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Evolutionary game theory for physical and
biological scientists. I. Training and
validating population dynamics equations

David Liao and Thea D. Tlsty

Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA

Failure to understand evolutionary dynamics has been hypothesized as

limiting our ability to control biological systems. An increasing awareness of

similarities between macroscopic ecosystems and cellular tissues has inspired

optimism that game theory will provide insights into the progression and con-

trol of cancer. To realize this potential, the ability to compare game theoretic

models and experimental measurements of population dynamics should be

broadly disseminated. In this tutorial, we present an analysis method that

can be used to train parameters in game theoretic dynamics equations, used

to validate the resulting equations, and used to make predictions to challenge

these equations and to design treatment strategies. The data analysis tech-

niques in this tutorial are adapted from the analysis of reaction kinetics

using the method of initial rates taught in undergraduate general chemistry

courses. Reliance on computer programming is avoided to encourage the

adoption of these methods as routine bench activities.

1. Introduction
In this paper, we will describe a method of data analysis that can be used by

physical and biological scientists to analyse population dynamics using game

theoretic replicator equations. This method is based on the method of initial

rates taught in undergraduate chemistry courses.

In §2, we provide background to describe the interdisciplinary need that we

hope that this tutorial will help to address. The tutorial is organized with the

help of figure 1. For the purposes of this discussion, we define mathematical

modelling as the development of a consistent set of physical propositions

(assumptions), quantitative relationships (equations, qualitative shapes of func-

tion plots, etc.) and observations (data). In §3, we show how equations and data

can be compared using parameter training and model validation. In an exper-

imental report in this Theme Issue, Wu et al. [2] apply aspects of this style of

approach to study the dynamics of multiple myeloma (MM) and stromal cell

populations interacting in microfabricated structures. In an accompanying

manuscript [1], we show how fitting equations and physical propositions can

be associated using mathematical derivations. One benefit of performing such

derivations is to make clear that multiple sets of propositions can be consistent

with a set of equations, so that no particular set of propositions should necess-

arily be accepted on faith. We conclude in §4 by illustrating a potential clinical

impact of the data analysis method described in §3.
2. Need for a tutorial in game theoretic analysis of
cell population dynamics

Game theory is sometimes regarded as a promising candidate for elucidating fea-

tures of cancer (and other areas of biology) in ways that provide both basic

understanding and insights into therapeutic treatment. At the same time, the

application of game theory can be challenging. This tutorial is presented
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Figure 1. Overview of physical sciences modelling. To determine whether we have developed a set of physical propositions that accurately describe experimental
data, we can ( f ) directly compare (a) propositions and (e) experimental knowledge using qualitative language. For example, we find that the model in this cartoon
needs to be revised because it relies on a proposition of thorough mixture that disagrees with an experimental procedure involving an unstirred flask. Complicated
model propositions and abundant data can often render such word-model comparisons impractical. Indirect comparison can be achieved using the proxy of fitting
equations. In an accompanying manuscript [1], we describe how (a) physical models are used in (b) mathematical derivations to obtain (c) equations. The focus of
this paper, shaded in grey, is to illustrate a method for (d ) comparing fitting equations with (e) experimental data. We refer to this comparison as ‘training and
validation’. (Online version in colour.)
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both to help interdisciplinary investigators to realize potential

insights and to help investigators to avoid common pitfalls in

mathematical modelling.

At interfaces connecting the physical and biological

sciences, a perspective is emerging that severe limitations in

our ability to understand and control cancer are results of

naive applications of reductionist reasoning to ‘complex’ sys-

tems [3,4]. In systems biology, reductionism and complex

systems thinking are commonly portrayed by comparing

those molecular biologists who focus intently on a small

number of genes or on a small number of pathways, on the

one hand, with, on the other hand, quantitative biologists

who investigate the generic, common properties (e.g. topolo-

gies and motifs) of gene-regulatory networks and who also

try to understand why these properties might demonstrate

universality [5]. This kind of distinction can also be made

at other scales, for example when comparing cell-centric

thinking with integrative perspectives that highlight inter-

actions between cells and the cellular and non-cellular

components of their surrounding tissue environments.

A growing number of physical scientists and biologists

view game theory as a potentially fruitful framework for

describing the evolution of interacting cell populations in a

way that will provide understanding of cancer progression

and therapeutic control [6]. In an accompanying manuscript,

we clarify why this form of modelling is called ‘evolutionary

game theory’ (EGT) [1]. For the purposes of this paper, we

use EGT simply to refer to models of cell interactions in

which net expansion rates for cell subpopulations depend

on the frequency with which different cell types are rep-

resented in the overall population. In this sense, the phrase

‘frequency-dependent models’ would serve our purposes

equally well. Applications of EGT and associated dynamical

models have produced ecological and evolutionary insights

in a variety of biological systems including communities of

budding yeast cells that share metabolic public goods [7–9]
and populations of Escherichia coli that use colicins to

antagonize each other in a cyclic, or ‘rock–paper–scissors’,

fashion both in vitro [10] and in vivo [11]. Of particular rel-

evance to this Theme Issue, mathematical models of cell–

cell interactions have also been applied to investigate the

dynamics of various cancer systems [12–15]. Two of these

examples illustrate an archetypically EGT style of analysis.

Dingli et al. [14] use continuous-time replicator equations to

study the dynamics and equilibria of mixed populations of

MM, osteoclast (OC) and osteoblast cells. Their analysis pro-

vides an insight that direct attempts to eradicate the MM cell

population are likely to lead to relapse of disease because partial

cytoreduction does not alter the long-term equilibrium compo-

sition of the three-population system, but, instead, simply

‘reset[s] the clock’ in an inevitable approach towards MM and

OC dominance. As a second approach, the authors recom-

mend ‘changing the rules of engagement between different cell

types . . . literally changing the dynamics, enabling normal cells to

out-compete the malignant clone, consequently leading

to its evolutionary extinction’ [14, p. 7]. In a second example,

Basanta & Anderson [6] use a four-population model to gain

insights into the cell–cell interactions leading to the promotion

of the invasive (motile) phenotype in secondary glioblastoma

multiforme. In addition to finding that suppressing angiogenic

benefit can promote the invasive phenotype, the authors also pre-

dict that eventual dominance of the invasive phenotype might be

preceded by transient oscillations in population composition.

Together, these examples showcase EGT and related

mathematical models of cell–cell interactions as promising

strategies for gaining insights into the behaviour of complex

ecologies that have not yet been fully elucidated using reduc-

tionist approaches. Unfortunately, interdisciplinary fields

present special risks for misunderstanding and confusion

when fitting equations to data. In a recent example drawn

from the interface of psychology and nonlinear dynamics,

incorrect data analysis methods were used to support a claim
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Figure 2. Population dynamics that depend linearly on demographic compo-
sition. Three co-cultures of cells of type x (square, yellow) and cells of type y
(round, blue) are prepared with different initial population compositions: (a)
almost exclusively composed of cell type x, (b) 50/50 mixture of both cell
types and (c) almost exclusively composed of cell type y. The factors by which
each subpopulation then expands are also varied. (Online version in colour.)
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that ‘flourishing’ personalities could be distinguished using a

‘critical positivity ratio’ [16]. The Lorenz equations were mis-

applied to describe the dynamics of speech acts in business

teams. These equations simplistically describe atmospheric

convection and have no clear relevance to psychology.

Additionally, data were not plotted alongside theoretical

curves for direct comparison. Rather than being trained by

data, some model parameters were assigned values historically

used by mathematicians merely to make unrelated teaching

illustrations. Owing to these and additional weaknesses, the

claim to have found a critical positivity ratio was criticized

for being ‘entirely unfounded’ [16, p. 1].

Taken together, the examples in this section suggest that it

is important to disseminate skill in the application of EGT mod-

elling to data analysis, not only because such analysis might

provide basic science and clinical insights, but also because it

can be challenging to correctly apply mathematical modelling

in an interdisciplinary setting.
3. Phase portrait comparison of differential
equations and population dynamics

In this section, we show how an ecology consisting of two

populations can be analysed using EGT replicator equations.

In §3.1, we show how parameters can be trained from data,

and in §3.2, we show how differential equations containing

the trained parameters can be validated by comparing them

with additional data not initially used for training. If dif-

ferential equations are validated, they can be used to make

predictions about additional experiments, as described in §3.3.

In the cartoon in figure 2, the numbers of cells in two popu-

lations cultured together are monitored over time. We label

these populations x and y and represent them using square,

yellow cells and round, blue cells, respectively. The proportion

of cells that are of type x is px :¼ x/(x þ y), and the proportion of

cells that are of type y is py :¼ y/(x þ y). Three different initial

compositions are shown. In figure 2a, the population is rich in

square, yellow cells. In other words, px is nearly unity, and py is

nearly zero. In figure 2b, the proportions are initially equal, i.e.

px ¼ py ¼ 0.5. Figure 2c starts with an initial composition that is

rich in the round, blue cells. Here, px is nearly zero, whereas py

is nearly unity. The fraction by which each population

increases over time varies with population composition. For
example, in scenario (a) population x increases to a factor of 3

times its original value, whereas in scenario (b) population x
increases only to a factor of 2 times its initial value. In scenario

(c) population x does not expand. In this simplistic cartoon,

the population expansion factors 3, 2 and 1 and the correspond-

ing values of the initial fractions of cells of type x, px � 1, 0.5

and � 0, respectively, are consistent with a linear relation-

ship between expansion factor and initial population fraction.

A set of differential equations approximately containing this

linear relationship

dx
dt
¼ (Apx þ Bpy)x ð3:1Þ

and
dy
dt
¼ (Cpx þDpy)y (3:2)

is written by setting the instantaneous rate of change of popu-

lation x over time t equal to a product between a rate coefficient

(‘fitness’) fx ¼ Apx þ Bpy and the population size x, as well as

by setting the instantaneous rate of change of population y
over time equal to a product between a rate coefficient fy ¼
Cpx þ Dpy and the population size y. Having specified the

differential equations to be compared with data, we show in

§3.1 how the parameters A, B, C and D can be determined

from time-course measurements of cellular populations.

Before continuing, we clarify a point of possible con-

fusion. Equations (3.1) and (3.2) describe the dynamics of

absolute population numbers, but ecological and evolutionary

biologists commonly write down governing equations for the

dynamics of population fractions (examples presented in the

electronic supplementary material). This is done either in a

form that can be directly derived from equations (3.1) and

(3.2) [17] or in a form using an alternative measure of time

[18]. Analysing the dynamics of population fractions requires

fewer equations and parameters. For example, the population

fraction dynamics corresponding to equations (3.1) and (3.2)

can be written as a single equation involving only two par-

ameters (or three parameters using the alternative measure

of time), rather than the four independent parameters A, B,

C and D. However, this simplicity does not come without

cost. An analysis at the level of population fractions might

predict a decrease in the fraction of a relatively aggressive

cell type, but if the overall population increases over the

same time period, the absolute size of the aggressive sub-

population might also have increased, leading to disease

progression. Owing to the possibility of neglecting clinically

relevant information when analysing the dynamics of

population fractions alone, we deliberately use equations

describing the dynamics of population numbers in this tutorial.

We will refer to equations (3.1) and (3.2) as replicator dynamics

equations even though this phrase often refers to equations

describing population fraction dynamics.
3.1. Training
In this section, we apply a version of the ‘method of initial

rates’ [19,20], familiar from undergraduate chemistry courses,

to train the parameters in equations (3.1) and (3.2). The

main idea of this method is that individual equation par-

ameters can be isolated by considering how population

sizes vary while one subpopulation dominates. Figure 3

shows three hypothetical co-culture datasets, (a,b), (c,d )

and (g). Panels (a,b) form one dataset corresponding to

a co-culture that is initially highly enriched in cells of
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Figure 3. Method for training and validation of population dynamics equations for an ecology consisting of two populations. The numbers of cells of type x (a) and
of type y (b) are monitored for a co-culture initially rich in cells of type x. The numbers of cells of type x (c) and of type y (d ) are monitored for a different co-culture
initially rich in cells of type y. The slopes in (a) – (d ) are used to specify the velocity field in (e), with magnified inset in ( f ), as described in the main text.
A separate dataset (g) is compared with the velocity field in (h) to check for agreement in magnitude and direction. Population compositions ( j ), (k) and (l )
are examples of initial co-culture compositions that could be tested in additional experiments. (Online version in colour.)
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type x, with x(0) ¼ 10 000 cells and y(0) ¼ 100 cells at initial

time t ¼ 0. For these panels, px is nearly unity and py is

nearly zero, so equation (3.1) becomes

dx
dt
� Ax, (3:3)

a simple proportionality between the instantaneous rate of

change of population x and the population size x itself.

This implies that

1

x
Dx
Dt
� A, (3:4)
which means that the coefficient A is approximated by the

product of the reciprocal of the population size x and the

initial rate at which x changes. In figure 3a, population x
increases with curvature. The slope of the line tangent to

the earliest data points covers a rise of Dx ¼ þ5000 cells

over the course of Dt ¼ 2 days. Substituting these values,

along with the initial population size of 10 000 cells, into

equation (3.4), we estimate

A � 1

10 000 cells

þ5000 cells

2 days
¼ 0:25 d�1: (3:5)
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We have used the initial slope of the x versus t graph for a co-

culture initially rich in cells of type x to estimate coefficient A.

The mathematically inclined reader might note that equation

(3.4) is equivalent to stating that the rate of change of the

natural logarithm of x approximates A. Using a plot of ln(x)

versus t to estimate A can provide a longer duration of time

over which the initial slope at time t ¼ 0 is reasonably

approximated by the average slope over a finite interval of

time, but, for the purposes of this tutorial, it suffices to per-

form an analysis of population size versus time rather than

an analysis of the natural logarithm of population size

versus time.

Applying arguments analogous to those we used to obtain

equations (3.3)–(3.5) allows us to use the slope of population y
versus time in (b) and equation (3.2) to estimate that

C � 1

y
Dy
Dt
¼ 1

100 cells

þ100 cells

2 days
¼ 0:5 d�1: (3:6)

To estimate the remaining parameters, we consider a co-cul-

ture initially rich in cells of type y. Setting px nearly equal

to zero and py nearly equal to unity in equations (3.1) and

(3.2) now allows us to use the plot of population x versus t
in panel (c) and the plot of population y versus t in panel

(d ) to estimate that

B � 1

x
Dx
Dt
¼ 1

100 cells

�100 cells

2 days
¼ �0:5 d�1 (3:7)

and that

D � 1

y
Dy
Dt
¼ 1

10 000 cells

�5000 cells

2 days
¼ �0:25 d�1: (3:8)

Now that we have determined the parameter values by

analysing the dynamics of co-cultures with initially x- or

y-rich population compositions, we fill in a ‘velocity plot’ to

graphically represent our trained differential equations. To

understand this procedure, we consider a hypothetical popu-

lation composed initially of 1000 cells of type x and 1000 cells

of type y, located at the tail of the arrow in figure 3f. We esti-

mate the change in population x accrued over a short interval

of time

Dx � dx
dt

Dt ¼ (Apx þ Bpy)xDt (3:9)

by multiplying the instantaneous rate of change of x specified

according to equation (3.1) by the duration of the time

interval Dt. Substituting parameter values A ¼ 0.25 d– 1 and

B ¼ 20.5 d– 1, along with px ¼ py ¼ 0.5 (because both sub-

populations are equal), x ¼ 1000 cells, and Dt ¼ 1 day,

we obtain

Dx � 0:25

day

� �
(0:5)þ �0:5

day

� �
(0:5)

� �
(1000 cells)(1 day)

¼ �125 cells, (3:10)

a decrease that brings the original population size of 1000

cells down to 1000 – 125 cells ¼ 875 cells. Analogous reason-

ing applied to equation (3.2) allows us to estimate that

population y increases by 125 cells during the same day,

yielding a final population of 1000 þ 125 cells ¼ 1125 cells.

The position (875 cells, 1125 cells) is indicated by the head

of the arrow in panel (f ). This arrow represents population

change over the course of a day. The remaining arrows in

(e) are obtained in the same way as we have highlighted
using panel (f ). Panel (e) is sometimes referred to as a

‘phase portrait’ or a ‘velocity plot’.

A brute-force calculation of each arrow in (e) would be

tedious. To improve efficiency, we take advantage of a

geometric property of equations (3.1) and (3.2). The dash-

dotted line is shallow, the dash-double-dotted line is steep

and the dashed line has intermediate slope. Each of these

lines is an example of a set of positions in the x–y plane shar-

ing a common population composition. For example, all

points on the dashed line have a population composition of

px ¼ py ¼ 0.5 because at all of these points the x and y popu-

lation sizes equal each other. Repeating the calculation of the

change in population x demonstrated in equation (3.10) at

other values of x along this line only requires replacing the

factor of 1000 cells with other values of x. All other factors

serve as a constant coefficient. Thus, along the dashed line,

the values of Dx are simply proportional to the initial

values of x used to locate the tails of the illustrated arrows.

Following similar reasoning, values of Dy are also pro-

portional to the initial values of y. Taken together, these

observations lead to the property that the arrows originat-

ing from the dashed line grow longer in proportion to

distance from the origin and share the same direction. The

same conclusions can be drawn for the arrows originating

from the dash-double-dotted and dash-dotted lines, respect-

ively. Sketching only a handful of arrows thus allows us to

quickly fill in a dense velocity plot if the initially drawn

arrows are judiciously chosen so that they do not all lie on

a shared line containing the origin.

3.2. Validation
Now that we have graphically represented changes in popu-

lation size that would be consistent with equations (3.1) and

(3.2), we compare the phase portrait in (e) with an additional

dataset in panel (g) that explores population compositions

not yet explored by the data in panels (a)–(d). At the high-

lighted time point (t ¼ 6 days), the co-culture contains about

2000 cells of type x and 900 cells of type y. This corresponds

to the highlighted point in (h). Plotting pairs of x- and y-popu-

lation values at other times in the same way fills out a loop that

circulates in the counterclockwise direction. This example is

constructed so that equations (3.1) and (3.2) validate. To see

how the loop is consistent with the background field of

arrows, we assess agreement in terms of both magnitude and

direction. For example, consider data point (i) and the arrow

highlighted nearby. The direction of this arrow and the direc-

tion of the line segment joining point (i) to point ( j) roughly

agree (some discrepancy is possible given that the time

points are separated by a coarsely granular step of 3 days).

Additionally, the length of the arrow and the length of the

line segment also agree. The line segment is approximately

three times as long as the arrow, a ratio consistent with the

ratio of durations of time that the line segment and arrow are

supposed to represent. By observing qualitative agreement

between the dataset in (g) and the velocity field that was speci-

fied using the other datasets in (a)–(d ), we have completed a

preliminary, qualitative validation of equations (3.1) and (3.2).

3.3. Prediction
We referred to the procedure in §3.2 as a preliminary valida-

tion. The phase portrait in (h) contains a variety of arrows

describing population dynamics anticipated for a wide
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array of starting population sizes and compositions. The

datapoints in (g) that we used to validate the phase portrait

probe only a small set of these arrows. To challenge the fitting

equations further, we plan additional experiments; three

examples are shown in ( j ), (k) and (l ). We would perform

an experiment with the initial population composition at

point ( j ) to determine whether ensuing population dynamics

would follow the grey arc predicted to advance from ( j ) in a

counterclockwise fashion. If the dynamics were different, we

could speculate that the dynamics advancing from an initial

population composition depended on the history of the cul-

ture preceding that ‘initial’ composition. In other words, we

would consider a possible ‘memory effect’ not accounted
for in equations (3.1) and (3.2). In experiment (k), the initial

sizes both of population x and of population y are larger

than the corresponding initial values from the dataset in

(g). If the counterclockwise loop originating from (k) were

observed, the phase portrait would be further validated.

The phase portrait predicts that a small counterclockwise

loop would be obtained by preparing a co-culture with smal-

ler values for both x and y, for example at point (l ). If the

ensuing dynamics traced out a wiggle, the phase portrait

would be invalidated, and we would conclude that equations

(3.1) and (3.2) failed to describe the experimental system.

While we have used a simple two-population cartoon

to illustrate procedures for training, validation and the
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planning of additional experiments, the same approach and

analogous equations can be applied to systems containing

more than two populations, as described in the electronic

supplementary material.
lsocietypublishing.org
Interface
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4:20140037
4. Discussion
In this tutorial, we have shown how replicator dynamics

equations can be trained and validated using population sizes

measured in co-culture over time. We close by discussing

potential clinical implications.

4.1. Clinical implications
The purpose of modelling is not merely to obtain a consistent

set of propositions, equations and data. Particularly in cancer

research, we wish to obtain strategies for optimizing clinical

treatment and insights into basic biology.

Dingli et al. [14] proposed ‘changing the dynamics’ as a

therapeutic aim of applying EGT to cancer. Figure 4 shows

an example of a potential strategy that the phase portrait

analysis described in this tutorial can help us to hypothesize.

Under one drug, a two-population system might be described

using the velocity field in (a). When a different drug is

applied, the dynamics of the population might be altered to

conform to a different velocity field, as in (b). If either cell

type is sufficient to cause disease, then neither treatment

applied alone produces a desirable outcome. The treatment

in (a) leads to unbounded expansion of population y, whereas

the treatment in (b) leads to unbounded expansion of popu-

lation x. However, a scheduled combination of the two

drugs eventually reduces both populations. Panel (c) shows

that the quivers from (a) and (b) form angles of less than

1808 that approximately face the origin, (x, y) ¼ (0, 0). This

geometric property has the consequence that alternating

between the two drug treatments in sequence will reduce

both cell populations in a ‘tacking’ trajectory. If the angles

in (c) opened away from the origin, then the alternating
drug schedule would cause both populations to expand. This

example illustrates one way that quantitative thinking can pro-

vide insights beyond those obtained through verbal reasoning

alone. Because treatments (a) and (b) reduce populations x and

y, respectively, an analysis based on word models would prob-

ably have identified a combination of treatments (a) and (b) as

potentially beneficial in reducing both populations x and y.

However, it would have been difficult to recognize the angle

between the blue and orange quivers in (c), on the basis of

word models alone, as a potentially critical predictor for the

success of a combination schedule.

Comparing velocity fields corresponding to different

drug treatment conditions can help in the identification of

combination treatment schedules to achieve desired out-

comes. Just as a clinician uses the visual appearance of a

stained cell culture and a ‘rule out’ tree, as in (d ), to identify

a pathogen infecting a patient, oncologists working alongside

physical scientists might one day be able to use the geometric

properties of velocity fields and a physical sciences–oncology

‘rule out’ chart, as in (e), to determine which personalized

drug schedules could be beneficial for a particular patient.

Such a chart would realize a longstanding hope that

understanding cell–cell interactions could point to impro-

ved strategies for drug combinations and time-sequenced

scheduling in cancer therapy [21].
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