg mL−1; MHQPPQPL, 150.1 µg mL−1. Ref. [12]
reported some antihypertensive oligopeptides encoded in the human β-casein: VMP (IC50
10.0 µg mL−1), TVYTKGRVMP (IC50 43.7 µg mL−1), PAVVLP (IC50 26.8 µg mL−1), LPQNILP
(IC50 36.5 µg mL−1), PHQIYP (IC50 22.6 µg mL−1), NPPHQIYP (IC50 35.7 µg mL−1), VLPYP
(IC50 21.1 µg mL−1), and VLPIP (IC50 16.7 µg mL−1) [12]. Likewise, [13] reported anti-
hypertensive oligopeptides encoded in various β-caseins: SLVYP (IC50 23.7 µg mL−1),
FAQTQSLVYP (IC50 28.8 µg mL−1), and HPFAQTQQSLVYP (IC50 36.1 µg mL−1) [13]. If
we consider peptides with even greater antihypertensive potential, Tavares et al. (2011)
reported whey-derived peptides with remarkable inhibitory effect: DAQSAPLRVY (IC50



Int. J. Mol. Sci. 2022, 23, 2439 5 of 9

12.2 µg mL−1), DKVGINYW (IC50 25.4 µg mL−1), KGYGGVSLPEW (IC50 0.7 µg mL−1) [14].
Furthermore, we have previously reported peptide hydrolysates of soy protein, i.e., a
mixture of peptides, with IC50 values lower than 60 µg mL−1 [15]. That is why, when
analyzing the inhibitory capacity of a pure peptide, we consider that an IC50 value higher
than 50 µg mL−1 is not significant compared to the benchmarks. In this sense, a priori,
only the peptide QSLVYPFTGPIPNSL would be antihypertensive according to the IC50
estimated by BIOPEP.

2.2. In Vitro Analyses
2.2.1. Antihypertensive Activity

To validate the in silico predictions, we measured the ability of the five peptides to
inhibit ACE in vitro (iACE). Table 5 (as raw) shows the values of the bioactivities, which
accounted for the low inhibitory capacity of the peptides, being SWMHQPP the only one
that presented a considerable capacity (IC50 223 µg mL−1). Even so, as already specified for
a pure peptide which is considered antihypertensive, this level of inhibitory activity is low.
For SWMHQPP, when comparing the observed value with the value that we calculated
from BIOPEP, the observed IC50 was 3.1 times higher. In the case of QSLVYPFTGPIPNSL,
which was predicted as the one with the highest antihypertensive potential by BIOPEP
and AHTpin, and second by mAHTPred, the inhibitory activity was one of the lowest,
practically nil.

Table 5. In vitro bioactivities for pure raw and digested peptides.

Peptide Sequence
Raw Digested

iACE 1 ORAC 2 iACE 1 ORAC 2

SWMHQPP 223 ± 12 * 2.64 ± 0.07 *,† >50 16.83 ± 0.25 *,†

QSLVYPFTGPIPNSL >3000 0.80 ± 0.03 *,† >50 24.79 ± 0.10 *,†

YPYQGPIVL 1113 ± 42 * 1.54 ± 0.05 *,† >50 20.94 ± 0.51 *,†

MHQPPQPL >3000 n.a. n.a. n.a.
HQPPQPL >3000 n.a. n.a. n.a.

1 Half-maximal inhibitory concentration (IC50) for ACE inhibitor activity measured as [µg mL−1], expressed as
the mean ± SD 2 ORAC measured as [µmol TE mg−1 peptide], expressed as the mean ± SD * Values within
the same column that present statistically significant differences. † Values from the same sample that, between
treatments (raw and digested), present statistically significant differences. For conditions in which the analysis
was not performed, it is designated as n.a. (not applicable).

2.2.2. Simulated Gastrointestinal Digestion

Now, BIOPEP establishes the potential bioactivity based on the sequences encoded
in the peptides. Thus, if these sequences were released through a lytic process, such as
that which occurs in gastrointestinal digestion, the bioactivity could increase and approach
that predicted. Thus, the three peptides of greatest interest from the in silico predictions
(QSLVYPFTGPIPNSL, SWMHQPP, and YPYQGPIVL) were selected for in vitro simulated
gastrointestinal digestion. We performed the digestions considering reaching a concentra-
tion of 50 µg mL−1 in the simulation of the intestinal compartment. For the three peptides,
in addition to the antihypertensive potential, we analyzed the antioxidant potential by
ORAC. Bioactivity analyses were performed with both the peptides before digestion and
after digestion.

Before digestion, we found a moderate antioxidant capacity (Table 5), particularly
for QSLVYPFTGPIPNSL and YPYQGPIVL [16,17]. In the case of SWMHQPP, the antiox-
idant capacity was considerable, being the highest of the three. After digestion of the
three peptides, we observed a high increase in the antioxidant capacities of all peptides.
The digest of QSLVYPFTGPIPNSL showed the highest antioxidant activity, followed by
YPYQGPIVL, with SWMHQPP being below these two. Although the values between the
digested peptides were different, they all demonstrated high bioactivity. This accounted for
the release of antioxidant sequences encoded in each of the peptides. Concerning this, what
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was striking is that BIOPEP only estimated QSLVYPFTGPIPNSL with antioxidant potential.
Although this peptide ended up being the one that showed the highest antioxidant activity
after ingestion, the other two proved to be antioxidants both before and after digestion.

On the iACE activity, digestion had no positive effect. None of the three digested
peptides showed any inhibitory activity, so the IC50 was clearly not reached under the
conditions tested. This means that if there is any inhibitory activity, it is well above
50 µg mL−1.

3. Discussion

The current interest in the study of peptides has triggered a technological evolution,
becoming a common practice to predict bioactive peptide sequences from parent proteins.
These sequences can be released by lysis of the protein structure, as is the application of
enzymatic hydrolysis [3,15]. In turn, peptides produced by proteolysis can still release
other bioactive sequences in the enzymatic hydrolysis of the gastrointestinal digestive
process [15]. Different results are reported in the literature for the residual antioxidant
capacity of peptides and casein hydrolysates, after the in vitro-simulated gastrointestinal
digestion, with an increase, reduction, or unchanged in this activity [18–20]. Contreras et al.
(2013) observed a small increase in the antioxidant capacity of the AYFYPEL peptide, after
the digestion process, from the activity of 3.216 ± 0.114 to 4.160 ± 0.623 µmol TE µmol−1

peptide [21]. However, for the other analyzed peptides (RYLGY and YQKFPQY), the
antioxidant activity was reduced.

The most used bioinformatics tools to predict putative biologically active sequences
are based on databases constructed from known structures, structural and physicochemical
analyses that allow establishing different residue interactions that provide certain bioac-
tivities [2,22,23]. However, the information behind these databases is still quite limited,
both in terms of the spectrum of bioactive properties that each sequence can exert and the
mechanisms that endow these structures with these properties. From this work, we could
see that different tools predict differently, leading to different results. Furthermore, it is
still unclear which tool may be the most reliable for the peptides discussed here. Although
PeptideRanker predicted these peptides with bioactive potential, without specifying the
properties, in the case of the antioxidant property they presented as interesting, the order
of significance did not correspond to the predicted one. On the other hand, BIOPEP did
not even predict most of the analyzed sequences as antioxidants, the only one for which it
did was QSLVYPFTGPIPNSL. However, BIOPEP did predict these peptides as antihyper-
tensives, just as we were able to achieve the same result using AHTpin and mAHTPred,
considered the most reliable tools when involves in predicting antihypertensive activity [2].
However, this bioactivity was not observed in in vitro validation tests, which exposes the
limitations that these tools still have.

This result does not mean that these bioinformatics tools are obsolete or unreliable, but
that they still need to develop and grow. Likewise, these same tools have proven to be very
timely in other works, with which the global utility in the search for therapeutic peptides
cannot be denied [2,15]. To this end, it is very important to continue developing in vitro
and in vivo assays to relate peptide primary and secondary structures to different biological
properties, as well as to increase the spectrum of potential properties that peptides already
reported can exert.

Although this work is an initial exploratory work, it still needs to be further expanded,
which would require in vitro analysis of the DPP-IV inhibition property, as well as estab-
lishing the fragmentation of peptide sequences along the gastrointestinal tract.

4. Materials and Methods
4.1. Materials

Pepsin (800–1000 U/mg protein), pancreatin (4 × USP), α-amylase, angiotensin-I
converting enzyme (peptidyl-di-peptidase A, EC 3.4.15.1, 5.1 U/mg), bile salts, Trolox
(6-hydroxy-2,5,7,8-tetramethyl-chroman-2-carboxylic acid), and AAPH [2,2′-azobis (2-
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amidinopropane) dihydrochloride] were obtained from Sigma-Aldrich (St. Louis, MO,
USA) and used without further purification. Fluorescein [3′,6′-dihydroxyspiro
(isobenzofuran-1 [3H], 9′ [9H]-xanthen)-3-one] was purchased from Fisher Scientific
(Hanover Park, IL USA). The tripeptide Abz-Gly-Phe(NO2)-Pro was obtained from Bachem
Feinchemikalien (Bubendorf, Switzerland). Tris [tris (hydroxymethyl) aminomethane]
was obtained from Honeywell Fluka (Charlotte, NC, USA). The peptides SWMHQPP,
HQPPQPL, MHQPPQPL, QSLVYPFTGPIPNSL, and YPYQGPIVL were purchased from
GenScript Biotech (Leiden, The Netherlands).

4.2. Methods
4.2.1. Bioactivity Prediction

To predict in silico the bioactivity of each peptide, a ranking was first performed by
PeptideRanker [8], which is a server for the prediction of bioactive peptides based on a
novel N-to-1 neural network [5]. The first 5 peptides in the ranking were then analyzed
using the online BIOPEP database [9], estimating the different potential bioactivities [22,24].
One of the important parameters that are estimated by BIOEPEP is the potential biological
activity of a protein (B) [µM−1]:

B =
∑k

i=1
ai

EC50i

N
(1)

where ai is the number of repetitions of the i-th bioactive fragment in protein sequence;
EC50i is the concentration of i-th bioactive sequence corresponding to its half-maximal
activity [µM] or half-maximal inhibition (IC50) in case of peptides with inhibitory activity;
k is the number of different fragments with given activity; N is the number of amino
acid residues.

In parallel, these same hundred peptides were analyzed about their antihypertensive
potential using the online tools AHTpin [10,25] and mAHTPred [11,23]. For AHTpin,
peptides with support vector machine (SVM) scores > 0.0 were considered as predicted
with the antihypertensive property.

The analysis with all servers was performed on 14 December 2021. An update of the
data obtained by BIOPEP was performed by entering the platform on 15 February 2022.

4.2.2. ACE Inhibitory Activity

The ACE inhibitory activity was carried out using the fluorometric assay described
by Coscueta, Brassesco, and Pintado (2021) [26]. The iACE of each sample (raw peptide
and digested) was evaluated in duplicate and expressed as the concentration capable of
inhibiting 50% of the enzymatic activity (IC50). To calculate the IC50 values, non-linear
modeling was used, and the results were expressed as µg mL−1 to inhibit 50% of the
enzymatic activity.

4.2.3. Antioxidant Activity

The ORAC assay was performed according to Coscueta, Brassesco, and Pintado
(2021) [26]. Each sample (raw peptide and digested) was analyzed in duplicate and the
results were expressed in µmol TE by mg of peptide (µmol TE mg−1), after the calculation
of Trolox concentration through regression curve equation.

4.2.4. Simulated Gastrointestinal Digestion

Simulated gastrointestinal digestion was performed according to the method described
by Madureira et al. (2011) [27]. Briefly, mouth digestion was mimicked by introducing
the peptide sequence (2.5 mg/mL) into 15 mL of a 1 mM CaCl2 solution of 100 U mL−1

α-amylase, under constant stirring (200 rpm) for 2 min at 37 ◦C, simulating masticatory
movements [28]. A 1 M NaHCO3 solution was used to adjust the pH of artificial saliva to
6.9. Subsequently, a pepsin solution, 25 mg/mL, was added with a ratio of 0.05 mL/mL
of a sample at pH 2.0 (simulated gastric solution, stomach) following incubation for 2 h,
37 ◦C at 130 rpm orbital agitation for the gastric phase. Finally, intestinal digestion and
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absorption were simulated by adjusting pH values to 5 using a 1 M NaHCO3 solution and
adding a solution of bile salts and pancreatin to the digest [27].

4.2.5. Statistical Analysis

Statistical analysis was carried out with the aid of RStudio V 1.2.1335. The mean values
from two replicates were analyzed statistically by analysis of variance followed by Tukey’s
post hoc test. Separation of means was conducted by using the least significant difference
at the 5% level of probability.
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