
RESEARCH ARTICLE

Direction-dependent interaction rules enrich

pattern formation in an individual-based

model of collective behavior

Cole Zmurchok1*, Gerda de Vries2

1 Department of Mathematics, University of British Columbia, Vancouver, British Columbia, V6T 1Z2,

Canada, 2 Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta,

T6G 2G1, Canada

* zmurchok@math.ubc.ca

Abstract

Direction-dependent interaction rules are incorporated into a one-dimensional discrete-time

stochastic individual-based model (IBM) of collective behavior to compare pattern formation

with an existing partial differential equation (PDE) model. The IBM is formulated in terms of

three social interaction forces: repulsion, alignment, and attraction, and includes information

regarding conspecifics’ direction of travel. The IBM produces a variety of spatial patterns

which qualitatively match patterns observed in a PDE model. The addition of direction-

dependent interaction rules exemplifies how directional information transfer within a group

of individuals can result in enriched pattern formation. Our individual-based modelling

framework reveals the influence that direction-dependent interaction rules such as biological

communication can have upon individual movement trajectories and how these trajectories

combine to form group patterns.

Introduction

Flocks of birds, schools of fish, and insect swarms are examples of collective behavior exhibited

by animals. These groups of animals form spatial patterns as individuals coordinate their

movements in efforts to search for a mate, forage for sustenance, or evade predation. It is sci-

entifically important to understand the underlying decisions and rules that lead groups of indi-

viduals to form spatial patterns. For instance, it is often necessary to understand how to

develop controls to these behaviors, in efforts to develop effective fishing strategies [1], to pre-

dict and prevent insect outbreaks [2], or to manage the movements of collections of robots [3].

In this paper, we focus on groups of individuals that are self-organized. We do not include

external factors such as environmental conditions or spatial structures that lead to group for-

mation, but instead focus on those spatial patterns that result from interactions between con-

specifics. Within this context, there are two general methodologies for studying collective

behavior. On the one hand, continuum models track the dynamics of the density of individuals

throughout time and space. On the other hand, an individual-based approach can be taken,

where a set of rules dictates the decision-making and subsequent movement of members of
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the population in question. A variety of analytical methods exist for continuum models, and

the study of these types of models is quite active [4, 5]. Studies of individual-based models

(IBMs) rely on computer simulations and qualitative results; however, a few quantitative meth-

ods, such as coarse-grained analysis [6, 7], are beginning to become prevalent.

Many IBMs of collective behavior are “three-zone models” which incorporate three social

forces that govern the movements of individuals (repulsion, alignment, and attraction). These

models seek to elucidate the mechanisms that may lead to collective behavior and pattern for-

mation. For example, an IBM for schooling fish in three-dimensions in which individuals

move in response to attraction, repulsion, and parallel orientation of nearby conspecifics can

capture observed schooling behaviors [8, 9]. The simulated school forms spatial patterns such

as a highly polarized group, a loosely polarized group, and captures the merging behavior of

two smaller schools. Characteristics such as the degree of polarization (alignment of individu-

als within the school) and nearest neighbour distance match well with experimental data [9].

Some IBMs use decision-trees to govern the movement of the individuals [10]. A decision-tree

describes how an individual’s response to conspecifics depends on a hierarchy of social inter-

actions. In particular, using a stochastic decision-tree model [10] suggests that group cohesion

is maximized by optimizing the size of a neutral zone between the repulsive and attractive

social interaction forces. Individual-based models can also capture the transitions in group

behavior related to minor changes in the individual interactions such as stochastic switching

between states [6, 7], how the spatial position of individuals affects their influence on swarm

behaviour [11], or how the history of the group structure influences the collective behavior as

the interaction rules change [12].

Alongside modelling efforts, recent data-driven studies attempt to solve the inverse prob-

lem: given a set of movement trajectories of individuals, what are the interaction rules that led

to these behaviors? To this end, it is possible to infer individual interaction rules from recorded

trajectories of surf scoters, a species of waterfowl. A three-zone model with an additional fron-

tal-zone interaction fits the surf scoter data best, and suggests that observed flocking behaviors

can be explained by zonal models [13, 14]. The collective behavior of small schools of mosqui-

tofish and golden shiners provide evidence for attractive-repulsion interactions mediated by

speed, yet reveal a lack of evidence for explicit body-orientation (alignment) interactions [15,

16]. Visual information transfer best describes the underlying interaction network that con-

nects signal emitters and receivers, while metric (interactions within a fixed distance) or topo-

logical (interactions with a fixed number of individuals) information can still explain the flow

of information within a group [17]. In other species, such as starlings, three-dimensional

reconstruction and simulations of collective flocking behaviour revealed that interactions do

not depend on the metric distance between conspecifics, but rather topological distance—

where a flocking individual interacts with a fixed number of individuals on average [18].

Nonetheless, these data-driven studies motivate the idea that interactions between individuals

may be more subtle than simple repulsion, alignment, and attraction interactions, but may

include specific frontal interaction zones [13], density-dependent speed interactions [15, 16],

or visual information transfer [17]. Additionally, many examples of communication can be

found in biological systems. The movement of Mormon crickets, for example, is influenced by

the signals perceived from conspecifics moving in the same direction as the target individual

[19]. In some species of fish, neighbours directly ahead are used to guide movements in place

of fish directly adjacent [20], and some species of birds use directional sound signals to coordi-

nate movements where the signal receiver must be faced by the signal emitter [21].

Direction-dependent animal communication mechanisms were proposed in [22–24] as an

important ingredient in pattern formation. In this body of work, the authors superimpose

mechanisms that describe not only how much information an individual receives, but also the
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manner in which that information is received onto the traditional repulsion-alignment-attrac-

tion social interaction zone framework [22]. Direction-dependent communication mecha-

nisms are incorporated through a variety of submodels, which each consider a different

mechanism of information transfer. As a result of these direction-dependent mechanisms,

novel spatial patterns were discovered for models of this type, and the variety of group patterns

could be explained within one modelling framework [22–24]. Moreover, in continuum three-

zone PDE models, pattern formation can be studied through linear stability [5, 22, 23] and

weakly nonlinear analysis [24]. An extension to the PDE model with density-dependent move-

ment speeds was used to characterize the mechanisms that lead to the formation of very dense

groups [24, 25]. A two-dimensional (2D) analogue to the PDE model is presented and studied

in [26], and was later extended to incorporate predator-prey interactions [27]. Selective repul-

sion and attraction interactions, which depend on the relative velocity of the signal receiver

and emitter, have also been studied in a 2D IBM [28]. In this way, individuals differentiate

between approaching and retreating conspecifics through these proposed interactions, and

consequently a variety of spatial patterns are found [28].

For the purposes of investigating the effect of incorporating direction-dependent interac-

tion rules on the formation of spatial patterns, we focus on IBMs for three reasons. Firstly, the

effect of direction-dependent communication mechanisms on collective behavior has been

examined in the context of continuum models [4, 22–25], but not fully in the realm of IBMs—

selective attraction and repulsion mechanisms have been considered by [28] and the influence

of one direction-dependent alignment mechanism on collective behavior has been studied

through “coarse” bifurcation diagrams derived from simulated data [7]. Secondly, we seek to

describe an alternative individual-based model framework to explore ideas introduced by Efti-

mie and co-authors [4, 22–25]. This is the main purpose of this investigation—to determine

whether an individual-based model can reproduce the patterns found in the PDE model with

direction-dependent interaction rules. This new modelling framework may lend itself to better

incorporate results from data-driven studies as discussed above. We can explore the effects of

mediating attractive-repulsion interactions by speed, including alignment interactions [15,

16], or the influence of visual information transfer [17] on pattern formation. Without biologi-

cal data, such as spatial trajectories of individuals during aggregation events, we do not aim to

infer the mechanisms behind collective behavior but rather we seek to elucidate how direc-

tional-dependent interaction rules may lead to the formation of spatial patterns. Thirdly, an

individual-based approach permits insight into the individual movement trajectories and how

these trajectories combine to form a group pattern.

The investigation of direction-dependent interaction rules mechanisms in IBM of collective

behavior began in [29, 30]. We describe the development of the IBM by imposing social inter-

action kernels on a stochastic individual-based model, and define 5 submodels which prescribe

different direction-dependent interaction rules. Numerical simulations of the IBM demon-

strate the formation of spatial patterns analogous to those found in the analogous PDE model.

We also find that the effect of a small change in the repulsion interaction kernel is only a small

qualitative change in pattern formation. A parameter sweep of the model reveals the depen-

dence of pattern formation on the choice of social interactions, and illustrates the wide variety

of patterns formed by the IBM. The parameter sweep also reveals that the same pattern may be

formed with different combinations of direction-dependent interaction rules and the social

interaction forces (repulsion, alignment, and attraction). Moreover, the parameter sweep sug-

gests that certain patterns only form under certain direction-dependent interactions and inter-

action forces (for example, breathers are only found with attraction and repulsion interactions

mediated by direction-dependent interactions as in submodel M4). Density-dependent move-

ment speed in the IBM results in groups that split and merge. Determining whether the

Direction-dependent interaction rules in a model of collective behavior
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patterns formed in the PDE model can also be formed in the IBM is the main purpose of this

investigation. Confirming the correspondence between the IBM and the PDE model suggests

that our individual-based framework is suited to further study in higher dimensions and for

adaptation to specific biological phenomena.

Methods

In this section, we formulate the IBM with direction-dependent interaction rules. Specifically,

in Individual-Based Approach, we formulate a one-dimensional IBM that describes a popula-

tion of right- or left- moving individuals, and how these individuals change direction. Individ-

uals change direction in response to distant individuals via the social interaction forces. The

social interaction forces and the incorporation of direction-dependent interaction rules are

discussed in Social Interaction Forces.

Individual-based approach

Individual interactions with conspecifics are described through three social interaction forces:

repulsion, alignment, and attraction. Repulsion describes the tendency for individuals at close

distances to avoid each other, alignment describes the tendency for individuals to align with

individuals at intermediate distances, and attraction describes the tendency for individuals to

be attracted toward distant individuals. In one-dimension, the social interaction forces mani-

fest as intervals surrounding a target individual at location x, as in Fig 1. Conspecifics in these

intervals exert a social force and affect the movement of the target individual. For example, if

many conspecifics are found in the zone of attraction of an individual, that individual will

move towards the individuals in the zone of attraction. In contrast, if many individuals with

the same velocity are found within the reference individual’s zone of alignment, that individual

will tend to align their velocity of those individuals. The influence of incorporating alignment-

based interactions versus repulsion- and attraction-based interactions is investigated in Spatial

Pattern Formation.

An individual-based model, consisting of N individuals moving in one dimensional space,

can be used to describe this social interaction mechanism. Following the development of the

PDE model in [22–24, 31], but using a Lagrangian approach, we track the position and the

direction of individuals moving on a line segment with periodic boundary conditions through-

out time. Our approach is to develop a discrete-time stochastic individual-based model that

has the same behaviour as the PDE model. Individual i has position xi(t) and direction vi(t) at

time t, with xiðtÞ 2 R and vi(t) = ±1. An individual with vi(t) = 1 (−1) is considered to be right-

(left-)moving, and individuals change direction in response to conspecifics in their interaction

zones. The social interaction forces felt by individual i are denoted by y�j;i, where the ± sign

indicates whether an individual is right-moving (+) or left-moving (−), and j = r, al, a denotes

repulsion (r), alignment (al), or attraction (a). A right- or left-moving individual i changes

Fig 1. Social interaction zones. Cartoon depiction of the three social interaction zones surrounding an individual at

location x. Repulsion (r) acts over short distances from the reference individual at x, alignment (al) over intermediate

distances, and attraction (a) over longer distances. These zones may be disjoint, as illustrated, or may overlap.

https://doi.org/10.1371/journal.pone.0198550.g001
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direction with rate λþi or λ�i , respectively, dependent on the social interaction forces:

λ�i ¼ λ1 þ λ2f ðaðy�r;i � y�a;i þ y�al;iÞÞ; ð1Þ

where the constants λ1 and λ2 describe a base-line turning rate and the bias turning rate,

respectively, α is a scaling factor, and the turning function f is some dimensionless, bounded,

and increasing function. Here, f is chosen to be a logistic function,

f ðxÞ ¼
1

1þ e� 2ðx� y0Þ
¼

1

2
þ

tanh ðx � y0Þ

2
; ð2Þ

with y0 = 2. y0 is chosen so that in the absence of social interactions, x = 0, movement is domi-

nated by random turning. With y0 = 2, f(0) is near zero, which implies λ�i � λ1. Moreover, the

repulsion and attraction social interaction forces enter the turning function with the opposite

sign as these two interactions have opposite biological effects. Hence, the movement of indi-

viduals is influenced by both the base-line turning rate as well as the social interaction forces

which factor into the bias turning rate. The scaling factor, α, ensures that we can translate

between the different dimensions in the IBM (number of individuals) and the PDE model

(density of individuals), so that the same parameter space can be used as in the PDE model

(see Spatial Pattern Formation).

In each timestep, individuals first receive stimuli based on the social interaction forces and

calculate their turning rate. They then update their position synchronously by moving in their

direction of travel with constant speed γ. Lastly, individuals change direction if their probabil-

ity of turning, λ�i Dt, is sufficiently large. This adds stochasticity to the IBM so that individuals

may not always change direction. The algorithm for updating position and direction is as

follows:

1. Calculate λ�i .

2. Change position and direction:

xiðt þ DtÞ ¼ xiðtÞ þ gviðtÞDt; ð3Þ

viðt þ DtÞ ¼

(
� viðtÞ; if λ�i Dt � X;

viðtÞ; otherwise;
ð4Þ

where X is a uniformly distributed random variable on [0, 1], updated at each timestep.

Individual positions and velocities are updated synchronously.

To complete the model development, the social interaction forces and direction-dependent

interaction rules need to be described. How an individual measures the social interaction

forces is described in the next section, Social Interaction Forces and Communication Mecha-

nisms. Direction-Dependent interaction rules describe which signals and how much of those

signals, are received by an individual.

Social interaction forces and direction-dependent interaction rules

To calculate the social interaction forces, translated Gaussian kernels, Kj(x), j = r, al, a, are cho-

sen to weight the influence of individuals in each of the social interaction zones. The choice of

these social interaction kernels is inspired by the choice of the interaction kernels in the

Direction-dependent interaction rules in a model of collective behavior
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corresponding PDE model [22–24]:

KjðsÞ ¼
1
ffiffiffiffiffiffiffiffiffiffiffi
2pm2

j

q exp
� ðs � sjÞ

2

2m2
j

 !

; ð5Þ

where sj describes the centre of the Gaussian kernel and mj describes the width (j = r, al, a). In

practice, these kernels are truncated to avoid infinite ranges for the social interaction forces.

The parameters sj and mj are chosen to organize the social interaction zones in a biologically

meaningful way. Parameter values are summarized in Table 1; Gaussian kernels are illustrated

in Fig 2(a). The choice of translated Gaussian kernels follows the development of the PDE

model [22, 23], and is equivalent with classical choices for interaction kernels for attraction

and repulsion [32]. Some models for collective behaviour permit more overlap between the

social interaction zones [5]; however, in the IBM, we choose parameters for the alignment ker-

nel so that it only has a small amount of overlap with the repulsion and attraction kernels.

The formula for y�j;i, j = r, al, a, not only depends on the weighting of conspecifics in the

interaction zones as described above, but also on how information between individuals in

interaction zones is shared. A direction-dependent interaction rule could, for example, be

Table 1. Social interaction kernel parameter values.

Kernel sj mj

Repulsion 0.25 0.03125

Alignment 0.5 0.0625

Attraction 1 0.125

Parameter values for the Gaussian social interaction kernels shown in Fig 2(a). sj describes the centre of each

Gaussian kernel and mj describes the width. Here, mj = sj/8 for j = r, al, a.

https://doi.org/10.1371/journal.pone.0198550.t001

Fig 2. The social interaction kernels, Kj(s), for j = r, al, a. In (a), the repulsion kernel (red, solid) weights conspecifics close

to the target individual strongly, the alignment kernel acts for intermediate distances (blue, dashed), and the attraction

kernel acts on large distances (green, dotted). In (b), the repulsion kernel (red, solid) is centered over the target individual,

adding biological realism as the conspecifics very close to the target individual are weighted most heavily for the repulsion

social interaction force. The alignment (blue, dashed) and attraction (green, dotted) kernels remain unchanged.

https://doi.org/10.1371/journal.pone.0198550.g002
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purely directional, and individuals could only receive information from individuals traveling

towards them. That is, with this interaction rule, we are not only counting all individuals in a

certain zone, but also taking direction of travel into account. In this way, to calculate the social

interaction forces, a target individual needs to distinguish not only the location of conspecifics,

but also their direction of travel. By way of example, one could define a direction-dependent

interaction rule to be that the target individual uses information from all neighbours in the

repulsion and attraction zones, but only information from individuals heading toward it in the

alignment zone, as illustrated in Fig 3(a) and 3(b). A right-moving reference individual i at xi

is surrounded by individuals to the right (x + s) and individuals to the left (x − s). For repulsion

and attraction, the target individual uses information from all neighbours in these zones as

indicated by the right and left moving arrows in Fig 3(a). For alignment, the target individual

only uses information from conspecifics moving toward it as indicated by right facing arrow at

Fig 3. Cartoon depiction of the direction-dependent interaction rules in submodels M1 through M5. A right-moving

reference individual at x receives signals from distant individuals, to the right at x + s, and from the left at x − s. Arrows at x
+ s and x − s indicate whether the reference individual will receive stimuli from distant right-moving (right arrow) and

distant left-moving (left arrow) neighbours. For example, the direction-dependent interaction rules in submodel M1

describe how a right-moving reference individual at x receives signals from distant individuals, to the right at x + s and from

the left at x − s. For attraction and repulsion (a), this individual uses all information from neighbours regardless of their

direction of travel. Arrows pointing left and right indicate this. For alignment (b), the reference individual only uses

information from neighbours heading toward it, as indicated by the arrows heading toward the reference individual. The

submodels illustrated here are the same as those considered in [22–24].

https://doi.org/10.1371/journal.pone.0198550.g003
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x − s and by the left facing arrow at x + s in Fig 3(b). In [22–24], this is called submodel M1,

and we will adopt this naming scheme. The interaction rules specified in submodel M1 are

direction-dependent as information transfer between individuals depends on the direction in

which conspecifics are traveling. The social forces for submodel M1 thus need to reflect this

direction-dependent interaction rule.

To incorporate the direction-dependent interaction rules as described in submodel M1 in

the social forces, y�j;i, j = r, al, a, we consider how a reference individual i at xi receives informa-

tion from conspecifics in its social interaction zones. For repulsion and attraction, this individ-

ual uses information about all neighbours in its repulsion and attraction zones, regardless of

the neighbours’ direction of travel. For alignment, this individual uses information about only

those neighbours who are traveling toward it in the alignment zone. Define qj, j = r, al, a, to be

the magnitude of the repulsive, alignment, and attractive force, respectively. Individual i at xi

experiences a repulsive force, y�r;i, given by

y�r;i ¼ �qr

X

j2ZR
r;i

Krðjxi � xjjÞ � qr

X

j2ZL
r;i

Krðjxi � xjjÞ; ð6Þ

where Kr(s) is defined in (5), and ZR;L
r;i represents individual i’s zone of repulsion, to the right

(superscript R) or to the left (superscript L). The + and − superscripts represent the direction

of the target individual i, and the ± and� signs are used to compare the social interaction

forces between left (L) and right (R) zones. Similarly, as information is used from all neigh-

bours in the zone of attraction, individual i at xi then experiences an attractive force, y�a;i, given

by

y�a;i ¼ �qa

X

j2ZR
a;i

Kaðjxi � xjjÞ � qa

X

j2ZL
a;i

Kaðjxi � xjjÞ; ð7Þ

where ZR;L
a;i represents individual i’s zone of attraction to the right (R) or to the left (L). The

repulsive and alignment forces compare the strength of the forces ahead and behind the refer-

ence individual, as it is biologically relevant for an individual be repelled by nearby individuals

or to be attracted to distant individuals, regardless of their direction of travel. On the other

hand, the alignment forces compare the strength of forces exerted by right- or left-moving

individuals (subject to the direction-dependent interaction rule), as the biological meaning of

alignment is to adjust one’s direction to match that of neighbours at an intermediate distance.

Since individual i uses information about only those neighbours who are traveling toward it in

the alignment zone, the alignment force selects only those individuals who are left-moving (vj

< 0) to the right (R) of individual i, or those individuals who are right-moving (vj > 0) to the

left (L) of individual i. Thus, the alignment force is given by

y�al;i ¼ �qal

X

j2ZR
al;i

vj<0

Kalðjxi � xjjÞ � qal

X

j2ZR
al;i

vj>0

Kalðjxi � xjjÞ;

ð8Þ

where ZR;L
al;i represents individual i’s zone of attraction to the right (R) or to the left (L).

Direction-dependent interaction rules are not restricted to the mechanism described as

submodel M1. In [22–24] and [29, 30], submodel M1 is one of five direction-dependent inter-

action rules considered. These five submodels capture various information-receiving mecha-

nisms, and exemplify how different environmental or biological constraints may be

incorporated into this model. The submodels are defined as follows:

Direction-dependent interaction rules in a model of collective behavior
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M1: the repulsion and attraction social interaction forces depend on information from all indi-

viduals in the repulsion and attraction zones, respectively; however, the alignment social

interaction force only depends on individuals heading towards the reference individual (as

above, see Fig 3(a) and 3(b));

M2: all three social interactions depend on all individuals, regardless of their direction of travel

within the social interaction zones (see Fig 3(c) and 3(d));

M3: all three social interaction forces depend only on the information received from individu-

als ahead of the reference individual (see Fig 3(e) and 3(f));

M4: all three social interaction forces depend on the information from the zones ahead and

behind, but only from those neighbours who are moving toward the reference individual

(see Fig 3(g) and 3(h));

M5: all three social interaction forces depend only on the information from individuals ahead

and moving toward the reference individual (see Fig 3(i) and 3(j)).

The social interaction forces for each submodel considered in this paper are described in

Table 2.

This submodel paradigm allows for direction-dependent interaction rules to be varied

beyond the five mechanisms proposed above and studied via simulations of the IBM. To incor-

porate direction-dependent interaction rules into the IBM, it is only necessary to specify which

conspecifics a reference individual will interact with for the repulsive, alignment, and attractive

social interaction forces.

Varying interaction kernels

The choice of the social interaction kernels is biologically motivated, yet left to the modeller.

Individuals should be repelled by conspecifics at close ranges to avoid collisions; individuals

wish to orient their velocity with individuals at intermediate distances or distances that are

“just right”; individuals wish to move toward distant individuals in order to remain in contact

with them. The kernels discussed above do not adequately capture these ideas, as neighbours

very close to an individual are not weighted as heavily in the repulsion interaction force as

those neighbours who are located near ±sr. We modify the repulsion kernel to be centred

about 0, as illustrated in Fig 2(b). Let ~mr ¼ sr=2 and define

~K rðsÞ ¼
1
ffiffiffiffiffiffiffiffiffiffiffi
2p ~m2

r

p exp
� s2

2 ~m2
r

� �

: ð9Þ

Using ~K rðsÞ as the repulsion kernel weights nearest neighbours more strongly than other indi-

viduals for the repulsion interaction force.

Density-dependent speed

In this section, we modify the IBM to allow individuals to move with density-dependent

speed. An assumption made earlier is that individuals move with constant speed γ. This may

not be biologically realistic, as an individual’s movement speed would likely be influenced by

conspecifics. For example, an individual may be motivated to slow down to avoid collision, or

to speed up to join a group of distant conspecifics. Density-dependent speeds are considered

in a two-dimensional IBM by [10] as well as work on extensions to the PDE model [4, 25–27,

31] and in other continuum models [5]. Moreover, [15] find that repulsion-based interactions

are mostly mediated by changes in speed in schools of fish.

Direction-dependent interaction rules in a model of collective behavior
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We adapt the IBM presented in Individual-Based Approach, and assume that individuals

only change direction in response to alignment interaction forces. That is, a right- or left-mov-

ing individual i changes direction with rate λþi or λ�i , dependent only on the alignment interac-

tion force, (8):

λ�i ¼ λ1 þ λ2f ðy�al;iÞ: ð10Þ

Individuals adjust their speed by comparing individuals in the attraction and repulsion zones.

It is biologically reasonable for social individuals to speed up to join distant groups, or to slow

down to avoid collision with nearby individuals. We let individuals move with speed G�i ðy
�
i Þ,

Table 2. Submodels and social interaction forces.

Submodel Repulsion & Attraction interaction force Alignment interaction force

M1 y�r;a;i ¼ �qr;a

P
j2ZR

r;a;i
Kr;aðdijÞ � qr;a

P
j2ZL

r;a;i
Kr;aðdijÞ

y�al;i ¼ �qal

P

j2ZR
al;i

vj<0

KalðdijÞ � qal

P

j2ZL
al;i

vj>0

KalðdijÞ

M2 y�r;a;i ¼ �qr;a

P
j2ZR

r;a;i
Kr;aðdijÞ � qr;a

P
j2ZL

r;a;i
Kr;aðdijÞ

yþal;i ¼ qalð
P

j2ZR
al;i

vj<0

KalðdijÞ þ
P

j2ZL
al;i

vj<0

KalðdijÞ �
P

j2ZR
al;i

vj>0

KalðdijÞ �
P

j2ZL
al;i

vj>0

KalðdijÞÞ

y�al;i ¼ qalð
P

j2ZL
al;i

vj>0

KalðdijÞ þ
P

j2ZR
al;i

vj>0

KalðdijÞ �
P

j2ZL
al;i

vj<0

KalðdijÞ �
P

j2ZR
al;i

vj<0

KalðdijÞÞ

M3 yþr;a;i ¼ qr;a

P
j2ZR

r;a;i
Kr;aðdijÞ

y�r;a;i ¼ qr;a

P
j2ZL

r;a;i
Kr;aðdijÞ

yþal;i ¼ qal

P

j2ZR
al;i

vj<0

KalðdijÞ � qal

P

j2ZR
al;i

vj>0

KalðdijÞ

y�al;i ¼ qal

P

j2ZL
al;i

vj>0

KalðdijÞ � qal

P

j2ZL
al;i

vj<0

KalðdijÞ

M4 y�r;a;i ¼ �qr;a

P

j2ZR
r;a;i

vj<0

Kr;aðdijÞ � qr;a

P

j2ZL
r;a;i

vj>0

Kr;aðdijÞ

y�al;i ¼ �qal

P

j2ZR
al;i

vj<0

KalðdijÞ � qal

P

j2ZL
al;i

vj>0

KalðdijÞ

M5 yþr;a;i ¼ qr;a

P

j2ZR
r;a;i

vj<0

Kr;aðdijÞ

y�r;a;i ¼ qr;a

P

j2ZL
r;a;i

vj>0

Kr;aðdijÞ

yþal;i ¼ qal

P

j2ZR
al;i

vj<0

KalðdijÞ

y�al;i ¼ qal

P

j2ZL
al;i

vj>0

KalðdijÞ

The social interaction forces depend directly on the direction-dependent interaction rules prescribed by each

submodel. Here, dij = |xi − xj| is the distance between individuals i and j, qj, j = r, al, a, is the magnitude of the

interaction force, Kj, j = r, al, a, are the social interaction kernels, (5), and ZR;L
j;i , j = r, al, a, describe individual i’s zone

of repulsion, alignment, or attraction to the right (superscript R) or to the left (superscript L). The direction of

individual j, vj, is necessary to distinguish between right- and left-moving individuals. The repulsive and alignment

forces compare the number of neighbours ahead and behind the reference individual, as it is biologically relevant for

an individual be repelled by nearby individuals or to be attracted to distant individuals. Alignment forces compare

the number of right- or left-moving individuals (subject to the direction-dependent interaction rule), as the

biological meaning of alignment is to adjust one’s direction to match that of neighbours at an intermediate distance.

https://doi.org/10.1371/journal.pone.0198550.t002
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where

G�i ðy
�
i Þ ¼ gð1þ tanh ðy�i ÞÞ; ð11Þ

γ = 0.1 is a base-line movement speed, and y�i ¼ y�a;i � y�r;i compares the attraction and repul-

sion social interaction forces. To understand how the non-local speeds depend on individuals

in the repulsion and attraction interaction zones, consider a right-moving individual i at x. For

the sake of example, ignore conspecifics to the left of the individual. If yþa;i > yþr;i, then this indi-

vidual senses a large number of individuals in its zone of attraction relative to the number of

individuals in its zone of repulsion. Consequently, the individual will be motivated to speed up

and join the distant group. This results in the speed of individual i to increase since Gþi ðy
þ
i Þ is

an increasing function. Thus, the individual increases its speed to join the distant group of

individuals. On the other hand, if yþa;i < yþr;i, the individual would be motivated to slow down

to avoid collision. This is reflected in Eq (11). To incorporate this density-dependent speed

into the IBM, we modify the position and velocity updating rule. In this case, in each time step,

individuals make two adjustments: to their direction, and to their movement speed. The algo-

rithm for updating position and velocity is as follows:

1. Calculate λ�i ;

2. Change direction:

viðt þ DtÞ ¼

(
� viðtÞ; if λ�i Dt � X;

viðtÞ; otherwise;
ð12Þ

3. Calculate G�i ðy
�
i Þ using individual i’s new direction of travel, vi(t + Δt);

4. Move with density-dependent speed:

xiðt þ DtÞ ¼ xiðtÞ þ G�i ðy
�
i Þviðt þ DtÞDt: ð13Þ

The additional step of calculating the density-dependent movement speed using vi(t + Δt)
was not needed in the case of constant movement speed, as the individuals only respond to

conspecifics by changing direction. In this case, the recalculation of social interaction forces is

required to ensure that individuals do not erroneously respond to signals.

Results

In this section, we simulate the model using a variety of direction-dependent interaction rules

and a wide range of parameters. The previous investigation into the behavior of the PDE

model revealed formation of spatial patterns [22–24]. Here, we aim to reproduce the spatial

patterns previously seen in the analogous PDE model. This is the goal of Spatial Pattern For-

mation. In the remaining sections, Revised Repulsion Kernel, and Splitting and Merging Beh-

vaior, we study the patterns produced by the IBM with the revised repulsion kernel and with

density-dependent movement speed, respectively.

Spatial pattern formation

N = 500 individuals are randomly scattered on a domain of length L = 10 with periodic bound-

ary conditions. The initial positions of the individuals are selected from a uniform distribution

Direction-dependent interaction rules in a model of collective behavior
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on the domain. The social interaction kernels are truncated at 2sj, j = r, al, a, respectively, to

avoid infinite interaction ranges. Individuals continue to move with a constant speed γ = 0.1.

To ensure that we can translate between the parameter space in the analogous PDE model, we

set the scaling factor a ¼ AL
N , where A = 2 is the total population size given in [22–24]. This nor-

malization ensures that the magnitudes of the social interaction forces are scaled to match the

choices of λ1, λ2, and the turning function, (2), in [22–24]. The normalization constant, in

effect, scales the social interaction forces by the reciprocal of the density, L
N, then by A = 2, to

match the total population size from [22–24].

Examples of the spatial patterns observed are shown in Fig 4. Individual trajectories are

plotted using different colours, revealing the behavior of individuals throughout the domain.

The initial transient dynamics have been eliminated, and the spatial patterns persist well

beyond the time period presented. Initial conditions do not affect the qualitative patterns

observed. Corresponding normalized density plots are shown in Fig 5. The density plots in

Fig 5 allow the interior high- and low-density structure of the aggregations to be observed and

for the patterns to be compared to those of the PDE model. A kernel smoothing method is

used to generate the number density plots from the individual trajectories, and then the den-

sity is normalized by the total number of individuals (so the maximum density is unity).

The kernel smoothing method estimates the density of individuals through space at time

t, ρ(x, t), as

rðx; tÞ ¼
1

Nh

XN

i¼1

K
x � xiðtÞ

h

� �

; ð14Þ

where KðxÞ ¼ exp ð� x2=2Þ=
ffiffiffiffiffiffi
2p
p

is a standard normal distribution, xi(t) are the positions of

each of the n individuals, and h is a smoothing parameter (fixed at h = 0.1).

Stationary pulses consist of an aggregation that does not travel and can have high-density

subgroups, or have constant internal density. Figs 4(a) and 5(a) show stationary pulses with

high-density subgroups, and Figs 4(b) and 5(b) show stationary pulses with constant internal

density. Ripples are formed when left-moving and right-moving groups of individuals inter-

sect but continue moving apart. Figs 4(c) and 5(c) show the formation of the ripple pattern.

Figs 4(d) and 5(d) show stationary pulses that lose individuals from the edges of the groups,

but eventually rejoin a group. This creates a feather-like pattern as individuals move away

from the larger stationary pulse. A traveling pulse is a large group of individuals that travels

together; whereas, a traveling train consists of multiple small groups of individuals that travel

together. An example traveling pulse is shown in Figs 4(e) and 5(e). Figs 4(f) and 5(f) reveal

multiple small groups moving across the domain in the traveling train pattern. When a group

of individuals behaves like a traveling pulse but reverses direction sporadically, a zigzagging

pulse is formed, as in Figs 4(g) and 5(g). Aggregations that expand and contract over time are

called breathers. Breathing patterns can be stationary, as in Figs 4(h) and 5(h), or can travel

across the domain, as in Figs 4(i) and 5(i). The spatial patterns formed by the IBM are not tran-

sient, but persist as quasi-stationary patterns. Simulations of the model for large time-steps

reveal that the group patterns persist after some transient dynamics that occur as the spatial

patterns form.

Simulations of the IBM with the parameter values in Table 3 provide specific examples of

well-defined patterns that match the PDE model. To ensure the IBM matches the behavior of

Direction-dependent interaction rules in a model of collective behavior
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Fig 4. Examples of patterns obtained by various direction-dependent interaction rules. Parameters and rules (submodel) are described in Table 3, and boundary

conditions are periodic.

https://doi.org/10.1371/journal.pone.0198550.g004
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Fig 5. Density plots of patterns obtained by various direction-dependent interaction rules. Bright colours indicate high numbers of individuals, where the

number density of individual is normalized by the total number of individuals. Density estimates are obtained via a kernel smoothing estimate from the

corresponding trajectories in Fig 4. Subfigures correspond to the patterns shown in Fig 4. Parameters and rules (submodel) are described in Table 3.

https://doi.org/10.1371/journal.pone.0198550.g005
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the PDE model throughout parameter space, numerical simulations of the IBM were per-

formed using the same parameter spaces described in [31]:

Case (a): Repulsion and attraction only. In this case, the fixed parameters are qal = 0, γ = 0.1,

λ1 = 0.2, and λ2 = 0.9. The magnitude of the repulsive and attractive social interaction

forces, qr and qa, are varied, with (qr, qa) 2 [0.5, 9].

Case (b): Alignment only. In this case, the fixed parameters are qr = qa = 0, γ = 0.1, and the

influence of turning rates is investigated. Set λ1 ¼
0:2

a
and λ2 ¼

0:9

a
. α and qal are varied, with

α 2 [0.006, 1] and qal 2 [0.5, 10].

Case (c): All social interactions. In this case, we fix γ = 0.1, λ1 = 0.2, and λ2 = 0.9. The magni-

tudes of the social interaction forces are varied, with (qr, qal, qa) 2 [1, 10].

Each of these parameter regimes was investigated using the direction-dependent interaction

rules described by submodels M1 through M5. Numerical simulations for the described range

of parameters were completed for each submodel, M1 through M5, for each parameter case.

To determine if the parameter case would form specific spatial patterns, the results from the

simulations were qualitatively compared to patterns in Figs 4 and 5. The results of this investi-

gation are described in Table 4 by indicating which patterns form as a result of considering a

certain submodel and parameter regime (Case (a), (b), or (c)). For example, the interaction

rules described by submodel M1 with parameters in case (a) can produce stationary pulses.

Table 4. Patterns produced by the IBM.

Model Stat. Pulse Ripples Feathers Trav. pulse Trav. train Zigzag Breathers Trav. breathers

M1 (a),(b),(c) - - (c) (b) (c) - -

M2 (a),(c) - - (c) (c) (c) - -

M3 - - (a),(c) (b),(c) (b) - - -

M4 (b) - (c) - (b) - (a) (a)

M5 (b) (a),(c) - - - - - -

Patterns produced by the IBM for submodels M1 through M5. (a), (b) and (c) indicate that the corresponding pattern was produced by parameters from the

corresponding parameter regime (see text). Dashes indicate that the parameter was not observed for any of the parameter regimes.

https://doi.org/10.1371/journal.pone.0198550.t004

Table 3. Parameter values produce spatial patterns.

Pattern Submodel λ1 λ2 qr qal qa
Stationary pulse 1 M1 0.2 0.9 2.4 0 2

Stationary pulse 2 M2 0.2 0.9 0.5 0 4

Ripples M5 0.2 0.9 1.1 2 1.5

Feathers M3 0.2 0.9 6.4 0 6

Traveling pulse M1 0.2 0.9 0.5 2 1.6

Traveling train M3 6.67 30 0 2 6

Zigzag pulse M2 0.2 0.9 1 2 6

Breathers M4 0.2 0.9 1 0 2

Traveling breathers M4 0.2 0.9 4 2 4

Parameter values and submodels that produce spatial patterns. In this study, fixed model parameters are N = 500, L = 10, A = 2, Δt = 0.05 and γ = 0.1.

https://doi.org/10.1371/journal.pone.0198550.t003
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Submodel M1 with parameters in case (b) can produce 2 different types of behavior, namely

stationary pulses, traveling trains. Submodel M1 with parameters in case (c) can produce sta-

tionary pulses, traveling pulses, and zigzag pulses. Dashes indicated that the particular pattern

has not been observed for that range of parameters, but does not rule out the formation of a

specific type of pattern for a specific submodel. This investigation suggests the importance of

alignment in the formation of moving groups. Traveling groups, such as the traveling pulse

and traveling train, appear to require non-zero alignment forces. Traveling breathers can be

produced without alignment; however, in this case, attraction and repulsion have the same

magnitude. This allows individuals to escape the group and subsequently rejoin, leading to the

expansion and contraction of the group.

The parameter investigation reveals that the PDE model and the IBM model generally have

the same behavior. Pattern formation of the PDE model is summarized in Table 5.3 in [31]

across parameter space and the five submodels. Comparing the patterns formed by the IBM

(Table 4) with those patterns formed by the PDE model demonstrates that the two modelling

approaches reveal the same group formation patterns.

Revised repulsion kernel

Repulsion is more strongly weighted at closer distances to the target individual with the revised

repulsion kernel ~K rðsÞ. With the revised repulsion kernel, pattern formation is largely unaf-

fected as simulations show the formation of the same patterns using the same parameters as in

previous simulations. However, minor differences in pattern formation exist, such as with the

stationary pulse formation. In simulations with the original repulsion kernel, small high den-

sity subgroups of individuals form within the pulse; however, these small high density groups

of individuals do not form using the revised repulsion kernel (compare Fig 5(a) and 6). This

results from the removal of the valley between the peaks formed by the original repulsion ker-

nel (Fig 2), as previously, individuals sufficiently close could remain together as a group with-

out exerting a large repulsive force on each other by aggregating in this valley. The revised

repulsion kernel, ~K rðsÞ, does not permit individuals to cluster this closely without exerting a

strong repulsive force upon each other.

Splitting and merging behavior

We simulated the IBM with density-dependent speed to understand the behavior of the

model, and observed stationary aggregations and groups that split and merge, similar to results

found by [31] for the PDE model with density-dependent speed. We did not observe splitting

and merging behavior in either the PDE model or IBM with constant movement speed in the

parameter regimes explored, and occurs with or without alignment. Fig 7(a) and 7(b) show a

Table 5. Parameter values with density-dependent speed.

Pattern Submodel λ1 λ2 qr qal qa
(a) Stationary Pulses M1 0.2 0.9 0.1 0 0.5

(b) Stationary Pulses M1 0.2 0.9 0.1 2 0.7

(c) Splitting and Merging M1 0.2 0.9 0.1 3.5 0.2

(d) Splitting and Merging M1 0.2 0.9 0.5 0 0.1

Parameter values for patterns produced by the IBM model with density-dependent speed for the simulations shown in Figs 7 and 8.

https://doi.org/10.1371/journal.pone.0198550.t005
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high-density aggregation splitting and merging formed with qal = 3.5. Fig 7(c) and 7(d) reveal

small groups that split apart and merge with other small groups repeatedly, with qal = 0.

Discussion

Following the use of direction-dependent communication mechanisms as in [22–24], we for-

mulated the IBM on a one-dimensional domain with periodic boundary conditions, upon

which individuals can move to the right or left. Direction-dependent interaction rules were

superimposed upon the traditional social interactions of repulsion, alignment, and attraction.

These direction-dependent interaction rules describe how and how much information is

received by a target individual from conspecifics. A variety of interaction rules can be imag-

ined, but only five are considered as submodels. Our individual-based approach describes how

the ideas introduced by [4, 22–25] influence the movement of individuals as their trajectories

combine to produce group patterns.

The spatial patterns form as a result of various submodels and varied parameter space. The

IBM reproduces classical patterns, such as stationary aggregations, ripples, traveling pulses,

and traveling trains, and produces novel patterns such as feathers, zigzag pulses, breathers, and

traveling breathers. The spatial patterns observed here are noisier than the analogous patterns

formed in the PDE model from [22–24]. In the IBM, individuals change direction if their turn-

ing probability, λ�i Dt, is larger than a uniformly distributed random variable. The effect of

Fig 6. Density plot of a stationary pulse formed using the revised repulsion kernel, ~KrðsÞ. Bright colours indicate

high numbers of individuals. The number density has been normalized to 1. Parameters are identical to those for the

stationary pulse observed in Fig 5(a) (M1, λ1 = 0.2, λ2 = 0.9, qr = 2.4, qal = 0, qa = 2). Note the loss of high-density

subgroups within each stationary pulse. The revised repulsion kernel does not permit conspecifics to remain together

as a small group without exerting a large repulsive force on each other.

https://doi.org/10.1371/journal.pone.0198550.g006
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stochasticity can be seen very well in the traveling train pattern (Fig 4(f)), as individuals will

occasionally leave the group they have been traveling with and are subsequently absorbed by

another group. In the zigzag pattern (Fig 4(g)), the majority of individuals travel with the main

zigzagging group; however, a small number of individuals continue to travel past the turning

main group. Eventually, they return to the main group after being attracted by the large num-

ber of distant individuals. We did not determine the influence of demographic stochasticity

(i.e., group size or group heterogeneity) on the formation of patterns, explore the impact of

adjusting other model parameters such as Δt on the results, nor other boundary conditions.

We hypothesize that there is a critical group size below which well-defined patterns may not

form, as social interaction forces may not reach sufficiently high magnitude to affect an indi-

vidual’s turning rate. Increasing Δt will increase the turning probability, λ�i Dt, and likely create

patterns with less noise.

Fig 7. Splitting and merging behavior in the IBM with density-dependent speed results with or without

alignment. Here, submodel M1 is used with N = 500, L = 10, Δt = 0.05 and the boundary conditions are periodic.

Other parameters are given in Table 5. Corresponding density plots in are shown in Fig 8. In (a) and (b), stationary

pulses form. In (c) and (d), splitting and merging behavior is observed with (c) or without alignment (d).

https://doi.org/10.1371/journal.pone.0198550.g007
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The choice of social interaction kernels, although biologically motivated, is left to the mod-

eller. The revised repulsion interaction kernel considered in Varying Interaction Kernels

weights nearby individuals more strongly than the original social interaction kernels. Simula-

tions with the revised repulsion kernel produce spatial patterns under matching parameter

regimes as before and as in [22–24]. Small differences in pattern formation exist in simulations

with the revised kernels. For example, small, high-density subgroups do not form within the

stationary pulses with the revised repulsion kernels due to high repulsive forces at very short

distances (see Fig 6).

Data-driven studies have elucidated the interaction rules and social forces which govern the

decision-making of individuals in collective behavior [13, 15–17]. One of these studies finds

that visual sensing most accurately predicts information transfer during leadership events in

schools of fish, as compared to “standard” metric and topological interactions [17]. Here, our

parameter investigation reveals that direction-dependent interactions which model visual

information transfer (information from only ahead of the individual as in submodels M3 and

M5), can produce a wide variety of patterns under a variety of parameter regimes as shown in

Fig 8. Density plots of patterns produced by the IBM with density-dependent speed. Bright colours indicate high

numbers of individuals. The number density has been normalized to 1. Corresponding trajectories are shown in Fig 7.

https://doi.org/10.1371/journal.pone.0198550.g008
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Table 4. In flocks of surf scoters, an explicit frontal-zone of interaction with attractive-repul-

sion interactions that balances flock-wide interactions is necessary to best explain observed

patterns [13]. This directional-preference to the single nearest neighbour directly ahead of the

target individual also corroborates the inclusion of direction-dependent mechanisms.

The interaction rules of schooling fish have also been inferred by studying movement tra-

jectories [15, 16]. In particular, only weak evidence for fish alignment is found. Here, our

results agree as many spatial patterns can be found using only attraction and repulsion interac-

tions (parameter case (a) in Table 4). Our results suggest that alignment interactions may be

important in the formation of some patterns, such as travelling pulses, travelling trains, zigzag

pulses. Moreover, splitting and merging behavior, which emerges due to the inclusion of den-

sity-dependent speed, can occur with or without alignment interactions. Repulsion-based

interactions are mediated primarily by changes in speed instead of a directional change [15].

This highly motivates the study of density-dependent speed. Density-dependent interactions

can lead to stationary aggregations and groups that split and merge as shown in Fig 7. In addi-

tion, we find that density-dependent speed based on attractive and repulsive interactions can

lead to splitting and merging patterns, with and without direction changes due to alignment

(Fig 7).

A multitude of spatial patterns can be observed within one modelling framework by explor-

ing direction-dependent interaction rules. In particular, we are able to reproduce the spatial

patterns observed in a PDE model with direction-dependent social interactions using an IBM

framework. Nonetheless, our work has some caveats. First, while we focused solely on direc-

tion-dependent interaction rules in this investigation, it is possible that there are other means

of information transfer among individuals in a group. Data-driven approaches to elucidate

information transfer within groups should guide future modelling efforts [13, 15–17]. Second,

natural biological aggregations rarely occur in one-dimension, and extending the IBM to two

or three dimensions could allow for the model predictions to be compared with empirical data

from aggregations in nature (as discussed briefly below). Third, the qualitative investigation

presented here could be improved with the addition of quantitative data analysis. For example,

the consideration of order parameters to quantify pattern formation, such as average nearest

neighbour distance, group polarity [14], distance travelled, or the use of topological data analy-

sis [33] could allow us to quantify the comparison of the IBM and PDE models and to examine

the influence of stochasticity and demographic stochasticity on pattern formation.

We suggest that extending the IBM with direction-dependent interaction rules to two or

three dimensions remains as a next step since these models better capture the physical reality

of aggregations in nature. Romanczuk and Schimansky-Geier [28] studied a two-dimensional

individual-based model where each individual can distinguish between conspecifics moving

towards or away. They found that collective behavior arises without explicit velocity-alignment

interaction, and derived an analytical condition to describe the onset of collective motion. To

distinguish between individuals approaching and moving away from a target individual, the

notion of of “relative velocity” which is calculated from the positions and velocities of inter-

acted individuals was introduced. Using this notion of “relative velocity” and the framework

described in [28], it would be possible to modify the social interaction forces to include direc-

tion-dependent interaction rules as considered in submodels M1-M5 here. Another possible

extension of the direction-dependent IBM to two dimensions is to restrict the movement of

individuals to a lattice, and “copy” the x-direction interactions from the IBM herein to the y-

direction. With a modification to allow individuals to change from left- or right-moving to

also change from up- or down-moving and vice versa, it would be possible to extend the direc-

tion-dependent interaction rules to a two-dimensional model where interactions are restricted

to the four cardinal directions (up, down, left, right). To overcome this restriction, the social
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forces would need to be defined in circles or annuli surrounding a target individual (instead of

intervals), and the direction-dependent interaction rules would again need a notion of “relative

velocity” to determine which conspecifics are moving towards or away from a target individ-

ual. Indeed, Fetecau [26] has extended the 1D PDE model from [22–24] to two dimensions by

adopting a kinetic formulation of a velocity-jump process for the dispersal of organisms. Fete-

cau describes an integro-differential equation for the total density of individuals in space mov-

ing in a certain direction, with the social interaction forces described through the

reorientation rate and kernel. As our 1D IBM results are similar to the corresponding 1D PDE

model, we expect that a 2D IBM which incorporates the same elements of the integro-differen-

tial equation model in [26] will produce similar collective behaviors.

In closing, the individual-based approach discussed in this paper reinforces the idea that

direction-dependent interaction rules may play a significant role in pattern formation. The

IBM recapitulates many of the ideas explored by Eftimie and co-authors [4, 22–25], and reveals

how many individual trajectories can combine to form group patterns.

Supporting information

S1 File. A MATLAB implementation of the individual-based model is available as supple-

mentary information.
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