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ABSTRACT The prevalence of physiological and pathological left ventricular hypertrophy (LVH) among
young adults is about 5%. A use of electrocardiographic (ECG) voltage criteria and machine learning for the
ECG parameters to identify the presence of LVH is estimated only 20-30% in the general population. The aim
of this study is to develop an ECG system with anthropometric data using machine learning to increase the
accuracy and sensitivity for a screen of LVH. In a large sample of 2,196 males, aged 17-45 years, the support
vector machine (SVM) classifier is used as the machine learning method for 31 characteristics including
age, body height and body weight in addition to 28 ECG parameters such as axes, intervals and voltages to
link the output of LVH. The diagnosis of LVH is based on the echocardiographic criteria for young males
to be 116 gram/meter2 (left ventricular mass (LVM)/body surface area) or 49 gram/meter2.7 (LVM/body
height2.7). On the purpose of increasing sensitivity, the specificity is adjusted around 70-75% and all data
tested in proposed model reveal high sensitivity to 86.7%. The area under curve (AUC) of the Precision-
Recall (PR) curve is 0.308 in the proposed model which is better than 0.109 and 0.077 using Cornell and
Sokolow-Lyon voltage criteria for LVH, respectively. Our system provides a novel screening tool using age,
body height, body weight and ECG data to identify most of the LVH among young adults. It provides a fast,
accurate and practical diagnosis tool to identify LVH.

INDEX TERMS Anthropometrics, electrocardiographic system, left ventricular hypertrophy, machine learn-
ing, young adults.

I. INTRODUCTION
Artificial intelligence (AI) grows fast with the improvement
of technology and the availability of various kinds of big
data. Machine learning, an AI of the computational statis-
tics, has been introduced in clinical medicine which could
provide accurate diagnosis of disease and prediction of the
risk [1]–[12]. For example, [12] utilizes the random survival
forest technique identifying the top-20 risk factors of car-
diovascular events and the performance is superior to the
traditional risk calculators. In the modern era, using machine
learning techniques has become an efficient and reliable tool
for clinical practice by physicians globally.

Left ventricular hypertrophy (LVH), which is clinically
considered as a sign of end-organ damage related to long-
term hypertension, has been associated with heart failure and
cardiovascular disease events among middle and old-aged

individuals [13], [14]. In contrast, the prevalence of LVH in
young adults is low, accounting for approximately 5% [15],
and the phenotypes are usually caused by physiologic adap-
tions to intense physical training [16] and congenital hyper-
trophic cardiomyopathy [17]. A prior population research
also shows that the presence of LVH at young ages is asso-
ciated with higher risk of incident cardiovascular disease
events [18]. The 12-lead surface electrocardiography (ECG)
is the currently most used tool for screening the presence
of LVH in the general population [19]. Several ECG-based
criteria such as the Cornell and Sokolow-Lyon formulas have
been proposed for more than 30 years [20], [21]; however,
the performance of the ECG-based criteria for LVH con-
sistently yields high specificity (>95%) but low sensitivity
(20%-30%). Over the past 5 years, a few population studies
were presented by machine learning and deep learning for the
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FIGURE 1. Schematic diagram of proposed system.

ECG characteristics to detect presence of LVH [1]–[3]. For
hypertrophic cardiomyopathy (HCM), one of the most com-
mon pathological LVH, Rahman et al. firstly used the random
forest and the support vector machine (SVM) techniques, and
5-fold cross validations, for hundreds of ECG characteristics
training, where showed excellent results regarding the sen-
sitivity, specificity and precision up to 90% in a hospital-
based population study [2]. Subsequently, Tison et al. used
the deep learning of convolutional neural network for numer-
ous ECG parameters to identify HCM, consistently showing
excellent results in a hospital-based population study [3].
However, the sensitivity using the specific ECG criteria for
HCM has approached up to 90% [22], [23]. By contrast, a
community-based population study using machine learning
for the ECG to screen any unspecific LVH was proposed
by Sparapani et al. [1]. Despite this study utilized the tree-
based, Bayesian nonparametric machine learning technique
for a number of ECG characteristics alone, the sensitivity
for detecting any unspecific LVH phenotype in a general
population of middle and old aged individuals is increased
up to 29.0%, merely a little improvement compared with the
other ECG criteria for LVH [1]. Accordingly, computerized
training of the ECG alone might not be adequate in screening
for unspecific LVH in the general population level.

In this paper, we aim to develop a clinically accessible
ECG-based system which uses a large sample of the military
young personnel taking age, anthropometric data and several
ECG characteristics into account for machine learning by the
method of SVM to predict the presence of unspecific LVH as
shown in Fig. 1. The rest of this paper is organized as follows.
The materials are presented in Section II. In Section III,
the proposed algorithm regarding the ECG system for unspe-
cific LVH detection is described in detail. Section IV
displays the experimental results. Section V concludes
this paper.

II. DATA COLLECTION AND FEATURES SELECTION
A. DATA COLLECTION
This study uses a population of 2,196 military males aged
17-45 years from the ancillary cardiorespiratory fitness and
hospitalization events in armed forces (CHIEF) substudy
performed in the Hualien Armed Forces General Hospital
in Hualien city, Taiwan, R.O.C. Each participant received
an ECG and an echocardiography at the same clinic visit in
a health examination prior to the annual exercise tests for
the military rank promotions and awards. The study design
has been described in detail previously [24]–[33]. The raw
data of 12-lead ECG parameters are interpreted by the soft-
ware products of two ECG manufacturers: one is the CAR-
DIOVIT MS-2015 (Schiller AG, Baar, Switzerland), and
another one is the TC70 CARDIOGRAPH (Philips, Ams-
terdam, Netherlands). The transthoracic echocardiography is
performed via the IE33 (Philips, Amsterdam, Netherlands).
All the echocardiography and ECG procedures are imple-
mented by the same technician who has been certificated with
plenty of experiences for longer than 20 years. The 28 ECG
characteristics adopted in the proposed method include heart
rate, the durations of P wave, PR interval, QRS interval,
QT interval and QTc interval in Lead II, and the axes of
P, QRS, and T waves in Lead II, and the voltages of R
waves in all Limb Leads I, II, III, aVR, aVL, aVF and S
wave in Lead aVL, and the voltages of R and S waves in
all precordial Leads V1-V6, where the voltage of 1 mV
indicates 10 mm. In addition, a population of 203 military
females aged 17-42 from the ancillary CHIEF substudy is
utilized as an additional test set using the male model of
machine learning by age, anthropometric data and ECG
parameters. The comparison methods are the Sokolow-Lyon
voltage criterion for LVH [20] and the Cornell voltage criteria
for males and females [21], which are revealed in Table 1,
respectively.
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TABLE 1. Electrocardiographic and echocardiographic criteria for left ventricular hypertrophy.

TABLE 2. Preliminary performance of additional biological parameters and adopted 28 ECG parameters.

The diagnosis of LVH is based on the recommendations
of the American Society of Echocardiography [34]. Quan-
tification of left ventricular internal dimension (LVIDd) and
left ventricular wall thickness including interventricular sep-
tum (IVSd) and left ventricular posterior wall (LVPWd) is
measured by M-mode and 2-dimensional methods at the
mitral valve tips and at the onset of the QRS complex in
ECG of end diastole in echocardiographic parasternal long
axis view. Left ventricular mass (LVM) is calculated on the
basis of the corrected echocardiographic formula proposed by
Devereux et al. [35] as shown in (1).

LVM = 0.8× [1.04×(LVIDd+ IVSd+ LVPWd)3

−LVIDd3]+ 0.6 (1)

LVM is respectively indexed for body surface area (BSA)
and for height2.7 based on the Dubois and Dubois [36] and de
Simone et al. formula [37], respectively. Echocardiographic
LVH for young males is defined to be the 95th percentile of
the military males and according to the finding of a prior
Coronary Artery Risk Development in Young Adults study
(CARDIA) [18]. In addition, echocardiographic LVH for
young females is defined according to the 95th percentile of
the military females in the CHIEF study and the results of
a prior study for Southeastern Asia young females [38]. The
sex-specific echocardiographic criteria for LVH are listed in
Table 1. To develop the proposed machine learning method,
the data are partitioned into 80% for cross validation and
20% for test for the male samples. The study protocol
was approved by the Institutional Review Broad of Men-
nonite Christian Hospital (No. 16-05-008) in Hualien City,
Taiwan.

B. PRE-TEST FOR INPUT FEATURES
To select the proper features, at initial stage, we stepwise
add several biological parameters on the 28 ECG parame-
ters, as input features for SVM machine learning to deter-
mine the most clinically efficient system. These biological
parameters include age, body height, body weight, body mass
index (BMI), waist circumference, systolic blood pressure
(SBP), diastolic blood pressure (DBP) and body surface
area (BSA). The preliminary performances of additional bio-
logical parameters and adopted 28 ECG parameters are listed
in Table 2. For the stepwise pre-test of input features, we only
take training set and test set without cross validation for
SVM model to compare the results of various ECG-based
combinations. As shown in Table 2, when more input param-
eters are trained, there are larger area under curves (AUCs)
of the Receiver Operating Characteristic (ROC) curves and
Precision-Recall (PR) curves in the test set. A significant
improvement in AUCs of the ROC and PR curves is observed
when using age, body height, body weight with the 28 ECG
parameters as inputs to relate to the output of LVH.Additional
inputs of BMI, waist circumference, BSA, SBP and DBP
are neutral or merely increase a little in performance. Thus,
the 31 features including age, body height, body weight,
and the 28 ECG parameters are determined as the input
features of our machine learning model. The average values
in each parameter of the participants are revealed in Table 3.
The label of LVH is by the echocardiographic LVM/BSA
≥ 116 gram/meter2 or LVM/height2.7 ≥ 49 gram/meter2.7

for young males. As shown in Table 3, the characteris-
tics in those with and those without LVH are continuous
data which are expressed as mean ± standard deviation

VOLUME 8, 2020 1800111



G.-M. Lin, K. Liu: ECG System With Anthropometrics via Machine Learning to Screen LVH among Young Adults

TABLE 3. Characteristics of study participants (Males).

and compared by two samples t-test. A p-value < 0.05 is
considered significant. Notably, older age, lower body
height and greater body weight are observed in those with
echocardiographic LVH.

III. PROPOSED METHOD
According to the preliminary pre-test outcomes, the 31 input
factors for machine learning are age, body height, body
weight and the adopted 28 ECG parameters. This paper uses
the SVM for predicting the presence of LVH among young
adults. The reason for selecting SVM as the model is due
to the advantages of SVM classifier which are effective in
high dimensional spaces and memory efficient, and could
provide successful discriminative models in many fields
[2], [39]–[41]. In addition, the training time and running
time of SVM are extremely short. Therefore, we utilize
the SVM machine learning technique which can be fea-
sible in an ECG equipment to achieve practical applica-
tion. The flowchart of the proposed method is illustrated
in Fig.2.

A. DATA NORMALIZATION
Firstly, we use the normalization of Min-Max scaling [42],
[43] to individually normalize the original data of 31 input
features into the interval between 0∼1 for solving the prob-
lem of different dynamic ranges of various input features.
Min-Max normalization performs a linear transformation on
the original data. Each of the actual data d of feature f is
mapped to a normalized value which lies in the range of 0
to 1. The Min-Max normalization is calculated by using (2).

Normalized (d) = d ′ =
d − min(f )

max(f )− min(f )
(2)

where d indicates the original data of feature f among the
31 input features, min(f ) and max(f ) represent the minimum
and maximum values of the input feature f , respectively. d ′

denotes the normalized data.

B. CROSS VALIDATION
The data of 2,196 military males are segmented into a total
training and validation set and a test set with 4:1 ratio.
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FIGURE 2. Flowchart of the proposed method.

The total training and validation set is partitioned into four
equal size groups. Among the four groups, one group is
treated as the validation set for validating the model, and the
remaining three groups are taken as the training set. Each
of the four groups is used once as the validation set. The
proportions of non-LVH and LVH cases are similar across
each group. The cross validation process is then repeated
four times. Four AUCs of PR curves from the four folds are
averaged as a single performance of the results. By using a
4-fold cross validation, a better generalization assessment of
the performance for training can be obtained.

C. APPLICATION OF SMOTE
The data numbers illustrated by four folds are described in
detail in Table 4. Our datasets are predominately composed
of non-LVH cases with only a small percentage of LVH cases
since the prevalence of LVH in young adults is approxi-
mately 5%. For example, in Table 4, the 1st cross validation,
the numbers of the training set and validation set are 1,317
(Non-LVH: 1,225, LVH: 92) and 439 (Non-LVH: 408, LVH:
31), respectively. This imbalance in sample sizes between the
Non-LVH and LVH cases is obvious. The solution for this
issue is to increase LVH cases in pre-processing by applying

TABLE 4. Data numbers in the training and validation set.

the synthetic minority over-sampling technique (SMOTE)
[44]. The main idea of SMOTE is to create new minority
class samples by choosing a near minority class neighbor
randomly and interpolating as described as follows. Firstly,
for eachminority class sample Si, its k nearest neighbors from
other minority class samples are taken. Secondly, minority
class sample Sj among the k neighbors is randomly selected.
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Finally, the SNew is generated as the synthetic sample by
interpolating between Si and Sj as (3).

SNew = Si + rand (0, 1) ∗
(
Sj − Si

)
(3)

where rand (0, 1) stands for a random number between
0 and 1. Sj ∈{k neighbors of Si}. The process of applying
SMOTE can be treated as interpolating between two LVH
samples in the viewpoint of geometry. The decision space
for the LVH samples is expanded. Thus, it allows the SVM
method to have a higher prediction performance on unknown
LVH samples. The SMOTE is used in the process of 4-fold
cross validation. The training data of the LVH group are pre-
processed and augmented by SMOTE to be the same numbers
with those of the Non-LVH group as 1,225, 1,230, 1,229 and
1,215, respectively, for the four folds as shown in Table 4.
We also compare the performances of the test set for the
proposed model with and without using SMOTE.

D. MACHINE LEARNING MODEL
Our proposed method utilizes SVM [45]–[48] as a
binary classifier for machine learning. In our method,
a 31-dimensional vector represents a data point and we
employ the linear kernel (Linear SVM) to separate such
points by a 30-dimesional hyperplane. Maximum-margin is
constructed by SVM so that the distance from the hyperplane
to the nearest subset of the training data points (support
vectors) of Non-LVH or LVH class is maximized. The soft-
margin SVM is adopted in our method. Soft-margin SVM
allows the wide decision margin and some outliers are inside
or on the wrong side of the margin.

Let xi ∈ R31 denote a 31-dimensional training vector with
associated label yi ∈ {1, −1}. xi also includes the synthetic
samples of LVH group applied by SMOTE and all the data
of xi are processed by Min-Max normalization. n indicates
the number of training vectors. The weight vector w, which is
related to the construction of hyperplane for SVM, is obtained
by solving the objective function as shown in (4) [41], [47].
The second term in (4) is the squared hinge loss (L2 loss)
function for the soft-margin SVM evaluated on the training
data and weighted by hyperparameter h. The soft-margin
formulation can help in avoiding over-fitting.

min
w

1
2
wTw+ h

n∑
i=1

(max(0, 1− yiwT xi))
2

(4)

where h is a hyperparameter which decides the trade-off
between maximizing the margin and minimizing the train-
ing error. When h is large, avoiding misclassification is
emphasized at the expense of maintaining the margin small,
whereas when h is small, classification errors are presented
less importance and focus is more on maximizing the margin.
The optimized hyperparameter h is chosen by grid search
according to the average AUC of the PR curves of the cross
validation in our algorithm. As demonstrated in Fig.2, the
hyperparameter h is initialized to 0.02. The training processes

TABLE 5. Data numbers of total data.

with the increment 0.001 of h for grid search is iterated until h
reaches to 1. The optimized hyperparameter is chosen based
on the highest AUC of the PR curves among the candidates
of h.
After selecting the optimized hyperparameter, the SVM

training model will be determined by the data in the total
training and validation set. As shown in Table 5, the data of
total training and validation set for the LVH group are pre-
processed by SMOTE, and the number is increased to 1,633.

IV. RESULTS AND DISCUSSION
Our proposed method is implemented using the software
scikit learn v0.20.2 with Python programming language [49].
In addition, the optimal weight vector w for hyperplane is
obtained by LIBLINEAR (A Library for Large Linear Clas-
sification) [47], an open source library for large linear clas-
sification. The optimized hyperparameter h 0.322 is chosen
when the highest AUC of the PR curve averaged from the
4-fold cross validation is found from the values of 981 trials.

A. PERFORMANCE MEASUREMENT
The specificity 70-75% is the criterion to decide the most
appropriate test cut-off probability [50] for our SVMmethod.
The performance is assessed by several standard measure-
ments including accuracy, specificity, sensitivity (recall), pre-
cision, F1 score, the AUC of the ROC curve and the AUC of
the PR curve [51], [52].

The definitions of accuracy, specificity, sensitivity and
precision are calculated by true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) as denoted
in (5) - (8). The F1 score, which is the harmonic average of
the precision and recall, is described in (9).

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(5)

Specificity =
TN

TN + FP
(6)

Sensitivity(Recall) =
TP

TP+ FN
(7)

Precision =
TP

TP+ FP
(8)

F1 score =
2× Precision× Recall
Precision+ Recall

(9)

B. RESULTS
The results of the 4-fold cross validation for the validation set
with the optimized hyperparameter are shown in Table 6. The
prevalence of LVH in the validation set is range from 4.8%
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FIGURE 3. ROC and PR curves for the 4-fold cross validation.

TABLE 6. Data numbers and performances for the 4-fold cross validation.

to 8.2% as shown in Table 6. Average accuracy, specificity,
sensitivity, precision and F1 score are 73.3%, 72.9%, 78.8%,
18.3% and 29.3%, respectively. The ROC and PR curves for
the four folds are compared in Fig. 3. The average AUC of the
ROC curve is 0.828 and the average AUC of the PR curve is
0.289. Table 7 shows the prediction results of the total training
and validation set, test set and total data. In the total training
and validation set, the SMOTE is applied for the LVH group
to increase the prevalence rate to 50%. Thus, the precision, F1
score and AUC of PR curves are much better than the other
two datasets. In the test set and total data, the prevalence of
LVH is generally distributed around 6-7% in the population
of young adults. The results of the test set for the model
with SMOTE regarding the accuracy, specificity, sensitivity,
precision and F1 score are 76.1%, 75.1%, 92.6%, 19.5% and
32.2%, respectively, which are in line with the results of the
total data for the model with SMOTE, and better than 74.6%,
73.9%, 85.2%, 17.6%, and 29.2%, respectively, for the model
without using SMOTE. The ROC and PR curves for various
datasets are compared in Fig. 4. The AUC values for the

three datasets are similar in ROC curves. The AUC values
of ROC and PR curves of the proposed method with SMOTE
for test set are 0.871 and 0.272, respectively, and larger than
0.841 and 0.259, respectively, for the model without using
SMOTE.

Our proposed SVMmachine learning method is also com-
pared with the Sokolow-Lyon voltage and Cornell voltage
criteria for LVH as shown in Table 8. All data of the 2,196mil-
itary males are tested in the model. With the specificity
of 73.3%, intended to be set between 70-75%, our SVM
technique provides much better sensitivity 86.7% compared
to 3.3% and 52.7% regarding the Cornell and Sokolow-Lyon
voltage criteria, respectively. The ROC and PR curves for the
three approaches are shown in Fig. 5. It is obvious that the
proposed method is much superior to the other two traditional
ECG voltage criteria.

In addition, we also test the CHIEF military female subco-
hort data with the label of echocardiographic LVH by the def-
initions of LVM/BSA≥ 88 gram/meter2 or LVM/height2.7 ≥
41 gram/meter2.7 for young females using the proposed SVM
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FIGURE 4. ROC and PR curves of the proposed method for various datasets.

FIGURE 5. ROC and PR curves of the proposed method and traditional ECG voltage criteria.

TABLE 7. Predicted results of the proposed method for various datasets.

model trained by the military young males. The baseline
data with an average for each adopted biological and ECG
features of the female participants with and without echocar-
diographic LVH are revealed in Table 9. It is contrary to the
findings of the male participants that there are no significant
differences in the adopted biological parameters including
age, body height and body weight, and there are only two sig-
nificant differences in the ECG characteristics including the

TABLE 8. Performance comparison of proposed method and traditional
ECG voltage criteria.

amplitudes of R waves in chest Leads V1 and V3. In addition,
the results of the female test set with regard to the accuracy,
specificity, sensitivity, precision and F1 score are 76.4%,
76.3%, 76.9%, 18.2% and 29.4%, respectively, and shown in
detail in Table 10. Compared to the conventional Sokolow-
Lyon voltage and Cornell voltage criteria specifically for
females [21], the proposed SVMmethod can provide superior
performance evaluated by F1 score, and the AUCs of the ROC
and PR curves. The ROC and PR curves obtained from the
female’s test data are shown in Fig. 6.
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FIGURE 6. ROC and PR curves of the proposed method and traditional ECG voltage criteria for the female’s
test data.

TABLE 9. Characteristics of study participants (Females).

Fig. 7 shows the feature importance with regard to the
overall 31 input characteristics. We can see that body
height and body weight are the most important factors of
echocardiographic LVH with a coefficient magnitude greater
than 4 in our SVM model. The other significant predictors
of LVH with greater coefficient magnitude include age,
heart rate, PR interval, uncorrected QT interval, QRS axis

in Lead II, R amplitudes in Lead I, Lead V3, V4, and S
amplitudes in Lead V3, V6.

C. DISCUSSION
A few studies have utilized machine learning or deep
learning techniques for ECG characteristics training to
predict the LVH presence [1]–[3], [53]–[55]. However,
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TABLE 10. Performance comparison of proposed method and traditional
ECG voltage criteria for female’s test data.

FIGURE 7. Feature importance of the 31 input parameters.

the disadvantages are that most of the studies include a small
sample size of participants [53]–[55], or the output is aimed
merely for HCM [2], [3] but not for all kinds of LVH phe-
notypes in the general population. To our knowledge, the
Multi-Ethnic Study of Atherosclerosis (MESA) study might
be the only one research in screening for the presence of any
unspecific LVH based on the definition of cardiac magnetic
resonance imaging in a large sample size of middle and old
aged general population [1]. As compared with MESA, our
study has superior results as both the ECG characteristics and
simple biological features are trained by the SVM. On the
basis of feature importance analysis of the proposed SVM
model, it is obvious that body height and body weight are the
strongest predictors of LVH among young adults. We also
notice that an addition of systolic and diastolic blood pres-
sures on the currently used SVM model can improve merely

a little or is similar in the detection of LVH. It is reasonable
that elevated levels of blood pressure are highly correlated
with greater body mass index among young adults [56] and
the effect time on cardiac remodeling is relatively short.
Therefore, blood pressure may not play a critical role on the
development of LVH in young adults.

V. CONCLUSION
This study develops a clinically effective ECG-based system
with age and simple anthropometric data through the SVM
machine learning technique in screening for unspecific LVH
among young adults, which improves much in the sum of
sensitivity and specificity as compared with the traditional
ECG criteria for LVH or using the ECG parameters alone
for the machine learning. The sensitivity of our proposed
method achieves up to 92.6%. In addition, since the test
performances regarding accuracy, specificity, sensitivity, pre-
cision, F1 score, and the AUCs of the ROC and PR curves
for the female samples are not optimal by adopting the SVM
model trained by male samples, future studies should be done
to clarify the validity of our system operated specifically for
young females.
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