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Purpose: Glaucoma is the main cause of irreversible blindness worldwide. However, the

diagnosis and treatment of glaucoma remain difficult because of the lack of an effective

glaucoma grading measure. In this study, we aimed to propose an artificial intelligence

system to provide adequate assessment of glaucoma patients.

Methods: A total of 16,356 visual fields (VFs) measured by Octopus perimeters

and Humphrey Field Analyzer (HFA) were collected, from three hospitals in China

and the public Harvard database. We developed a fine-grained grading deep learning

system, named FGGDL, to evaluate the VF loss, compared to ophthalmologists.

Subsequently, we discuss the relationship between structural and functional damage

for the comprehensive evaluation of glaucoma level. In addition, we developed an

interactive interface and performed a cross-validation study to test its auxiliary ability. The

performance was valued by F1 score, overall accuracy and area under the curve (AUC).

Results: The FGGDL achieved a high accuracy of 85 and 90%, and AUC of 0.93 and

0.90 for HFA and Octopus data, respectively. It was significantly superior (p < 0.01) to

that of medical students and nearly equal (p = 0.614) to that of ophthalmic clinicians.

For the cross-validation study, the diagnosis accuracy was almost improved (p < 0.05).

Conclusion: We proposed a deep learning system to grade VF of glaucoma with

a high detection accuracy, for effective and adequate assessment for glaucoma

patients. Besides, with the convenient and credible interface, this system can

promote telemedicine and be used as a self-assessment tool for patients with

long-duration diseases.
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INTRODUCTION

Glaucoma is one of the most frequent causes of irreversible
blindness (1, 2), with a high global prevalence reaching 3.54%
(3). Early diagnosis and fine grading assessment are of great
importance in guiding treatment. Standard automated perimetry
is a significant tool for detecting functional damage from
glaucoma. The visual field (VF) report obtained from this
examination reveals the light sensitivity at different positions
in the field of vision and possible optic nerve damage at the
corresponding retina regions (4, 5).

Artificial intelligence (AI), particularly deep learning (DL),
has been employed in many medical tasks such as medical
image analysis and as a clinical decision aid. DL has been often
applied in the detection of glaucoma. There have been many
reports of the use of AI in the diagnosis via structural changes,
including retinal fundus photos (6–11) and optical coherence
tomography (OCT) (12–14). Previous studies have focused on
function changes as well as VF (15–18) loss. These studies have
achieved a high accuracy in glaucoma diagnosis. However, the
diversity of the data and complex clinical scenarios remain
major hindrances to the promotion of DL in the clinical practice
of glaucoma.

Data diversity is the common problem in medical AI, as
medical data often come from different hospitals or machines.
Previous studies (19–22) have used transfer learning and other
DL-based image-reconstruction methods to deal with different
types of medical images. For the VF of glaucoma, the frequently
used perimeters consist of the Humphrey Field Analyzer (HFA)
and Octopus perimeters, which probe the same central 24◦

or 30◦ VF with completely different distributions of detection
points. Different patterns of input images bring disturbing
information to the trained DL models (DLMs), resulting in an
often unsatisfactory effect on external validation.

Because clinical situations are complex, a fine-grained grading
and comprehensive evaluation are needed to assist in an accurate
diagnosis and management. However, clinicians must have a
high proficiency in order to interpret fine-grained grading of
numerous images in a limited amount of time. On the other
hand, it is not difficult for a computer to extract complex features
from images and to make decisions rapidly; thus, there is a strong
need for DL technology to provide effective grading suggestions
for clinicians who are not experienced enough. Previous DL
detection (6–10, 12–18) mainly focused on the presence of the
disease and showed great results. Yet, more attention should
be paid to the precise severity grading of the disease because
of its importance in decision making for clinical management.
Furthermore, for glaucoma, VF damage reflects only functional
impairment, and the relationship between structure and function
is important for adequate patient evaluation.

To address the problems outlined above, we developed a fine-
grained grading DL system (FGGDL) for glaucoma VF, with
a multilevel grading standard. Multiple patterns of data were
input into the system from different perimeters, and the VF
damage was mapped to the fundus to evaluate patients from
two aspects. In addition, we built an interactive interface applied
in the FGGDL and valid its auxiliary ability of diagnosis in the

real world. This interface can automatically detect progress and
provide clinical advice. Our FGGDL may have the potential to
provide precise guidance in glaucoma diagnosis and treatment.

MATERIALS AND METHODS

This retrospective study is a sub-analysis of VF data from a
clinical study (A New Technique for Retinal Disease Treatment,
ClinicalTrials.gov identifier: NCT04718532). Ethical approval
for the study was obtained from Ethics Committee of ZJU-
2 (No Y2020–1027). The research adhered to the tenets of
the Declaration of Helsinki and the Health Portability and
Accessibility Act.

Patients and Datasets
We selected 3,805 reliable Octopus VFs (including internal
dataset and Real-World dataset) from 2,007 eyes of 1,276
glaucoma patients. Patients underwent VF examination at the
Eye Center at the Second Affiliated Hospital of Zhejiang
University School of Medicine and the Eye Center of Peking
University Third Hospital from February 7, 2013, to August 19,
2020.

The Octopus VFs included in this dataset were measured by
two experienced technicians using the G1 program test pattern
with stimulus size III by the OCTOPUS 900 perimeter (HAAG-
STREIT, Switzerland). The inclusion criteria in this study were as
follows: (1) diagnosis of glaucoma by the ophthalmologists, with
abnormities in the intraocular pressure (IOP), VFs, retinal fundus
photography, OCT, and medical history; (2) without history of
glaucoma surgeries; and (3) a false-negative rate ≤ 30% and
false-positive rate ≤ 30% for the VFs (23–26). Although patients
with severe vision loss typically have a higher false-negative rate
(27, 28), the same standard should be implemented to ensure
the reliability of other VFs. All VFs were changed to the “right
eye” format.

The FGGDL for HFA data (FGG-H) dataset collected a large
number of total deviation (TD) values of VF examinations,
which contained 13,231 VFs measured by HFA from the Harvard
Medical School, which is a publicly available database (29).
We excluded VFs that did not concord with the characteristics
of nerve fiber bundle abnormalities. We input those data into
FGG-H, as described in the “Development of FGGDL and
Interface” section.

We collected 150 reliable VFs from the Department of
Ophthalmology at the Second Affiliated Hospital of Xi’an
Jiaotong University, measured using automated white-on-white
perimetry SITA 30-2 fast tests with stimulus size III by HFA (Carl
Zeiss Meditec, Dublin, CA). The inclusion criteria were the same
as used for the Octopus datasets, with a fixation loss rate ≤ 33%
at the same time. To be consistent with the data pattern of the
FGGDL dataset, we transferred the 30-2 test pattern into the 24-2
test pattern. These VFs were input into the FGGDL as an external
validation dataset.

Preprocessing of VF Data
Negative values of the comparison graph in the Octopus reports
and values of TD in the HFA reports were used in this study,
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which were converted into Voronoi images using the Voronoi
parcellation (30, 31). The value of VF can be arranged in a certain
order as vector x = [x1, x2, · · · xk], where k is the number of test
points in the Octopus data or theHFA data. The vector x, which is
then mapped to the eight-bit grayscale of [0, 255], was converted
into vector y.

To reconstruct the Voronoi images, we built a new 224 ×

224 blank image, for which the tangential circle represented
the central 30◦ of VF. The grayscale in the region outside the
tangential circle was set to zero. In addition, the points in vector
y were distributed at their original positions on the VF reports
with the grayscale in vector y. For other points, its grayscale was

equal to the value of the closest points in vector y. This process is
shown in the “Image reconstruction” (Figure 1).

Moreover, we used data augmentation (32), including flipping
the vertical and rotation in the categories with less data, to
solve the imbalance of data size over each category, only for the
training dataset.

Classification Standard Reference
The ideal method of VF classification should be objective,
reproductive and user-friendly. It should provide effective
characteristics of VF defects, including shape, type, location and
depth in the same time, have certain grades to directly judge its

FIGURE 1 | There are five steps in the workflow. (A) The data collection step with HFA data from the Harvard database, external validation datasets from XJTU, and

Octopus data from ZJU and PKU. (B) Process of converting VF data to Voronoi images. (C) Process of labeling. (D) Transfer learning process, including deep-learning

models, FGG-H, and FGG-O. (E) Glaucoma grading step consisting of the classification of VF defect and saliency map. VF, visual field; HFA, humphrey field analyzer;

VF, visual field; XJTU, xi’an Jiaotong university; ZJU, zhejiang university; PKU, peking university.
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TABLE 1 | Grading standard of visual field defect of glaucoma.

Category Name Main characteristic Subtypes

1 Clear VF Only relative defects.

2 Mild VF defect Spot-like, stroke-like,

or arcuate absolute

defects, having no

connection to the blind

spot.

Nasal step defect;

Paracentral

scotoma defect;

Temporal wedge defect

3 Moderate VF

defect

Arcuate absolute

defects already

connected to the blind

spot, with or without a

nasal break-through

into the periphery.

Partial arcuate defect;

Arcuate defect;

Altitudinal defect

4 Severe VF

defect

Extensive ring-shaped

or half ring-shaped

defects, with a central

island of sensitivity

maintained.

Double arcuate defect;

Tubular vision

5 Diffuse VF

defect

Central island collapse,

with only the temporal

visual field area

remaining.

Diffuse defect; Total

visual loss

VF, visual field.

severity, and be consistent with structure damage. Besides, this
method should have enough clinical significance.

Because of the intricate patterns of the VF defect, the
standard VF classification is multitudinous. Among the other
classifications, the H-P-A scale (33) was acceptable to most
ophthalmologists and stipulates that mild glaucoma consists of
mean deviation (MD) ≤ −6 dB, moderate glaucoma of −12
dB ≤ MD ≤ −6 dB, and severe glaucoma of MD ≤ −12 dB.
Despite its popularity and can be learned in a short time, it
still has some disadvantages: the degree of VF defect is roughly
and simply divided by MD, which makes the grade could not
fully reflect the shape, type and location of VF defect. Besides,
the H-P-A standard would be greatly affected when subtle
diffuse sensitivity depression exists. The system suggested by the
Advanced Glaucoma Intervention Study (23) and Collaborative
Initial Glaucoma Treatment Study (34) VF score, two commonly
adopted VF scoring system, also have this problem.

In the traditional morphological classification methods of VF,
the Aulhorn and Karmeyer five-stage grading method (35) on the
basis of a large sample of manual perimetry data is widespread,
highly recognized, and still considered to be fundamental
reference point in glaucoma research (36). Therefore, based on
this method, the nerve fiber bundle abnormalities obtained in the
Ocular Hypertension Treatment Study (25) were divided into the
five stages as subtypes. This classification method can be applied
to Octopus and HFA VF data (Table 1).

The ground truth of HFA and Octopus data was generated by
three glaucoma specialists according to the proposed standard.
Due to the lack of complete VF reports of HFA data of the
Harvard database and considering that the model was input with
Voronoi data, the use of Voronoi data annotation was conducive
to the establishment and validation of the model. On the other

hand, Voronoi images enhanced the defect features, makes the
annotation of HFA and Octopus data unified as well.

The Structure Validation of Grading
Glaucoma is relatively complex including functional and
structural changes, and it would be easier to determine the overall
severity of glaucoma if this grading method could represent the
severity of structure to a great extent. To valid the structural
consistency of the grading method, we chose 150 cases (30 cases
of category 1, 30 of category 2, 30 of category 3, 30 of category
4, 30 of category 5) correctly-classified by FGGDL. These cases
had VF reports and retina photos from the same patients, with
an examination interval of <3 months. The fundus or VF were
divided into 10 sectors or clusters according to the previous
research (37). We calculated the number of damaged areas on
fundus photos and VF.

Development of the FGGDL
Due to the reduced amount and imbalance of data of the five
categories, we applied transfer learning to solve the loss function
misconvergence and overfitting of the network. In view of the
high structural similarity between the HFA and Octopus data
after Voronoi parcellation, we input HFA data from the Harvard
public database to pretrain FGG-H and then constructed another
model, the FGGDL for Octopus data (FGG-O), using the same
structure. The final parameters of FGG-H were used as the
initialization parameters of FGG-O.

Both the FGG-H and FGG-O are classical Resnet-34 (38),
which add identity mapping in which the output is composed
of the convoluted input and the input itself to avoid the
phenomenon of gradient vanishing in this part, as compared with
ordinary convolutional neural network (CNN). The input of the
entire network passes through a 7 × 7 convolutional layer and a
3 × 3 maximum pooling layer, with both strides 2, realizing the
down sampling of the input image. The image then goes through
16 residual blocks, with the number of channels growing from 64
to 512 and the feature map decreasing to a size of 7 × 7. After
the average pooling layer, the fully connected layer, and softmax
operation, the probabilities of the five categories are output.

There are two types of residual blocks. The input feature map
size isW ×H×C (width, height, channel). For the first type, the
residual mapping part is the convolution of two 3×3 convolution
kernels, the number of convolution kernels is the same as C,
and the stride is 1 to remain the size of feature map unchanged.
Then the residual mapping part add with the identity mapping
part which same with the input, and the output feature map size
remains W × H × C. For the second type, the residual mapping
part is also the convolution of two 3×3 convolutional kernels, but
the number of one is 2C, the stride is 2, and the featuremapwould
be changed toW/2×H/2×2C. And the number of the other one
is 2C, the stride is 1. Then the residual mapping part add with the
identity mapping part with 1× 1 convolution kernels, stride of 2,
the number of convolution kernels of 2C, and the output feature
map size isW/2×H/2× 2C.

We used cross-entropy as the loss function and added the L2
regularization term to the loss function to reduce the complexity
of the network and reduce overfitting. The equation of loss
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functions is as below:

Loss = −
1

N

(

∑N

i=1

∑M

c=1
yic log pic

)

+
λ

2

∑W

j=1
ω2
j (1)

where N is the batch size, and each batch is composed of n data
pairs (xi, yi); xi represents the input image; yi ( yi ∈ {1, 2, 3, 4, 5})
is the category of xi, M and is the number of categories. The
equation of yic is as below:

yic =

{

0 yi 6= c
1 yi = c

(2)

where c represents the category label, pic is the probability
value that xi belongs to category c, λ is the regularization
coefficient of L2, and W is the number of weights ω that
regularization contains.

We trained the FGG-H for 150 epochs with a batch size
of 8 and used an initial learning rate of 0.001, adjusted to 0.1
times the original value every 40 epochs, with the regularization
coefficient of L2 10−6. Equally, we trained the FGG-O for 500
epochs with a batch size of 8 and used an initial learning rate of
10−6, adjusted to 0.1 times the original value every 50 epochs,
with a regularization coefficient of L2 10−4. We used the Adam
optimize gradient descent method in both networks to minimize
the loss function. The difference between the two networks was
mainly because (1) FGG-O generates the parameters of FGG-H,
with a certain feature extraction ability at the beginning, so the
small initial learning rate is set to prevent the loss function from
oscillating in the training process and (2) the small amount and
unbalanced distribution in each category of input data of FGG-O
result in a larger regularization coefficient.

An Interactive Interface and Real-World
Performance
To improve the practicability of the FGGDL’s assisting clinical
decision making, we developed an interface based on the FGGDL
and by reading the open-source code of the information on
the VF reports (https://github.com/goldengrape/read_medical_
device_data) and tested its auxiliary diagnostic capability in the
real world.

We performed a diagnostic accuracy study comparing
the performance with and without FGGDL assistance. The
participating clinicians in the study diagnosed a validation
dataset. This dataset including 400 VF reports from 100 patients,
and each of them had 4 VF examinations at different times, at
intervals of more than 3 months. The clinicians were randomly
divided into 2 groups. Group 1 first read the VF report read
without FGGDL assistance. And after a washout period of 14
days, they read the VF report with FGGDL assistance in a reverse
order. Group 2 first with FGGDL assistance, then without and in
the reverse order as well. Clinicians were required to diagnose the
grade of VF.

Statistical Analysis
To compare the diagnostic capability of the FGGDL with that
of humans, the same test dataset was provided to them to grade
without any clinical materials. The performance of the FGGDL
and ophthalmologists was evaluated by three aspects: (1) F1 score

(calculated by precision and recall) of each class, (2) the overall
accuracy (ACC), and (3) the area under the curve (AUC) of the
FGGDL. The performance of the FGGDL-based interface in the
real world was evaluated by ACC.We applied a two-tailed paired-
sample t-test on the ACCs to identify significant differences in
performance between the FGGDL and the ophthalmologists. All
statistical analyses were performed using SPSS (v26.0, IBM) or
Python (v3.6.8, Python Software Foundation). The significance
level was designated at 95%, and p < 0.05 was considered to be
statistically significant. These indexes are defined as follows:

Equations (3)–(6): precision, recall, F1 score, ACC:

Precision =
TP

TP + FN
(3)

Recall =
TP

TP + FP
(4)

F1 =
2∗Precision∗Recall

Precision+ Recall
=

2∗TP

2∗TP + FP + FN
(5)

ACC =
TP + TN

TP + TN + FP + FN
(6)

where TP is true positive, TN is true negative, FP is false positive,
and FN is false negative.

RESULTS

Study Workflow for the FGGDL
A DLM for predicting the degree of glaucoma VF injury must
have the following characteristics: (1) handles different types
of data for different perimeters, (2) grades the degree of VF
injury, and (3) is interpretable by clinicians. Based on the above
requirements, we proposed the FGGDL. This system is composed
of two DLMs: FGG-H and FGG-O. A suited network was selected
for different data patterns.

Figure 1 shows the study workflow. First, we collected and
screened out 12,401 HFA VFs from the Harvard public database;
3,405 Octopus VFs from Zhejiang University and Peking
University for training, validating, and testing the FGGDL; and
150 HFA VFs from Xi’an Jiaotong University as an external
validation dataset (Figure 1A). Second, the two kinds of data
were converted into Voronoi images and annotated by three
glaucoma specialists (Figures 1B,C). Third, FGG-H was trained
and tested based on HFA data and FGG-O based on Octopus
data. The final parameters of FGG-H were used as the initial
parameters of FGG-O (Figure 1D). Finally, the probabilities of
five categories indicating the different degree were output from
FGG-H and FGG-O. We used a saliency map for FGG-O to
visualize the entire model, indicating the region of interest (ROI)
supposed to be located in the area without defect (Figure 1E).

Demographic Data
There shows an overview of demographic data of the study
cohorts. There were 4 datasets in our study: (1) Internal
datasets (HFA): This dataset used in the FGG-H consisted of
12401 HFA data in TD values with CSV format from Harvard
public dataset, lack of demographic data; (2) Internal datasets
(Octopus): 3,405 Octopus VFs included in the FGG-O collected
from Zhejiang University and Peking University (Table 2); (3)
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TABLE 2 | Demographic data of patients in internal dataset of Octopus data.

Category Total

1 2 3 4 5

Internal dataset - Octopus

Patients 185 332 454 483 150 1,221

Age mean (SD) 47.02 (18.57) 48.28 (18.48) 53.19 (18.05) 58.79 (16.10) 58.54 (17.46) 53.72 (18.16)

Male (n%) 95 (51.35%) 174 (52.41%) 223 (49.12%) 251 (51.97%) 62 (42.00%) 612 (50.12%)

Eyes 243 434 608 629 189 1,907

VFs 377 677 1,008 1,019 324 3,405

Right (n%) 188 (49.87%) 339 (50.07%) 487 (48.31%) 512 (50.25%) 172 (53.09%) 1,698 (49.87%)

MD mean (SD) −1.26 (0.96) −3.14 (1.07) −6.65 (2.19) −14.07 (4.48) −16.03 (7.34) −8.47 (6.33)

sLV mean (SD) 1.96 (0.40) 2.79 (0.74) 5.33 (2.06) 7.06 (1.45) 4.44 (1.95) 4.89 (2.38)

VF, visual field; MD, mean deviation; sLV, square root of loss variance; right, right eyes; SD, standard deviation.

External dataset (HFA): This dataset included 150 HFA VFs
from Xi’an Jiaotong University used as external validation for
our FGGDL (Supplementary Table 1); (4) Real world dataset
(Octopus): This dataset contained 400 VF reports from 100
patients from Zhejiang University, and each of them had 4 VF
examinations at different times, at intervals of more than 3
months (Supplementary Table 2).

Architecture and Performance of the
FGGDL
In our study, the FGGDL showed great capability for both HFA
and Octopus datasets. The basic architecture of the FGGDL is
shown in Figure 2A. The results of the predicting performance
are shown in Figures 2B–F. The FGG-H achieved a total AUC of
0.93 and 0.90 for FGG-O (Figures 2B,C).

For the classification of each level, the ability to identify clear
VF, severe VF defect, and diffuse VF defect was shown to be
better. For identifying mild defect, both the FGG-H and FGG-
O showed weaker performance, with AUCs of 0.76 and 0.77,
respectively, probably due to the various subtypes with vastly
different shapes included in this grade. The capability of FGG-
H for classifying moderate VF defect (AUC = 0.94) was much
better than that of FGG-O (AUC= 0.78).

Confusion matrixes (CMs) of FGG-H, FGG-O, and
performance on external validation datasets were generated
to exhibit the predicting accuracy (Figures 2D–F). For both
FGGDL predictions, we found that clear VF could be recognized
with the highest accuracy. In general, the total accuracy on the
HFA data, Octopus data, and external validation data was 0.86,
0.90, and 0.85, respectively, which shows that the FGGDL could
be a good aid in the clinical evaluation of the severity of the
VF defect.

Comparison of the FGGDL With Human
Ophthalmologists
The same test sets, including 400 Octopus datasets and
150 external validation datasets of Humphrey data, were
given to seven human ophthalmologists (including three
clinicians, two senior medical students, and two junior medical
students) to compare the predicting results with those of the

FGGDL. It demonstrates examples and statistical results of the
diagnostic capability of three representative ophthalmologists
(one clinician, one senior medical student, and one junior
medical student) and the FGGDL (Figure 3). We selected 25
Octopus cases from the test dataset to exhibit details of the
predicting performance. The selected cases covered different
subtypes and five cases in each category. Likewise, both
incorrect and correct predictions of the FGGDL and human
ophthalmologists were covered in these cases (Figure 3A).
As compared with the ophthalmologists, the FGGDL showed
better predicting performance for the subtype nasal step defect
(columns 3 and 5 in Mild), altitudinal defect (column 4
in Moderate), and double arcuate defect (columns 2 and
4 in Severe).

To visualize the focus of our FGGDL, we used the saliency
map, and the correct distribution indicated that the ROI was
located in the region without defect. For the analysis of the wrong
distribution of the saliencymap, we found that the shallow diffuse
defect caused by cataract and other eye diseases may impede
the judgment of the FGGDL. It was easy for FGGDL to treat
the cataract defect as a glaucoma VF defect, thus deepening the
judgment of the degree of the original defect. In other situations,
very shallow tubular defects may be misclassified as other types,
possibly because of the unfitting of the profile of the overall deep
defect in the category Severe.

It demonstrates the statistical results of the classification
accuracy of three representative ophthalmologists and FGGDL
(Figure 3B). It shows the mean accuracy of the HFA andOctopus
data. The total mean accuracy of the FGGDL was 0.87, which
was nearly equal to that of the clinician (0.86) and higher than
that of medical students (0.76 and 0.66). Total accuracy and
CMs for all human ophthalmologists and FGGDL are shown
in detail for HFA and Octopus data, respectively (Table 3;
Supplementary Figures 1, 2). We used the F1 score (generally
considered the precision and recall) for each category to evaluate
predicting performance (Supplementary Tables 3, 4). We found
that the FGGDL has the highest F1 score of all categories of the
HFA data and for most categories of the Octopus data. It can
be proved that FGGDL has excellent classification capability in
each category.

Frontiers in Medicine | www.frontiersin.org 6 March 2022 | Volume 9 | Article 832920

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Huang et al. Universal Glaucoma Grading With AI

FIGURE 2 | Architecture and performance of the FGGDL. (A) Training architecture of the FGGDL framework. The receiver-operating characteristic curves of (B)

FGG-H and (C) FGG-O. The confusion matrixes (CMs) of the predicting results of (D) FGG-H, (E) FGG-O, and (F) external validation datasets. AUC, area under the

receiver-operating characteristic curve; Cl, clear visual field (VF); Mi, mild VF defect; Mo, moderate VF defect; Se, severe VF defect; Di, diffuse VF defect.

Function-Structure Relevance
Different degrees of VF loss in glaucoma are caused by optic
nerve damage, which primarily manifest in the optic nerve head
(ONH). The FGGDL considered not only the VF injury but also
the corresponding fundus injury pattern. It shows examples of
the grading standard in the categories Clear, Mild, Moderate,
Severe, and Diffuse defect, with transformed HFA Voronoi
images in the left column and Octopus in the right (Figure 4A).

Besides, it shows the relationship between VF and ONH
damage (Figure 4B) (37). All retina photos of the left eyes

were converted into “right eye” format. The same colored area
in the VFs and retina photos demonstrated the corresponding
defect area. This indicated that the rim loss of ONH increased
progressively with augmentation of VF category. This mapping
relation between function and structure is strong evidence, which
allows for the degree of optic nerve fiber damage to be predicted
by the FGGDL at the same time.

We selected 150 cases (30 cases of category 1, 30 of category
2, 30 of category 3, 30 of category 4, 30 of category 5) correctly-
classified by FGGDL, and calculated the number of the damaged
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FIGURE 3 | Predicting results of the FGGDL compared with humans. (A) Twenty-five selected cases of the predicting results of each category. The red lines represent

wrong labels, the green represent correct labels, and the locations of the lines demonstrate the categories. Furthermore, the distributions of the saliency map are

shown in the dotted boxes. (B) The histogram of the mean predicting accuracy for the Humphrey Field Analyzer data and Octopus data of the FGGDL and three

representative ophthalmologists. Senior, senior student; Junior, junior student.

area on the VF and fundus (Supplementary Table 5). The

increased average number of damaged sectors on VF and fundus

showed that the degree of structural damage also increased

according to this grading method based on VF. In addition,

except for category 1 (p < 0.01), the numbers of damaged sectors
on VFs and fundus united greatly (p > 0.01). Perhaps in the early
glaucoma, the structural damage precedes functional damage.

The Performance of FGGDL Application in
the Real World
To test the performance of AI assisting clinicians in the real
world, we developed an AI assistant interactive interface
and did a cross study to valid it (Supplementary Figure 3).
It shows the design of this cross-validation study
(Supplementary Figure 3A), that clinicians were divided into 2
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TABLE 3 | The performance of the FGGDL and humans.

Octopus Humphrey

Accuracy p-value Accuracy p-value

Clinician 1 0.873 (0.819–0.927) 0.614 0.840 (0.804–0.876) 0.008

Clinician 2 0.800 (0.735–0.865) 0.171 0.800 (0.761–0.839) 0.000

Clinician 3 0.787 (0.720–0.853) 0.114 0.815 (0.777–0.853) 0.000

Senior

student 1

0.727 (0.655–0.799) 0.006 0.788 (0.747–0.828) 0.000

Senior

student 2

0.700 (0.626–0.774) 0.002 0.775 (0.734–0.816) 0.000

Junior

student 1

0.560 (0.480–0.640) 0.000 0.768 (0.726–0.809) 0.000

Junior

student 2

0.613 (0.534–0.692) 0.000 0.783 (0.742–0.823) 0.000

FGGDL 0.853 (0.796–0.911) * 0.895 (0.865–0.925) *

Accuracy is presented with 95% CIs. Bold text indicates the highest accuracy in each

category and overall. HFA, humphrey field analyzer. *There is no p value.

groups and read the VF reports with (without) AI-assist. After
a washout period, they read the same VF reports without (with)
AI assistant in a reversed order. And it shows the AI assistant
interface based on the FGGDL (Supplementary Figure 3B),
which allows clinicians and glaucoma patients to make use of our
grading system. This interface can be used to grade the severity
of VF, analyze disease progression, and provide clinical follow-up
and treatment recommendations. The system then compares it
to the previous recorded results according to ID number and eye
(left/right), displays whether there is progression, and changes
the advice regarding follow-up and treatment. The follow-up
and treatment recommendations are based on clinical guidelines
(39, 40).

It can be seen from Table 4 that the independent diagnose
accuracy of ophthalmologists is lower than that of the FGGDL.
However, the accuracy of the senior and junior medical student
groups significantly improved when assisted with FGGDL (p
< 0.01).

DISCUSSION

Our study has shown the potential for AI-assisted fine clinical
grading. Here, we established an effective fine-grained grading
system, which we termed FGGDL, to directly guide glaucoma
management. This system was verified by multiple data patterns
acquired by Humphrey and Octopus perimeters from multiple
centers. We also mapped the VF damage to the ONH on fundus,
to evaluate the patient in terms of both function and structure
and to achieve a diagnosis with much conviction. The FGGDL
achieved a high accuracy of 0.85 and 0.90 for the HFA and
Octopus data, respectively. We compared the results of the
FGGDL with those of human ophthalmologists and found that
the FGGDL had significantly superior performance (p < 0.01)
to that of medical students and nearly equal performance (p
= 0.614) to the best results of the clinicians. Furthermore, we
developed a glaucoma grading AI interactive interface. This

system can be used to record the examination report for the
same patients to detect the progression of VF and provide
corresponding management recommendations applicable in
clinical situations. With the assist of this system, the ability of
diagnosing had been greatly improved.

The FGGDL combined the VF data from different perimeters
of the HFA and Octopus, and the diversity of the data made the
results more solid. Transfer learning has recently been widely
applied for evaluating different patterns of input data in a specific
medical field, such as pneumonia (19), electroencephalogram
(41), and cancer genomics (42). In this study, our morphology-
based classification method can be applied to both HFA and
Octopus data, and we implemented a preprocessing method
called Voronoi parcellation and converted the values of TD
on VF reports from HFA and Octopus perimeters into similar
images with similar features for the CNN. The transfer learning
employed afterward ameliorated the network performance on
account of the small volume and imbalance of Octopus data,
which ensured excellent predicting results of both data types.
Thus, the FGGDL was not bound by the difference in data and
is inclined to be generalized to the clinical settings.

Effective fine-grained grading for glaucoma VF was applied
in the FGGDL to deal with complex clinical situations,
including assessment of incipient glaucoma and its subsequent
management. Some studies (15–18) have examined the automatic
detection of VF defect of glaucoma using different factors,
including the values of TD and the probability map of
pattern deviation. These studies obtained great performance
of their methods, with some being even better than human
ophthalmologists. However, because of the lack of a certain
grading system, these detection methods were not suitable
for obtaining a clinically accurate diagnostic assessment and
management. As compared with other methods, the FGGDL
judged the severity of VF loss, providing a simple and
intuitionistic method for detecting the progression of VF. It
further enhanced the auxiliary diagnostic capability of vision loss
in glaucoma via the follow-up and treatment decisions provided
for clinicians. For instance, for patients with progressed VF, a
shorter follow-up time such as 1–2 months is recommended
(39). In addition, for patients with advanced glaucoma, surgery
with pharmacologic augmentation might be more effective than
a generic prostaglandin analog (40).

This AI system connected function and structure to provide
a more comprehensive patient evaluation. It can interpret the
principles of classification in amore clinical way that is associated
with structure damage. The vision loss in VF is considered to
be a mapping of the structural damage in the optic nerves of
the fundus, appearing particularly in the ONH. Previous studies
have detected the structure–function relationship between the
corresponding retinal nerve fiber layer and the VF cluster defect.
This relationship was presented in the manner of sector area
partition in VF and ONH, whether using HFA (43) or Octopus
(37, 44), was also applied in the detection of early glaucomatous
progression (45), shown in Figure 4B. It can be seen that the
number of defective quadrants (inferior, superior, nasal, and
temporal) of the ONH increased from category Clear to Diffuse.
The change in fundus indicates the progression of optic nerve
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FIGURE 4 | Function–structural relationship of glaucomatous damage. (A) Examples of categories 1–5. The left column is the Humphrey Field Analyzer data and the

right column is Octopus data. (B) The function–structure relationship and the partition in the dotted box were proposed and verified by the previous study. The example

of each category is in the gray box. The first row shows the VF reports, converted Voronoi images, and their partition, and the colored area represents the damage.

The second row is the corresponding fundus photos, its optic nerve head, and the same colored area demonstrating the related structure damage on fundus.

damage on the fundus, which explains the rationale of the VF
defect classification based on the structural changes and simulates
the diagnostic thoughts of clinicians.

In our study, we established an AI system based on the
FGGDL with a convenient interface. Patients and doctors can
upload VF reports and receive the analyzed results, including
follow-up and treatment recommendations. In addition, it
can detect VF progression, from which the advice would
then be changed according to the severity and progression
of VF loss. This longitudinal change detection function can

better explain the development of the glaucoma course and
provide matching clinical advice. In addition, we verified its
performance in the real-world, that can significantly improve
the ability of ophthalmologists to diagnose and judge progress.
Therefore, this AI system can reduce the medical costs of
patients, alleviate physician workload, and help achieve goals
of telemedicine.

There are several limitations to our study. First, the data size
of each category was unbalanced, perhaps because patients with
moderate or severe vision loss tend to present to the hospital
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TABLE 4 | The auxiliary performance of FGGDL interface in the real world.

Diagnosis accuracy

No AI With AI P-value

Clinician 1 0.838 (0.801–0.874) 0.885 (0.854–0.916) 0.024

Clinician 2 0.833 (0.796–0.869) 0.875 (0.842–0.908) 0.024

Senior student 1 0.758 (0.715–0.800) 0.798 (0.758–0.837) 0.059

Senior student 2 0.753 (0.710–0.795) 0.863 (0.829–0.896) 0.000

Junior student 1 0.588 (0.539–0.636) 0.820 (0.782–0.858) 0.000

Junior student 2 0.630 (0.582–0.678) 0.758 (0.715–0.800) 0.000

Junior student 3 0.460 (0.411–0.509) 0.813 (0.774–0.851) 0.000

Junior student 4 0.695 (0.650–0.740) 0.875 (0.842–0.908) 0.000

Machine 0.893 (0.862–0.923)

Diagnosis accuracy and progression prediction accuracy are presented with 95% CIs.

more frequently. However, we applied data augmentation and
transfer learning to solve this problem. Second, the severity of
glaucoma could not be defined according only to the functional
loss in VFs, and the gold standard should be combined with IOP,
structural damage in the fundus via retina photos or OCT, and
other clinical information. Hence, the multimodality of the AI
diagnosis of glaucoma should be considered in further studies.
At last, the high test-retest variability was not considered in our
study due to the lack of VF reports tested at the same time of
one patient.

In general, we proposed a fine-grained grading AI system
based on a novel standard with different data patterns and
solid results. This valid, automated multilevel grading achieved
potential guidance for the clinical management of glaucoma and
was also mapped to structure damage for a more comprehensive
assessment of patients. In addition, we developed an interactive
interface and validate its practicability in the real world. This
will have great potential value in clinical situations such as
precision medicine in remote areas. After further research with
more clinical validation is applied, this system can promote
telemedicine and be used as a self-assessment tool for patients
with long-duration diseases.
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