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Immunochemical characterization of antibodies against a{l — 6) dextran has given
insights into the size and shape of the antibody-combining site and the nature of
the interaction between antibodies and antigen. We are now attempting to correlate
the immunochemical properties of the antidextran antibodies with their primary
structure. In the course of these studies cDNAs from three monoclonal anti-a(1 — 6)
dextran hybridoma cell lines, 14.6b.1, 5.54' and 19.22.1 (1, 2), were cloned, and the
nucleotide sequences of their Vy and V|, regions were determined (3) (Table I). All
synthesize an identical x light chain with the V-OXI1 germline gene (4) rearranged
to the J«2 segment; the heavy chains differ by only one or two amino acids in their
complementarity-determining regions (CDRs)?. When compared with 14.6b.1, 5.54
and 19.22.1 have an identical Thr - Asn amino acid change at position 60 in Vg;
5.54 has an additional change (Ser = Gly) at position 31 in CDR1. The changes
in heavy chain sequence result in 5.54 and 19.22.1 having a 10-fold or greater reduc-
tion in their binding constants for both polymeric dextran and isomaltoheptaose
(IM7) when compared with 14.6b.1 (Table I).

The Thr — Asn change in 5.54 and 19.22.1 leads to the loss of a potential N-linked
glycosylation site (Asnsg—Tyrss—Threo) present in 14.6b.1. The purpose of this study
was to determine whether this potential N-linked glycosylation site is used and if
so, whether the addition of carbohydrate (CHO) to CDR2 affects the binding con-
stant for dextran. It is difficult to demonstrate glycosylation of Vy in the original
hybridoma antibodies since both IgA and IgM isotypes are glycosylated within their
Cul domains and CHO present in Fd could be linked to either Vy or Cy. There-
fore, we have transferred the three Vi regions to the human IgGy constant region,
which is devoid of CHO in its Cu! domain. In this report we demonstrate the pres-
ence of carbohydrate within the Vy of 14.6b.1. Comparison of the association con-
stants for aglycosylated tunicamycin {Tim)-treated and -untreated antibodies shows
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! The 5.54 mAb was designated as 5.54.4.24.1 by Newman and Kabat (2).

2 Abbreviations used in this paper: CDR, complementarity-determining region; CHO, carbohydrate;
IM7, isomaltoheptaose; Staph A, Staphylococcus aureus protein A; Tm, tunicamycin.
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that the presence of CHO increases the aK, of 14.6b.1 for dextran. The effect on
binding is unique to the carbohydrate present in Vy, since absence of CHO from
CH2 does not change the aK, for dextran. Lastly, we have demonstrated that the
CHO in Vy is more exposed than in CHs.

Materials and Methods

Cell Lines. 5.54 is a mouse hybridoma cell line synthesizing a C57BL/6 IgA, « antibody
specific for a(1 — 6) dextran. D3 is a spontaneous heavy chain-loss variant of 5.54 that syn-
thesizes only the « light chain characteristic of the antidextran hybridomas. The D3 light
chain variant cell line was isolated by Dr. P. N. Akolkar (Columbia University, NY). Cell
lines were grown in Iscove’s Modified Dulbecco’s medium (IMDM) (Gibco Laboratories,
Grand Island, NY) supplemented with 3-5% FCS (Hyclone Laboratories, Logan, UT).

Gene Tiansfection. Gene transfection was by protoplast fusion using the method of Qi et
al. (5) and modified as described by Tan et al. (6). Transfectant culture supernatants were
tested for antibody production and dextran binding by ELISA (7). Dextran B512 was prepared
from Leuconostoc mesenteroides strain B512 cultures by Dr. L. Matsuuchi as described (8). Horse-
radish peroxidase affinity purified goat anti-human IgG antibody was purchased from Sigma
Chemical Co. (St. Louis, MO). D3 recipient transfected cells from positive wells were sub-
cloned once in soft agarose (9), and clones that stained heaviest with rabbit anti-human IgG
Fc antiserum (Cooper Biomedical, Inc., Malvern, PA) were chosen for further analysis.

Biosynthetic Radiolabeling and Papain Digestion. Transfectant cells were labeled in the presence
of 15 uCi/ml of [*S]Met or 100 uCi/ml p-["*C]glucosamine hydrochloride as described (10).

Secretions from the cells were digested with papain (Sigma Chemical Co.) at 1:100 enzyme/
protein ratio for 4 h at 37°C. The reaction was stopped by addition of iodoacetamide to 0.03
M. The Fc fraction and undigested antibody protein were precipitated by incubation with
IgG-Sorb (Enzyme Center, Malden, MA). Fab was precipitated from the supernatant using
rabbit anti-human Fab (prepared by Letitia A. Wims, Columbia University, NY) or by in-
solubilized dextran (Sephadex G75). Samples were reduced with 2-ME (0.15 M) and ana-
lyzed using 5% SDS-PAGE (5).

Inhibition of Glycosplation. Tm at a concentration of 8 pg/ml (Boehringer Mannheim Bio-
chemicals, Indianapolis, IN) was used to inhibit N-linked glycosylation. Cells were biosyn-
thetically labeled for 3 h with [®S]Met in the presence of T as described above. After
pretreatment, secreted Ig in the culture supernatant was discarded, the cells were washed
twice with IMDM, fresh Tm and [**S]Met added, and treatment continued overnight at
37°C. Removal of CHO from Ig was verified by immunoprecipitation of the secreted anti-
body and analysis by SDS-PAGE.

Determination of the Antibody Protein Concentration in Culture Supernatants. Antibodies in culture
supernatants diluted into BBS (0.02 M borate-buffered 0.75% saline, pH 8.3) were bound
to polystyrene microtiter wells (Corning Glass Works, Corning, NY) for 3 h at 37°C. After
blocking any unreacted sites with 1% BSA/PBS/0.05% Tween 20 for 1 h at room tempera-
ture, the ELISA plates were washed with PBS/0.05% Tween 20 three times, PBS once, and
then bound Ig was quantitated by reaction with horseradish peroxidase-labeled anti-human
IgG antibody and compared with a human IgG standard of known concentration. Assay
results have been reproduced at least three times. Direct binding of antibody to microtiter
plates was a more reproducible method than binding supernatants to plates sensitized with
anti-human IgG antiserum, for reasons that are not clear.

Determination of the Apparent Association Constants of Aglycosylated Con A-adsorbed or -untreated
Tansfectoma Antibody Against Dextran B512.  Apparent binding constants were determined using
the method of Nieto et al. (11). In brief, the association constant for an antibody is defined
as the reciprocal free ligand concentration necessary for occupying one half of the antibody-
combining sites. If a fixed amount of antibody is reacted with an increasing amount of free
ligand on a plate coated with antigen, the reciprocal of the free ligand concentration that
causes 50% inhibition of binding to the plate is considered to be a function of the intrinsic
K, and is designated as the apparent affinity constant (aK.). The ak, is calculated from the
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amount of ligand necessary for 50% inhibition of binding. The following experimental con-
ditions were used to measure the aK, values: Corning microtiter plates were coated with 0.5
ng/ml or 20 pg/ml dextran B312 (high-afinity and low-affinity assay conditions, respectively).
Bound Ig was quantitated using anti-human IgG labeled with horseradish peroxidase.

Results

The expressed Vi regions from the three hybridoma antibodies against a(l =
6) dextran were joined to the human IgG4 constant region gene (Fig. 1), and after
transfection of D3, a cell line producing only the hybridoma-specifc light chain (5,
6) directed the expression of an H chain that assembled with the endogenous light
chain and was secreted (results not shown). Nomenclature for the mAbs and trans-
fectoma antibodies used in this study are presented in Table II.

To determine if the 14.6b.1 chimeric antibody contained CHO in Vg, we frac-
tionated the molecule into Fab and Fc by papain cleavage, reduced the molecules
with 2-ME, and analyzed them on 5% SDS-PAGE gels. Proteins were labeled with
[**S]Met, and the Fab was precipitated using specific anti-Fab antiserum (Fig. 2
A). Transfectoma antibodies with Vi derived from 5.54 and 19.22.1 cDNA clones
(T5.54 and T19.22, respectively) show comigration of their Fd and « light chains.
Precipitation of Fab with insolubilized dextran results in the same pattern, verifying
that both k and Fc are present (data not shown). In contrast, in transfectoma anti-
bodies with the H chain variable region of 14.6b.1 (T14.6b), the Fd portion migrates
more slowly than the L chain. The reduced mobility of the T14.6b Fd fragment is
consistent with glycosylation of its Vy.

To confirm the presence of CHO in the Vy of T14.6b, we labeled secreted Ig with
['*C]glucosamine, prepared Fab and Fc fractions, and analyzed the products by
SDS-PAGE (Fig. 2 B). As anticipated, the « light chains do not contain CHO and
bands are absent from the position indicated by the [**S]Met-labeled « light chain.
We find ["*C]glucosamine labeling of the human IgG Fc fragment that contains N-
linked CHO within its Cn2 domain (12). However, the Fab from only T14.6b, with
its Fd containing the 14.6b.1 Vy, shows glucosamine labeling. The reduced inten-
sities of the Fd bands relative to the Fc is probably due to poor recovery of the Fab
fragment rather than incomplete glycosylation (13). In SDS-PAGE gels in which we
can resolve H chains containing no, one, or two CHO moieties (Fig. 3 B) we find
only one heavy chain band for T14.6b.

We have used the glycohydrolase Endo H to investigate the structure of the Vy
oligosaccharide. The di-N-acetylchitobiose linkage of high-mannose core oligosac-
charides found on newly synthesized IgG H chains is susceptible to Endo H cleavage
(14), while processed complex CHO are resistant to Endo H cleavage. H chains ob-
tained from cell cytoplasms were hydrolyzed by Endo H (data not shown). In con-
trast, heavy chains from the secretions of both T19.22 and T14.6b were unaltered
by Endo H treatment. Thus the N-linked CHO present in Vi does not appear to
differ from that present in the constant region.

To examine the role of CHO in Ag binding we determined the association con-
stants for Tm-treated aglycosylated and untreated native antidextran transfectoma
antibodies. Although Tm is a potent inhibitor of N-linked glycosylation (13), it is
difficult to produce proteins completely free of glycosylated species. From recon-
struction experiments it was apparent that even a trace contamination of high-affinity
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Ficure 1. Substitution of the genomic Vi region with Vi cDNA and isotype switch. A genomic
Eco RI fragment containing the MPC11 H chain promoter, leader sequence, rearranged V re-
gion, and Ig enhancer (24) was cloned into the Eco RI site of a pBR322 derivative from which
the sequences lying between the Hind III site (nucleotide 29) and the Pvu II site (nucleotide
2,066) had been deleted. Using cDNA produced from the anti-a(1 = 6)dextran hybridomas (3),
the V region of the MPC1l was replaced by the antidextran V region by inserting the Pvu I1-Pst
1 cDNA fragment into Pvu II-Pst I-cleaved MPC11. The first four Vi amino acids are derived
from MPCI11, but are identical to those found in the three cDNAs (24). The Eco RI fragment
containing the dextran Vi was joined to a human IgG4 constant region within the pSV2-gpt
expression vector (25, 5). The coding sequences of the MPC11 and cDNA genes are shown as
solid and hatched lines, respectively. The crosshatched boxes represent the coding sequences of
the human IgG, constant region. The maps are not drawn to scale. Restriction enzymes have
been abbreviated as follows: Eco RI, RI; PvuIl, PII; Pst I, PI; Bam HI, B; Sal I, S; and Sma I, SM.
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TasLe II
Nomenclature for Transfectoma™ and Hybridoma Antibodies

Laboratory name of hybridoma/

transfectoma antibodies Name used in this study?
14.6b.1 -
19.22.1 —
5.54.4.24.1 5.54
TKC3.2 T14.6b
THVS8.3 T19.22
TJC8.5 T5.54

* An immortalized antibody-synthesizing cell line produced by gene transfec-
tion and expression techniques.

! The names of the transfectoma cell lines have been shortened for ease and
clarity in reading the text. The letter T denotes transfectoma; the number fol-
lowing lists the origin of V,, segment: 14.6b is derived from mAb 14.6b.1;
19.22 from 19.22.1; 5.54 from 5.54.4.24.1. A dash indicates that the name
has not been changed.

antibody could dramatically increase the apparent binding constant for dextran of
the low-affinity antibody (data not shown). To avoid this we used Con A, which binds
high-mannose and biantennary complex oligosaccharides (16), to separate un-
glycosylated from glycosylated Ig. Adsorption experiments showed that the CHO
in T19.22 antibody was not accessible by binding to Con A-Sepharose (Fig. 3 4,
lanes 3 and 5). In contrast, the T14.6b antibody was adsorbed to Con A-Sepharose
(Fig. 3 4, lanes 2 and 4), thus the additional CHO present in Vy, unlike the CHO
buried between CHy, must be accessible to binding by Con A. The residual T14.6b
antibody seen in the Con A supernatant (Fig. 3 4, lane 2) may reflect our inability
to separate the Con A slurry completely from the culture fluid.

TM treatment of both T14.6b and T19.22 antibodies resulted in an electrophoretic
mobility change consistent with the loss of CHO from the H chain (Fig. 3 B, lanes
1-4). H chains that contain two, one, and zero N-linked CHO moieties (Fig. 3 B,

B
= — B —_ 8.3
A 24 3 % 2 -9V 9
L 3 &L oYM ki
N & = 3 = A
8 & g8 3 TTNN99 D
¢ e 4 X = eSS T
- = - P b= = = = =
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‘ ~ —H
—Fd ’
Fd,x— - -« - ®.8 —rdF
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Ficure 2. SDS-PAGE analysis of immunoprecipitates obtained after papain digestion of (4)
[3*S]Met or (B) [*C]glucosamine-labeled secreted Ig. [3°S]Met-labeled and reduced Igs were
used as markers. In 4 the T14.6b (Fab) and T14.6b samples were analyzed on a separate SDS-
PAGE gel.
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Figure 3. 12.5% Tris-glycine SDS-PAGE analysis of [33S]Met-labeled transfectoma culture su-
pernatants, immunoprecipitated with rabbit anti-human Ig Fc antiserum after Con A adsorp-
tion (as indicated) and/or tunicamycin treatment. Samples were reduced with 0.15 M 2-ME be-
fore SDS-PAGE. The positions of the H and L chains are indicated. (4) Con A-Sepharose adsorption
of secreted transfectoma Ig. (Lanes / and 6) Untreated T14.6b and T19.22 secreted Ig, respec-
tively. (Lanes 2 and #) T14.6b unbound, and T14.6b bound and eluted from Con A-Sepharose.
(Lanes 3 and 5) T19.22 unbound, and bound and eluted from Con A-Sepharose. (B) Tunicamycin-
treated cell supernatants without or with Con A-Sepharose adsorption. (Lanes / and 2) T14.6b
before and after tunicamycin treatment; (lanes 3 and ¢) T19.22 before and after tunicamycin
treatment; (lanes 5 and 6) tunicamycin-treated T14.6b Con A supernatant and eluate, respec-
tively; (lanes 7 and 8), tunicamycin-treated T19.22 Con A supernatant and eluate, respectively.

lanes 7, 3, and 2, or 4, respectively) can be resolved. The H chain bands of the un-
treated samples (Fig. 3 B, 1 and 3) appear homogeneous, suggesting that all H chains
are uniformly glycosylated. From the lack of visible glycosylated H chain bands in
lanes 2 and ¢, we estimate that TM treatment results in >97% deglycosylation of
the Ig. Lanes 5-8 show the results obtained from Con A adsorption of Tm-treated
Ig. Both the T14.6b and T19.22 aglycosylated antibodies were not bound by Con
A (Fig. 3 B, 5 and 7). The faint bands that represent CHO™~ H chains in lane 6
probably reflect nonspecific trapping in the Con A-sepharose slurry.

Having established that Con A adsorption could remove glycosylated contaminants
from T14.6b Tim-treated preparations, we used Con A-adsorbed material for dex-
tran binding studies. The results from one typical experiment are graphically illus-
trated in Fig. 4. For the native T14.6b antibody 50% inhibition of binding to ELISA
plates coated with 0.5 or 20 pg/ml dextran was obtained when 1.2 pg/ml of dextran

3
!
:
3

Ficure 4. Inhibition by soluble
BETG22(-Tm) dextran of antibody binding to dex-
®*-8T1222(+Tm) tran-coated ELISA plates. Percent-
age of antibody binding (ordinate)
is plotted against dextran inhibitor
concentration (abscissa). Plates
were coated with 20 pg/ml dextran.
Native antibodies and antibodies
aglycosylated by tunicamycin treat-
ment were used; trace quantities of
glycosylated Ig present in tunica-

mycin treated T14.6b were removed
62 a5 o 2b 5 10 20 0 100 i ;
ug/ml DEXTRAN 8512 5 100 by adsorption to Con A-Sepharose.
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inhibitor was added. CHO-depleted T14.6b antibody could not bind to 0.5 ug/ml
dextran-coated plates (data not shown). Using low-affinity binding conditions (micro-
titer wells coated with 20 pg/ml dextran) the aglycosylated T14.6b and T19.22 anti-
bodies and native T19.22 antibody showed half-maximal binding when 18-24 pg/ml
dextran B512 inhibitor was added.

The apparent association constants for Tm-treated aglycosylated and untreated
native antidextran antibodies are summarized in Table III. The binding constant
of the CHO-depleted T14.6b was 14-15-fold lower than the native antibody. In con-
trast, carbohydrate removed from the Fc of T19.22 did not affect that antibody’s ability
to bind antigen. All experiments except those noted were performed using an anti-
body concentration of 1 pg/ml; we observed a slight affect of antibody concentra-
tion on apparent ak, values. The aK, values determined using the inhibition ELISA
were, in general, slightly higher than those obtained previously using affinity gel
electrophoresis. For a discussion of affinity gel electrophoresis see Takeo and Kabat
(17). However, the differences in binding strength between antibodies were similar
using the two assays. We found a 32-fold difference in binding affinity between the
T14.6b and T19.22 antibodies, versus the 50-fold difference between the parental
mAbs 14.6b.1 and 19.22.1 reported (1). In summary, it is clear that the presence of
CHO within the antidextran Vy region significantly affects its afhnity for antigen,
however, we cannot rule out an additional contribution of the altered amino acids
to the differences in binding. ‘

Discussion

Antibodies are glycoproteins with all heavy chains containing at least one and
frequently several N-linked carbohydrate residues (18). The role postulated for car-
bohydrate found on the heavy chain constant regions includes solubilization of the
H chain, facilitation of subcellular transport and secretion, promotion of assembly,

TasrLe II1
Apparent Binding Constants for Dextran B512
aKa (tabulated aKa (calculated from Number of
Hybridoma or transfectoma antibody from Fig. 4)* several experiments)? experiments
mi/g
14.6b.1 ND 2.30 + 0.1 x 10° 4
19.22.1 ND ND ‘
T14.6b (without Tm) 1.7 x 10° 1.68 + 0.6 x 10% 8
(2.10 + 0.3 x 109! 5
T14.6b (with Tm) Con A-adsorbed 1.1 x 10° 1.18 + 0.04 x 10° 5
T19.22 (without Tm) 1.0 x 10° 8.22 + 3.6 x 10* 10
6.5 + 0.3 x 104! 6
T19.22 (with Tm) Con A-adsorbed 8.3 x 10* 1.09 + 0.4 x 107 4

* Calculated from the reciprocal concentration of dextran B512 necessary to inhibit 50% of the maximal
binding of antibody to dextran-coated plates. 1/[Dex]is, has been doubled to give the final aKa value be-
cause dextran inhibitor and antibody were added to microtiter wells at a 1:1 molar ratio.

The aKa value represents an average obtained from the experiments indicated. The error for the sum total
of all the values is represented by the first standard deviation.

Antibody concentration was 0.8 pg/ml.

Antibody concentration was 0.3 pg/ml.

Culture supernatants were not from tunicamycin experiments. Antibody concentration was 1 ug/ml.

-

- =
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and maintenance of Ig conformational features that contribute to effector functions
(19). Carbohydrate can also be found within the V region of an antibody molecule.
15% of human myeloma light chains have carbohydrate within their variable regions
(20). In a study of 76 human IgG myeloma proteins, ~25% were shown to contain
a carbohydrate moiety on the Fab fragment (21). The carbohydrate was linked to
either the light chains or the Fd fragments, and in a few cases to both.

In an earlier study, Matsuuchi et al. (22) isolated and characterized a spontane-
ously arising mutant of the myeloma J558 [IgA, A, anti-a(1 = 3) a(1 — 6)dextran]|
with decreased reactivity with polymeric dextran. The mutant differed from the wild-
type in that it had increased amounts of sialic acid on the carbohydrate in its Fab
region. Since the variable region of J558 does not contain the canonical carbohy-
drate addition sequence, the altered carbohydrate probably resides within the CH;
domain. The change in carbohydrate content was the consequence of the altered
availability of cellular enzymes involved in glycosylation.

It has been well documented how variation in amino acid sequence of the variable
region contributes to antibody diversity, and the many genetic mechanisms that can
generate different amino acid sequences have been defined. In this report we dem-
onstrate directly that the presence of carbohydrate in CDR2 of Vy is critical for
the high-aflinity binding of 2 monoclonal antibody specific for polymeric a(1 —> 6)dex-
tran, and we infer that the carbohydrate also contributes to the increased affinity
for IM7. Thus not only the specific amino acid sequence of the variable region, but
also its carbohydrate moieties can determine the specificity and magnitude of the
antigen-antibody interaction. Variable expression of glycosyltransferases could be
used to modulate antibody binding.

Of great interest is the mechanism by which presence of an oligosaccharide at-
tached to amino acids in the combining site of the anttbody 14.6b.1 leads to increased
K. for both polymeric dextran and IM7. X-ray crystallographic studies of unrelated
antibodies predict that the residues to which the carbohydrate is attached in Vy
should be exposed on the hypervariable loops. Our Con A binding experiments also
suggest that, in contrast to the carbohydrate in CHas, the Vu oligosaccharide is rel-
atively exposed, and is positioned at the surface of the Ig. Thus it is possible that
the Vy carbohydrate directly interacts with the antigen; however, it is difficult to
see how direct interactions could occur both with polymeric dextran and a site-filling
oligosaccharide, IM7.

A more likely explanation for the effect of glycosylation is that the carbohydrate
linked to amino acid 58 alters the conformation of the combining site. Such altera-
tions might increase the accessibility of the Thr residue at position 60 in the 14.6b.1
V4 region so that it may contact the antigen more closely. Indeed, Feldman and
coworkers have predicted from the hypothetical space-filling model of the V region
of the galactan-binding myeloma Ig J539 that H chain Thr residue 56 may contact
galactan (23). The X-ray crystallographic structure of the 14.6b.1 Fab would aid in
our understanding of how the presence of carbohydrate affects the topology of the
combining site.

Summary

We have observed that antidextran hybridomas with potential N-linked glycosyla-
tion sites in Vg have higher affinity for polymeric dextran and for isomaltoheptaose
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than those lacking potential glycosylation sites. In these studies we have used gene
transfection and expression techniques to verify that the carbohydrate addition sites
in Vi were used. The carbohydrate of the Vi region was accessible for binding by
the lectin Con A. By ELISA analysis it was demonstrated that the aK, of the anti-
body for dextran was influenced by the presence of carbohydrate in Vy, with the
aglycosylated antibody having an aK, 15-fold lower than its untreated counterpart.
The aK, for antigen of antibodies that contain carbohydrate only in their constant
region was unaffected by lack of carbohydrate. Thus, not only the amino acid se-
quence of the variable region but also its carbohydrate moieties can determine the
magnitude of the antigen-antibody interaction.

We are indebted to Dr. Pradip Akolkar, Columbia University, NY, who donated cDNA clones
and L chain variant cell lines. We thank Drs. S. K. Sikder and T. Matsuda for helpful conver-
sations concerning carbohydrate chemistry. We appreciate Dr. John Bergmann’s donation
of Con A-Sepharose, and for informing us that biantennary complex carbohydrates could
be adsorbed to thislectin. Again we thank Steve Brown for pointing out the potential glycosy-
lation site in CDR2. We thank Dr. B. F. Erlanger for letting us use his ELISA reader. We
greatly appreciate Marian Olsen’s assistance in the preparation of this manuscript.
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